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Abstract

Semantic textual similarity (STS), a corner-
stone task in NLP, measures the degree of sim-
ilarity between a pair of sentences, and has
broad application in fields such as informa-
tion retrieval and natural language understand-
ing. However, sentence similarity can be in-
herently ambiguous, depending on the specific
aspect of interest. We resolve this ambiguity
by proposing a novel task called Conditional
STS (C-STS) which measures sentences’ sim-
ilarity conditioned on an feature described in
natural language (hereon, condition). As an
example, the similarity between the sentences

“The NBA player shoots a three-pointer.” and “A
man throws a tennis ball into the air to serve.”
is higher for the condition “The motion of the
ball” (both upward) and lower for “The size of
the ball” (one large and one small). C-STS’s
advantages are two-fold: (1) it reduces the
subjectivity and ambiguity of STS and (2) en-
ables fine-grained language model evaluation
through diverse natural language conditions.
We put several state-of-the-art models to the
test, and even those performing well on STS
(e.g. SimCSE, Flan-T5, and GPT-4) find CSTS
challenging; all yielding Spearman correlation
scores below 50. To encourage a more com-
prehensive evaluation of semantic similarity
and natural language understanding, we make
nearly 19K C-STS examples and code available
for others to train and test their models. 1

1 Introduction

Over the years, natural language processing (NLP)
has progressed through the co-evolution of model
design (e.g. architectures, training methods) and
evaluation methods for language tasks (Wang et al.,
2018, 2019; Hendrycks et al., 2021). A common
task used to evaluate NLP models has been Seman-
tic Textual Similarity (STS) (Agirre et al., 2012),
which evaluates the models’ ability to predict the
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1Code: www.github.com/princeton-nlp/c-sts
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A windsurfer skims the water 
with his outstretched hand.

The surfer is riding a 
wave with a mountain 
in the background.

The base of 
the object:

DissimilarThe way the object is propelled:

Figure 1: C-STS: Two sentences are judged by their
similarities based on free-form natural language condi-
tions. The two sentences are more similar when judged
by the condition ‘The base of the object’ (highlighted
in yellow) as both windsurfing and surfing use a similar
board but are dissimilar when judged by the condition
‘The way the object is propelled’ (highlighted in blue)
because one is propelled by waves and the other by wind.
Providing conditions reduces ambiguity of the sentence
similarity task, and allows evaluation of a grounded and
multi-faceted notion of sentence similarity.

semantic similarity between two sentences. Several
diverse STS datasets are popularly used, with prior
work expanding the STS task to multiple domains
and languages (Agirre et al., 2013, 2014, 2015,
2016; Cer et al., 2017; Abdalla et al., 2021). STS
tasks have been a component of the popular GLUE
natural language understanding benchmark (Wang
et al., 2018) and are a key evaluation tool for
sentence-representation learning specifically (Con-
neau et al., 2017; Cer et al., 2018; Reimers and
Gurevych, 2019; Gao et al., 2021, inter alia).

Despite its popularity, STS may be inherently
ill-defined. The general semantic similarity of two
sentences can be highly subjective and vary wildly
depending on which aspects one decides to focus
on. As observed in several studies, ambiguity in
similarity judgements of word or sentence pairs
can be reduced with the help of context for both hu-
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Figure 2: Illustrating the data collection process for C-STS-2023. (Left) We first show the sentence pair collection
procedure (§2.2.1). Step A: An image-caption pair is sampled (red) from the dataset and then fed into the image
encoder to get the image embedding. The image embedding is compared against all other image embeddings in the
dataset (blue) to find the top-k similar images. The original caption is then paired with the corresponding captions
of the top-k similar images to generate sentence pairs. Step B: The sentence pairs are filtered based on textual
similarity. (Right) We illustrate the condition annotation/verification procedure (§2.2.2). Once the sentence pairs
have been collected, they are sent to qualified Mechanical Turkers to get annotations and verify conditions.

mans (De Deyne et al., 2016a,b) and models (Veit
et al., 2016; Ye et al., 2022a; Lopez-Gazpio et al.,
2017; Camburu et al., 2018).

Considering the importance of STS tasks for
evaluating sentence representations, we propose a
new task called Conditional STS (C-STS), illus-
trated in Figure 1, which seeks to disambiguate the
similarity of two sentences by measuring similarity
within the context of a condition sentence.

C-STS, uses free-form natural language condi-
tions, enabling us to evaluate and probe natural
language understanding for myriad fine-grained as-
pects. Figure 1 illustrates two conditions (“The
base of the object” and “The way the object is pro-
pelled”) which probes language models’ concep-
tion of similarity for different aspects concerning
water sports and physical reasoning. Since condi-
tions themselves are unconstrained sentences, they
allow us to evaluate a precise, grounded, and multi-
faceted notion of sentence similarity.

To comprehensively test models on C-STS, we
create the C-STS-2023 dataset which includes
18,908 instances containing sentence pairs, a con-
dition, and a scalar similarity judgement on the
Likert scale (Likert, 1932). We find that even state-
of-the-art sentence encoders and large language
models perform poorly on our task. Although Sim-
CSE (Gao et al., 2021) and GPT-4 (OpenAI, 2023a)
are among the best-performing systems, their rela-
tively poor Spearman correlation of 47.5 and 43.6
respectively, points to significant room for improve-
ment (SimCSE achieves a Spearman correlation of

88.09 on STS-B validation splits for comparison).
We believe that C-STS provides a testbed for

potentially novel modeling settings and applica-
tions. Toward this end, we propose and evaluate
a unique encoding setting (a tri-encoder) and ob-
jectives (a quadruplet contrastive loss with hard
negatives) that take advantage of C-STS’s three-
sentence inputs and paired high- and low-similarity
instances.

Our qualitative analysis shows that models find
C-STS challenging when tested on different aspects
of the same sentence pair rather than testing an un-
conditional and ambiguous notion of similarity. We
hope that future work evaluates on C-STS in addi-
tion to STS tasks to comprehensively benchmark
semantic similarity in language models.

2 Methodology

The C-STS task requires sentence pairs, conditions
which probe different aspects of similarity, and the
similarity label for a given sentence pair and con-
dition. This section describes the technical details
involved in creating the dataset.

2.1 Background: Semantic textual similarity

Semantic textual similarity (STS) (Agirre et al.,
2012, 2013, 2014, 2015, 2016; Cer et al., 2017) is
a task which requires machines to make similarity
judgements between a pair of sentences ({s1, s2}).
STS measures the unconditional semantic similar-
ity between sentences because the annotator mak-
ing the similarity assessment must infer which as-
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pect(s) of the sentences are being referred to. For-
mally, consider conditions (ci ∈ C) that refer to
disjoint aspects of the sentences, then the similarity
of the two sentences may be represented as:

|C|∑

i=1

wi simci (s1, s2) s.t.
∑

i

wi = 1

Here, wi is the weight assigned by the annotator
to the condition ci, and simci (s1, s2) is the similar-
ity of the sentences with respect to the condition.
These weights are latent to the task and each an-
notator has their own interpretation of them which
helps marginalize similarity, thus introducing am-
biguity in the task. C-STS seeks to disambiguate
the STS task by measuring similarity conditioned
by a single aspect specified in natural language.

2.2 Conditional semantic textual similarity
C-STS is a task comprised of quadruplets con-
taining two sentences (a sentence pair), a natural
language condition, and a similarity assessment
({s1, s2, c, y}). Crucially, we do not place any
strict constraints on c, allowing it to be any rel-
evant phrase. This allows us to probe potentially
any possible aspect of similarity that may be con-
sidered between sentences.

2.2.1 Sentence Data Collection
The first stage of making the C-STS dataset is to
acquire the sentence pairs that will later be used in
eliciting conditioning statements from annotators.

We source sentence pairs {s1, s2} for our dataset
from image-captioning datasets through a two-step
process: (1) generate candidate text pairs through
dense retrieval from the corresponding image rep-
resentations and (2) filter out candidates that are
irrelevant or ineffectual for our purposes.

Image Retrieval Image-captioning datasets pro-
vide a compelling data source because image pair
similarity and caption (text) pair similarity encode
different semantics (Parekh et al., 2021). Image-
representations thus serve as an informative latent
variable which can represent their captions in ways
that are not captured by text retrievers.

Since current sentence representation models
overlook aspects of conditional similarity, we uti-
lize both the image and text to retrieve sentence
pairs which form the foundation of our dataset.

We aim to derive sentence pairs from an image-
caption dataset D to aid in creating conditioning
statements. To do this, we first generate a store of

image pairs, or PI . Each pair, denoted by Ii, Ij , is
such that Ij is amongst the top-k most similar im-
ages to Ii, determined by the cosine distance metric
of their respective image representations obtained
via an image encoder EI(·). After establishing PI ,
we convert it into a sentence pair store (PS) by re-
placing each image in a pair with its corresponding
caption. When each image Ii ∈ D is associated
with a set of sentences {s}i we take all sentence
pairs from the Cartesian product {s}i × {s}j for
each image pair Ii, Ij ∈ PI .

Candidate Filtering After acquiring initial sen-
tence pairs through image retrieval, we perform ad-
ditional filtering to eliminate sentence pairs which
are ill-suited for our task.

Specifically, we aim to include only pairs of
sentences for which the unconditional similarity is
somewhat ambiguous, as this incentivizes models
to rely on the condition when reasoning about the
conditional similarity.

To this end, we avoid high similarity sentence
pairs by filtering out those with a high bag-of-
words intersection over union and avoid low sim-
ilarity sentence by choosing sentences with mod-
erate or high cosine similarity of their SimCSE
embeddings (Gao et al., 2021). See Appendix A.2
for a full description of all filtering criteria used.

Dataset sources For the construction of sen-
tence pairs candidates, we use two image-caption
datasets: the train split from the 2014 MS COCO
dataset (Lin et al., 2014) containing ∼ 83,000 im-
ages, and Flickr30K (Young et al., 2014) contain-
ing ∼ 31,000 images. Each dataset is processed
separately and we do not intermix them during the
retrieval stage. We use CLIP-ViT (Radford et al.,
2021) to encode images and include the specific
filtering criteria in Table 6 of Appendix A.2.

2.2.2 Annotation Methodology
For each sentence pair in the store (PS), we wish
to collect conditions and semantic similarity anno-
tations for each sentence pair and condition triplet,
{s1, s2, c}. As c is a free-form natural language
sentence, the annotator is provided with a high-
level of control over which aspect to condition on.
Human annotations are acquired through Mechani-
cal Turk in a 3-stage process.

Stage 1: Choosing a high-quality worker pool
In the first stage, we design a qualification test to
select workers who excel at our task. Specifically,
we test two skills: (1) The quality of conditions they
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write for a given sentence pair and (2) semantic
similarity judgements for a triplet {s1, s2, c}. We
choose a pool of 271 workers who perform well on
both tasks and restrict subsequent stages to include
only workers from this pool. See Appendices C.1
and C.2 for an example of these tests.

Stage 2: Condition annotation After sourcing
sentence pairs {s1, s2} using the strategy discussed
in the Section 2.2.1, we instruct workers to annotate
each pair with one condition such that the similarity
in its context is high (C-High) and one such that the
similarity in its context is low (C-Low). Example:
s1 : A large green ball was bouncing on the street

s2 : I bought a small green avocado

C-High : The color of the object

C-Low : The size of the object

We do not place any constraints on the conditions
other than that they should be semantically unam-
biguous phrases and relevant to the sentence pair
(Appendix C.1).

Stage 3: Condition verification and similarity
assessment The output of annotations from the
previous stage are triplets {s1, s2, c} with a binary
similarity assessment (high or low). In this stage
we ask new annotators to assign a similarity on a
Likert scale (Likert, 1932) (as an integer between
1 and 5) as is common with semantic textual simi-
larity tasks (Agirre et al., 2012). In addition to as-
signing a similarity, we also use this stage to verify
if the conditions from the previous stage are perti-
nent to the sentence pairs, filtering out potentially
low quality examples. At the end of this stage, we
have {s1, s2, c, y} quadruplets which have passed
a layer of human verification (Appendix C.2).

3 Dataset Analysis

Dataset statistics To ensure high-quality, faith-
ful, and diverse annotations, we collect a total of
20,000 instances and perform quality assurance
(Section 5.3) resulting in a total of 18,908 instances
as part of the C-STS-2023 dataset. Following stan-
dard practice, we create train, validation, and test
splits in a 60 : 15 : 25 ratio. We present the dis-
tribution of similarity scores, which are discrete
numbers between [1, 5], in Figure 4. We also mea-
sure the inter-annotator agreement on a random
sample of 100 examples with three independent
annotations and find Fleiss’ kappa score (Fleiss,

1971) to be 0.61 which implies substantial inter-
annotator agreement. Average length of sentences
and conditions is 12.6 and 5.3 words.

Qualitative analysis C-STS allows us to evalu-
ate the generally fuzzy notion of sentence similarity
with greater fidelity. We illustrate this in Table 1,
where precise and discriminative conditions allow
a targeted, fine-grained, and grounded definition
of sentence similarity. The following is a repre-
sentative instance where the conditions tease out
nuanced and hidden similarities and differences
between the two lexically similar sentences on surf-
ing: Consider s1: “A windsurfer skims the water. . . ”
and s2: “The surfer is riding a wave. . . ”). While
the sentences are significantly dissimilar based on
the condition ”the way the object is propelled“ as
they talk about windsurfing and surfing respectively
(the former uses a sail whereas the latter depends
on the wave), they are very similar in context of
the condition ”the base of the object“ as both wind-
surfing and surfing use a similar board.

Our diverse set of conditions provides broad sup-
port over the distribution of conditions and enables
a holistic and multi-faceted evaluation of sentence
similarity. For example, the conditions for the sen-
tences on Tennis in Table 1 test similarity both on
the sport being played (which requires understand-
ing lexical and knowledge artifacts) as well as the
number of people (which requires reasoning and
commonsense capabilities).

4 Baselines

We evaluate our dataset on several baselines which
can be categorized into (1) Fine-tuning baselines,
which are pre-trained models finetuned on the C-
STS training split, and (2) Large language models
(LLMs) baselines, which are evaluated using in-
structions and in-context examples.

4.1 Fine-tuning baselines
We evaluate three sentence encoder models
RoBERTa (Liu et al., 2019), supervised Sim-
CSE (Gao et al., 2021) and unsupervised Dif-
fCSE (Chuang et al., 2022). SimCSE and DiffCSE
represent state-of-the-art sentence encoder models
which are particularly strong on STS tasks. For
both SimCSE and DiffCSE, we use the RoBERTa
pre-trained varieties.

Encoding configurations Encoder-only Trans-
former models, such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), initially performed
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Sentence 1 Sentence 2 Condition and Similarity

An older man holding a glass
of wine while standing be-
tween two beautiful ladies.

A group of people gather
around a table with bottles and
glasses of wine.

The people’s demeanor: 5
The number of bottles: 1

Various items are spread out on
the floor, like a bag has been
emptied.

A woman with a bag and its
contents placed out before her
on a bed.

The arrangement of objects: 4
The surface the objects are on: 1

A windsurfer skims the water
with his outstretched hand.

The surfer is riding a wave
with a mountain in the back-
ground.

The base of the object: 5
The way the object is propelled: 1

Female tennis player jumping
off the ground and swinging
racket in front of an audience

A young lady dressed in white
playing tennis while the ball
girl retrieves a tennis ball be-
hind her.

The sport being played: 5
The number of people: 1

Table 1: Four examples from the C-STS validation set. Under different conditions, the same sentence pair can be
separated into high similarity and low similarity. Scale from 1 (dissimilar) to 5 (similar).

regression finetuning for STS tasks by simply con-
catenating the sentences and encoding them to-
gether before generating a prediction; let us call
this type of architecture a cross-encoder. Recent
approaches instead opt to encode sentences sepa-
rately and compare their similarity using a distance
metric, such as the cosine distance Reimers and
Gurevych (2019); which we will call a bi-encoder.
While DiffCSE and SimCSE were designed with
the bi-encoder setting in mind, we observe that they
work well in the cross-encoder setting as well.

For our baselines, we evaluate each model in
both settings. For the cross-encoder configura-
tion, we encode the triplet containing the sentences
and the condition ({s1, s2, c}), and the output is
a scalar similarity score – fθ(s1; s2; c). For the
bi-encoder configuration (Reimers and Gurevych,
2019), the sentences of a pair are encoded indepen-
dently along with the condition using a Siamese
network and their cosine similarity is computed –
cos(fθ(s1; c), fθ(s2; c)).

In addition to the bi- and cross-encoder mod-
els, we propose tri-encoder models which encode
each sentence and condition separately. This con-
ceptually resembles late-interaction contextualized
retrieval approaches, such as Humeau et al. (2020)
or Khattab and Zaharia (2020), but our approach is
specific to C-STS. For this, we first encode all sen-
tences of the triplet separately, with encoder fθ(·)
as si = fθ(si), where si ∈ Rd. We then perform an
additional transformation h : R2d → Rd that oper-
ates on the condition and one each of the sentences.
We finally compute the conditional similarity using

the cosine similarity as cos (h (c; s1) , h (c; s2)).
We experiment with 2 functions for h, an MLP
and the Hadamard product.

Objectives In addition to the standard MSE loss
for regression, we use a quadruplet contrastive mar-
gin loss which we denote Quad. Since each sen-
tence pair in C-STS comes with two conditions
(one with higher similarity and one with lower sim-
ilarity) we represent the conditional encoding of
each sentence in the higher-similarity pair as p1
and p2 and represent the conditional encoding of
each sentence in the lower similarity pair as n1 and
n2. The Quad loss is then defined as follows:

Quad(p1, p2, n1, n2) =max(λ+ cos(n1, n2)

− cos(p1, p2), 0)

where λ is a margin hyperparameter.
We train all of our tasks for regression using,

alternatively, mean squared error (MSE), Quad,
and a linear combination of the quadruplet loss and
MSE (Quad + MSE). Since we require a separate
conditional encoding fore each sentence, the Quad
and (Quad + MSE) objectives apply only the the
bi-encoder and tri-encoder configurations.

Hyperparameters We evaluate the baselines on
the test split for C-STS. We perform a hyperparam-
eter sweep to select the best performing configura-
tion and test using models trained with 3 random
seeds, with further details in Appendix A.3. As a
comparison for our training setting, we perform a
similar hyperparameter sweep for the STS-B (Cer
et al., 2017) dataset, with the validation split results
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and best hyperparameters shown in Table 9, show-
ing that our finetuned baselines achieve very strong
performance on traditional STS tasks.

4.2 Large language models baselines

For the generative setting, we evaluate two
types of models (1) instruction-finetuned encoder-
decoder models, including Flan-T5 (Chung et al.,
2022), Flan-UL2 (Tay et al., 2023), and Tk-
INSTRUCT (Wang et al., 2022) and (2) propri-
etary autoregressive LLMs including ChatGPT-
3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023a).
For ChatGPT-3.5 and GPT-4, we use the Ope-
nAI API with versions gpt-3.5-turbo-0301 and
gpt-4-0314 respectively.

When evaluating zero- or few-shot capabilities,
each model input is composed of up to three parts:
instruction (task definition), k in-context exam-
ples, and query. Models are evaluated with 0, 2,
or 4 examples and using three different instruction
prompts: no instruction, short instruction, which
provides only a high-level description of the task,
and long instruction, shown in Figure 6, which re-
sembles the annotation guidelines and is similar to
the instructions used for the STS-B classification
task in Wang et al. (2022).

For few-shot evaluation, we additionally always
group a sentence pairs’ two conditional similar-
ity examples together, so models will always see
contrasting pairs in the examples, but won’t see a
paired example for the query. We provide exam-
ples of the formats used for the input and output
for more settings in Appendix B. As we did for the
finetuned models, we also evaluate these models
on the STS-B validation split, shown in Table 12,
with instruction finetuned models and ChatGPT
achieving strong performance.

5 Results

5.1 Evaluating sentence encoders on C-STS

Zero-shot bi-encoder performance As an ini-
tial comparison, we evaluate bi-encoder models
without finetuning, on both C-STS and STS-B. As
shown in Table 2, we see that strong performance
on STS-B does not translate to good performance
on C-STS, suggesting that these models fail entirely
to incorporate the provided conditioning statement.
These results suggest that current approaches to
training sentence encoders may be too specialized
to existing tasks for evaluation, such as STS-B.

Model
C-STS STS-B

Spear. Pears. Spear. Pears.

DiffCSEBASE 0.9 0.5 84.4 85.1
RoBERTaBASE -0.4 -0.1 35.2 48.2
RoBERTaLARGE -1.8 -2.4 7.3 15.1
SimCSEBASE 1.7 0.8 85.1 86.8
SimCSELARGE 1.9 1.4 88.1 88.9

Table 2: Zero-shot bi-encoder models evaluation results
on C-STS and STS-B validation data. These results ver-
ify that strong performance on STS tasks do not translate
to C-STS, suggesting substantial room for improvement
for fine-grained sentence embedding models.

Encoding Model Spear.↑ Pears.↑

Cross-
encoder

RoBERTaBASE 39.2±1.3 39.3±1.3

RoBERTaLARGE 40.7±0.5 40.8±0.4

DiffCSEBASE 38.8±2.9 39.0±2.7

SimCSEBASE 38.6±1.3 38.9±1.2

SimCSELARGE 43.2±1.2 43.2±1.3

Bi-
encoder

RoBERTaBASE 28.1±8.5 22.3±14.1

RoBERTaLARGE 27.4±6.2 21.3±8.4

DiffCSEBASE 43.4±0.2 43.5±0.2

SimCSEBASE 44.8±0.3 44.9±0.3

SimCSELARGE 47.5±0.1 47.6±0.1

Tri-
encoder

RoBERTaBASE 28.0±0.4 25.2±1.0

RoBERTaLARGE 20.3±2.2 18.9±2.3

DiffCSEBASE 28.9±0.8 27.8±1.2

SimCSEBASE 31.5±0.5 31.0±0.5

SimCSELARGE 35.3±1.0 35.6±0.9

Table 3: We report fine-tuned model test split results
in Spearman and Pearson correlations for three models
(RoBERTa, DiffCSE, and SimCSE) in different encod-
ing settings.

Fine-tuning baselines We finetune our sentence
encoder baselines on C-STS and show the test per-
formance in Table 3. Again, the best models are
SimCSE and DiffCSE in the bi-encoding setting.
This is suggests that the sentence representations
learned in their contrastive learning phase facilitate
learning for C-STS substantially, but still struggle
with all Spearman correlation below 50.

Performance on C-STS varies significantly de-
pending on the encoding configurations, with the
bi-encoder setting proving to be the most effec-
tive, especially for SimCSE and DiffCSE models.
Performance of the tri-encoder model, introduced
in Section 4.1 was generally poor, with all mod-
els performing well below their bi-encoding and
cross-encoding counterparts.
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Instruct. Model 0-shot↑ 2-shot↑ 4-shot↑

None

†SimCSELARGE 47.5

Flan-T5XL 1.7 11.3 16.4
Flan-T5XXL 5.6 10.1 12.8
Flan-UL2 5.1 18.8 14.9
Tk-Instruct3B -1.8 1.1 2.8
Tk-Instruct11B 5.6 4.3 4.4
GPT-3.5 12.6 1.6 3.1
GPT-4 21.0 18.7 27.0

Short

Flan-T5XL 24.7 25.3 24.8
Flan-T5XXL 30.6 29.7 29.2
Flan-UL2 20.7 22.4 23.2
Tk-Instruct3B -0.3 3.9 4.9
Tk-Instruct11B 10.1 21.9 17.1
GPT-3.5 15.0 15.6 15.5
GPT-4 39.3 42.6 43.6

Long

Flan-T5XL 26.6 26.3 26.0
Flan-T5XXL 30.5 30.1 30.6
Flan-UL2 21.7 22.9 23.5
Tk-Instruct3B -0.9 3.9 3.9
Tk-Instruct11B 12.0 20.7 17.8
GPT-3.5 9.9 16.6 15.3
GPT-4 32.5 41.8 43.1

Table 4: Few-shot Spearman correlation on the test split.
Models perform much worse than their finetuned coun-
terparts, with GPT-4 being the only evaluated model
that achieves comparable performance to some fine-
tuned baselines. †: Fine-tuning on the full train set.

5.2 Evaluating pre-trained LLMs

We show performance of generative models eval-
uated on C-STS in various prompting settings in
Table 4, with some additional results for smaller
Flan-T5 models in Table 11 in the Appendix. No-
tably, the state-of-the-art language model, GPT-4,
performs substantially better than all competing
models and systems (UL2, Flan-T5, ChatGPT-3.5)
and is competitive with a finetuned SimCSELARGE

model, the best performing sentence-encoder. For
example, in most settings, GPT-4 outperforms
ChatGPT-3.5 and Flan models by over 10 points.
This suggests existing large language benchmarks
may correlates with C-STS as GPT-4 has shown to
be the most proficient in a wide variety of evalua-
tion settings (OpenAI, 2023b).

Between suites of models of different sizes (viz.
Flan-T5, Tk-Instruct), we observe a strong corre-
lation between model scale and performance. We
also find that providing instructions improves per-
formance substantially for C-STS and that this per-
formance is robust to different instructions lengths
and the number of in-context examples.
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Figure 3: Model (SimCSELARGE) performance scaling
as the dataset size increases. Across encoder types,
Spearman correlation increases as the dataset scales.

5.3 Analysis

Scaling laws for C-STS We evaluate the effect of
the quantity of C-STS data on sentence-embedding
methods for SimCSELARGE (Figure 3). We no-
tice that for all three encoding strategies, perfor-
mance monotonically increases as we increase the
size of the training dataset. For example, for the
SimCSE bi-encoder, the Spearman correlation in-
creases from 30 when using a train set of 1,000
examples to 45 for 7,000 examples.

There is almost a linear increase in the perfor-
mance of the models, especially the bi-encoder as
we increase the amount of data. This quantitatively
enforces the quality of the dataset, but also retroac-
tively makes that point that rather than relying on
more data, we require better modeling strategies.

Qualitative analysis We present predictions
from different models in Table 5 to illustrate sys-
tematic pitfalls. For instance, Flan-T5 makes incor-
rect predictions even for straightforward instances
and falsely predicts that both sentences talk about
the same dish, even though the sentences clearly
talk about sandwiches and pizza respectively. Ad-
ditionally, ChatGPT-3.5 incorrectly predicts that
the two sentences are completely dissimilar when
talking about the types of plants, even though both
sentences mention flowering plants. Note that our
annotation, unlike ChatGPT-3.5, captures the nu-
ance that the first sentence talks about both shrub-
bery and flowers, while the second sentence talks
only about flowers, and therefore assigns a conser-
vative similarity score of 3. The most proficient
model on C-STS, GPT-4, is much better at cap-
turing these nuances and accurately predicts, for
instance, that the height of the giraffe’s head (refer
to the fourth example), is high in one sentence and
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Model Sentence 1 Sentence 2 Condition Output

Flan-T5-
Base

A man taking a bite out of a
sandwich at a table with some-
one else.

A man sitting with a pizza in
his hand in front of pizza on
the table.

Type of dish. Pred: 4.5
Label: 1.0

GPT-3.5
A wooden bench surrounded
by shrubbery and flowers on
the side of a house.

A scene displays a vast array
of flower pots in front of a
decorated building.

The type of
plants.

Pred: 0..0
Label: 3.0

GPT-4
Football player jumping to
catch the ball with an empty
stand behind him.

A football player preparing
a football for a field goal
kick, while his teammates can
coach watch him.

The game be-
ing played.

Pred: 3.0
Label: 5.0

GPT-4
A giraffe reaches up his head
on a ledge high up on a rock.

A giraffe in a zoo bending
over the fence towards where
impalas are grazing.

The height of
the giraffe’s
head.

Pred: 1.0
Label: 1.0

Table 5: Examples of model predictions evaluated on C-STS in the in-context setting (K = 2 with no instructions).
We choose examples with different levels of accuracy, showcasing different failure cases of model behavior.

low in another. GPT-4 is far from perfect though,
and we outline a negative prediction (refer to the
third example), where the model does not predict
that the two sentences talk about the same game,
even though they are very clearly about “Football”.

More broadly, C-STS provides a lens into a
model’s ability to understand and reason over spe-
cific parts of each sentence and is well-suited to
revealing systematic modeling issues.

6 Related Work

Historical perspectives of semantic similarities
Measuring semantic similarities is a long-standing
problem spanning cognitive science (Miller and
Charles, 1991) to psychology (Tversky, 1977)
where early attempts are made to quantify the sub-
jective similarity judgements with information the-
oretical concepts. More recently, interest in seman-
tic similarity has gained popularity in the context of
machine learning, with works in computer vision
recognizing that the notion of similarity between
images varies with conditions (Veit et al., 2016)
and can therefore be ambiguous (Ye et al., 2022b).

Textual similarity tasks Capturing textual simi-
larity is also considered a fundamental problem in
natural language processing. Works such as Agirre
et al. (2012, 2016) define the textual semantic simi-
larity tasks (STS), which is widely used in common
benchmarks such as GLUE (Wang et al., 2018).
Extensions to the STS setting have been proposed
such as making the task broader with multilingual-
ity (Cer et al., 2017) or incorporating relatedness
(Abdalla et al., 2021). However, the loose defini-
tion of similarity has not been acknowledged as an
issue explicitly. In contrast, our work tackles the

ambiguity problem by collecting conditions and
hence reduce subjectivity. To alleviate ambiguity,
explanations play an important role in identifying
the differences between the two sentences either
in their syntactical structure (Lopez-Gazpio et al.,
2017) or in natural language (Camburu et al., 2018),
but the post-hoc nature of explanations prevents it
from being used prior to the similarity judgement,
rendering it a supplemental component as opposed
to a paradigm change in the task setup. Beyond
STS, works that leverage conditioning to enhance
sentence representations obtain improved perfor-
mance for retrieval (Asai et al., 2023) and embed-
ding qualities (He et al., 2015; Su et al., 2023; Jiang
et al., 2022), which corroborates the observation
that conditioning as a form of disambiguation ben-
efits similarity measures.

7 Conclusion

In this work, we propose conditional semantic tex-
tual similarity (C-STS), a novel semantic similarity
assessment task that resolves the inherent ambigu-
ity in STS. Given the importance of STS and its
importance in sentence representation evaluation
we believe that C-STS is a timely and necessary
addition to the language model evaluation land-
scape. Rather than testing unconditional semantic
similarity, the diversity of conditions in our dataset
allows fine-grained evaluation. The same sentence
pairs can be tested on a variety of different aspects
represented by conditions, with similarities often
varying significantly. C-STS poses a challenging
hurdle to both encoder-only and state-of-the-art
generative language models which struggle to cap-
ture the high-dimensional manifold of similarity.
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We believe that a combination of improved model-
ing and fine-tuning strategies are required to push
the boundaries on C-STS and we hope that C-STS
can enable innovative future work in language un-
derstanding and representation learning.

Limitations

We propose the novel task of conditional semantic
textual similarity (C-STS). Given that this is a new
task, we collect a dataset of over 19,000 instances,
but one limitation that this size can be increased
to ensure sentence embedding style models have
additional data for fine-tuning. Further, we use two
different sources to collect our sentence pairs, and
future studies, motivated by STS follow-ups, can
collect data from other sources.
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A Appendix

A.1 Distribution of annotated similarity in the
dataset
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Figure 4: The train split distribution of similarity judge-
ments on a Likert scale between [1− 5].

The distribution of similarities is equitably
spread out over the Likert scale, as depicted in
Figure 4.

A.2 Sentence Pair Generation Details
Here we include some further details about sourc-
ing sentence pairs from image-caption datasets.

As discussed in Section 2, we use a variety of
metrics to quantitatively characterize the sentence
pairs, and then to filter with the goal of removing
pairs with excessively high or low unconditional
similarity. The general criteria we consider are
defined as follows:

• IOU - This is computed by taking the intersec-
tion over union of the bag of words for each
sentence, after stopword removal. It repre-
sents the lexical similarity and overlap of a
sentence pair.

• dtext - The cosine distance of the pair’s Sim-
CSE embeddings. We chose SimCSE due to
its ubiquity and effectiveness.

• ratio - This is the ratio of the shorter sen-
tence’s word count to the longer sentence’s
word count in a given pair.

• length - This is the character length of the
shortest sentence in a pair.

Using these criteria, we filter the sentence pairs
based upon thresholds (exact values shown in Ta-
ble 6) where sentences are rejected if they violate

any of these criteria. These thresholds were se-
lected based primarily manual inspection of sam-
ples on their margins. Criteria such as ratio and
length are used primarily to facilitate comparison.
Sentences with very different lengths are more dif-
ficult to compare, as are sentences that are very
short or contain few details.

COCO Flickr30K

k 64 128
IOU ≤ 0.12 ≤ 0.2
dtext ≥ 0.4 ≥ 0.4
ratio ≥ 0.7 ≥ 0.7
length ≥ 50 ≥ 48

Table 6: The list of filters criteria and values used for
each dataset. Sentence pairs that violate any criterion
are discarded.

A.3 Evaluation Details

Implementation Details All models, with the ex-
ception of the ChatGPT systems, are trained and or
evaluated in PyTorch using the Huggingface Trans-
formers library (Wolf et al., 2019) and pre-trained
weights repository. We use the STS-B dataset as
distributed on https://huggingface.co/docs/
datasets as part of the GLUE (Wang et al., 2018)
evaluation benchmark.

Finetuned Baselines For evaluation of the fine-
tuned baselines on C-STS, we perform a hyperpa-
rameter sweep to select the best training settings for
each model and encoding method before evaluating
on the test split of C-STS. We show the hyperpa-
rameter values used in the sweep in Table 7, and the
final hyperparameter values chosen in Table 8. We
evaluate 3 random seeds using the best validation
configuration to evaluate on the test data, with final
results reported in Table 3.

We additionally perform an extensive evaluation
of our models on STS-B. We perform a comparable
validation sweep as shown in Table 7, reporting the
best performing hyperparameters and their perfor-
mance in Table 9.

Lastly, we perform a data ablation training a
RoBERTaBASE model alternatively on only the con-
dition and only the sentence pair. The model
trained to predict similarity based on the condition
statement alone recovers non-trivial performance,
but falls well behind the full-input baseline.
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Batch Size {32}
Encoding Type {Cross, Bi-, Tri-}
Epochs {3}
Learning Rate {1e-5, 3e-5}
LR Schedule {linear}
Objective {MSE, Quad, Quad + MSE}
Pooler Type {[CLS] w/ MLP, * w/o MLP}
Seed {42}
Warmup Ratio {0.1}
Weight Decay {0, 0.1}

Table 7: Hyperparameter sweep done for C-STS vali-
dation for finetuned models. The same sweep, with the
exception of the Encoding Type and Objective hyper
parameters are done for STS-B.

Generative Baselines We report more details of
results of the generative baselines for the validation
sets of C-STS and STS-B.

For comparison to validation performance of
other models, we include the validation perfor-
mance for C-STS in Table 11, which largely mir-
rors performance on the test set. We notice, expect-
edly, that models frequently output non-numerical
responses in settings where there are no instruc-
tions to do so, or no in-context examples to follow.

On STS-B validation performance, models gen-
erally perform much better than on C-STS, with
some models performing comparably to finetuned
models. Since STS-B is included as a task in Natu-
ral Instructions v2 (Wang et al., 2022), it is likely to
be recognizable to Flan-T5 models, which counts
Natural Instructions v2 in its training data. Like-
wise, STS-B is comprised of long-existing and pop-
ular datasets, which plausibly exist in the the cor-
pora used to train ChatGPT models.

Processing Prompting Baseline Generations
For parsing prompting model generations, we al-
low for a maximum of 20 generation tokens. The
output is stripped of non-numeric characters and
errant punctuation before being cast to a float. For
example, the response “The Answer is 2.0.” is pro-
cessed as 2.0 and counts as a valid prediction. If the
cast fails, we mark the answer invalid and replace
the predictions by a number y ∼ U [1, 5].

B Prompt Examples

All prompts for the prompting baselines may con-
sist of instructions, examples, and a query, though
we include evaluations for no instructions and no
examples in our results. Figure 5 shows an prompt
example for the short instructions and K = 2 and

Figure 6 shows an example for long instructions
and zero-shot setup.

Instructions

On a scale between 1 and 5, how similar are
the following two sentences with respect to
the condition provided? Respond only with
a score between 1 and 5.

Examples

Input: Sentence 1: A bunch of blue buses
parked in a parking lot in front of a housing
community.
Sentence 2: Two buses, one blue and one
red and white, are going to different desti-
nations.
Condition: The type of transportation.
Output: 4.0
Input: Sentence 1: A bunch of blue buses
parked in a parking lot in front of a housing
community.
Sentence 2: Two buses, one blue and one
red and white, are going to different desti-
nations. Condition: The number of buses.
Output: 1.0

Query

Input: Sentence 1: The skater is descend-
ing the wooden wall beside the slope .
Sentence 2: A boy skateboards off a ramp
covered in graffiti .
Condition: The location.
Output:

Figure 5: We show the full input for 2-shot setting with
short instructions.

C Crowdsourcing Guidelines

C.1 Condition Annotation
We provide the complete condition annotation
guidelines used for Mechanical Turk data collec-
tion in Figure 7.

C.2 Condition Verification
We provide the complete verification guidelines
used for Mechanical Turk data collection in Fig-
ure 8.
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Model Modeling Type Learning Rate Weight Decay Transform Objective Tri-Encoder Op. Spearman Pearson

RoBERTaBASE

Cross Encoder 3.0e-05 0.10 True MSE - 41.02 40.95
Bi Encoder 3.0e-05 0.10 True MSE - 37.93 37.17
Tri Encoder 3.0e-05 0.00 False Quad + MSE Concat 28.70 27.50

RoBERTaLARGE

Cross Encoder 1.0e-05 0.10 True MSE - 40.21 40.49
Bi Encoder 1.0e-05 0.10 True Quad + MSE - 35.81 33.25
Tri Encoder 1.0e-05 0.00 True MSE Hadamard 21.82 21.46

DiffCSEBASE

Cross Encoder 3.0e-05 0.10 False MSE - 39.73 39.84
Bi Encoder 3.0e-05 0.00 False MSE - 42.18 41.85
Tri Encoder 3.0e-05 0.10 False Quad + MSE Hadamard 30.60 29.59

SimCSEBASE

Cross Encoder 3.0e-05 0.10 True MSE - 33.91 34.90
Bi Encoder 3.0e-05 0.10 False MSE - 45.67 45.55
Tri Encoder 3.0e-05 0.10 False Quad + MSE Hadamard 33.06 32.35

SimCSELARGE

Cross Encoder 1.0e-05 0.10 True MSE - 44.31 44.42
Bi Encoder 1.0e-05 0.10 False MSE - 47.70 47.41
Tri Encoder 1.0e-05 0.00 True MSE Hadamard 34.46 34.95

Table 8: Fine-tuning models’ results over validation split. We show the best performing configuration selected over
the validation split which was the final configuration used to report each models’ test performance.

Model Encoding Learning Rate Transform Objective Spearman Pearson

RoBERTaBASE
Cross Encoder 3.0e-05 True MSE 90.54 90.55
Bi Encoder 3.0e-05 False MSE 87.23 86.73

DiffCSEBASE
Cross Encoder 3.0e-05 False MSE 89.75 89.82
Bi Encoder 3.0e-05 False MSE 88.08 87.66

RoBERTaLARGE
Cross Encoder 3.0e-05 True MSE 91.49 91.58
Bi Encoder 3.0e-05 False MSE 87.79 87.25

SimCSEBASE
Cross Encoder 3.0e-05 True MSE 89.50 89.65
Bi Encoder 3.0e-05 False MSE 89.69 89.30

SimCSELARGE
Cross Encoder 3.0e-05 True MSE 91.73 91.78
Bi Encoder 1.0e-05 False MSE 90.70 90.56

Table 9: Validation performance of best sweep setting on STS-B.

Data Ablation Spear. Pears.

Condition Only 28.21 28.62
Sentence Only 9.98 9.51
Baseline 40.11 40.21

Table 10: When finetuned only with condition statement,
RoBERTaBASE model can recover non-trivial performance, but falls
well behind the baseline. Training on only the sentence pairs proves
to be even less informative. We report the best validation performance
over the same hyperparameter grid described in Section 4.1.
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Instruction Model
0-shot 2-shot 4-shot

Invalid Pears. Spear. Invalid Pears. Spear. Invalid Pears. Spear.

None

Flan-T5SMALL 91.74 3.23 2.20 35.64 7.06 8.20 24.21 7.14 6.98
Flan-T5BASE 97.18 -4.25 -3.65 6.42 5.51 9.86 2.40 11.39 12.11
Flan-T5LARGE 98.69 -2.86 -1.47 13.37 13.27 13.26 2.68 13.98 12.74
Flan-T5XL 86.27 -0.81 -0.69 8.29 11.21 12.81 0.53 18.15 17.05
Flan-T5XXL 74.14 3.21 3.78 0.14 11.37 12.05 0.00 10.28 12.08
Flan-UL2 83.87 0.53 4.39 3.03 16.32 18.97 0.28 15.32 17.69
Tk-Instruct3B 87.33 -2.06 -2.05 0.67 2.12 1.70 0.00 0.26 0.32
Tk-Instruct11B 22.37 2.36 5.58 0.21 8.00 8.43 2.65 3.15 3.76
ChatGPT-3.5 65.24 5.80 11.21 17.57 3.96 3.91 2.43 6.49 6.31
GPT-4 59.17 9.01 16.69 4.98 16.10 15.56 0.60 26.74 26.59

Short

Flan-T5SMALL 0.00 -5.02 -7.43 0.00 -4.99 -5.81 0.00 -4.24 -4.29
Flan-T5BASE 0.00 5.78 6.24 0.00 6.03 6.51 0.00 5.44 5.75
Flan-T5LARGE 0.00 13.98 13.89 0.00 12.29 12.68 0.00 10.54 11.11
Flan-T5XL 0.00 25.00 25.34 0.00 24.12 24.24 0.00 21.63 23.02
Flan-T5XXL 0.00 29.95 29.50 0.00 29.69 30.39 0.00 28.95 29.49
Flan-UL2 0.00 20.83 20.24 0.00 21.98 21.70 0.00 22.52 22.62
Tk-Instruct3B 76.36 0.34 1.62 0.04 5.23 5.19 0.00 2.80 2.68
Tk-Instruct11B 0.04 9.50 11.78 0.04 22.10 23.84 0.00 15.65 17.56
ChatGPT-3.5 0.00 12.91 11.13 0.04 16.63 17.62 0.07 12.60 13.76
GPT-4 0.00 38.77 39.47 0.00 39.76 41.25 0.00 41.52 42.05

Long

Flan-T5SMALL 0.00 -1.48 -1.58 0.00 -2.71 -3.14 0.00 -4.80 -4.67
Flan-T5BASE 0.00 6.53 6.08 0.00 10.87 10.44 0.00 8.47 7.59
Flan-T5LARGE 0.00 11.21 10.64 0.00 11.37 11.08 0.00 10.68 10.25
Flan-T5XL 0.00 24.97 25.01 0.00 23.76 23.86 0.00 23.59 23.72
Flan-T5XXL 0.00 29.71 29.79 0.00 30.68 30.69 0.00 30.01 29.99
Flan-UL2 0.00 21.27 21.07 0.00 22.08 21.64 0.00 21.91 21.56
Tk-Instruct3B 0.14 2.10 1.88 0.00 4.29 3.84 0.00 0.95 0.93
Tk-Instruct11B 0.00 9.24 11.24 0.00 19.82 21.23 0.00 16.06 17.38
ChatGPT-3.5 0.00 10.24 8.42 0.00 16.82 15.46 0.00 16.60 15.70
GPT-4 0.00 33.48 33.04 0.00 39.08 39.53 0.00 42.26 42.38

Table 11: Validation performance for prompting baselines on C-STS.
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Instruction Model
0-shot 2-shot 4-shot

Invalid Pears. Spear. Invalid Pears. Spear. Invalid Pears. Spear.

None

Flan-T5SMALL 89.20 0.53 0.80 48.00 -0.90 -3.26 46.87 -2.00 4.21
Flan-T5BASE 92.87 -1.38 4.03 3.67 0.25 41.81 3.67 40.71 39.76
Flan-T5LARGE 90.07 -1.06 5.64 9.67 5.29 65.38 2.67 67.44 68.90
Flan-T5XL 87.53 -1.71 -0.96 3.80 69.87 73.70 0.73 72.77 76.41
Flan-T5XXL 63.80 -4.34 13.41 0.00 65.44 67.50 0.00 70.87 71.60
Flan-UL2 97.00 -0.41 2.74 6.60 73.17 75.51 1.53 80.01 81.66
Tk-Instruct3B 69.20 3.90 5.22 0.07 8.04 7.97 0.27 6.65 8.34
Tk-Instruct11B 2.87 3.39 8.71 0.13 5.43 9.88 0.13 11.65 15.47
ChatGPT-3.5 96.93 -4.17 1.61 0.07 63.86 64.83 0.00 74.96 76.15
GPT-4 63.20 -2.40 20.10 0.00 76.70 75.92 0.00 86.16 86.25

Short

Flan-T5SMALL 0.07 18.44 18.43 0.07 19.09 19.21 0.00 19.97 20.41
Flan-T5BASE 0.00 80.98 80.94 0.00 80.91 80.97 0.00 81.27 81.31
Flan-T5LARGE 0.00 87.85 87.89 0.00 86.90 87.34 0.00 86.44 86.88
Flan-T5XL 0.00 89.69 89.76 0.00 89.57 89.48 0.00 89.53 89.36
Flan-T5XXL 0.00 89.80 89.79 0.00 88.33 88.62 0.00 86.54 87.38
Flan-UL2 0.00 91.57 91.62 0.00 91.72 91.62 0.00 91.60 91.48
Tk-Instruct3B 63.93 5.00 20.17 0.00 49.86 51.24 0.00 48.08 48.58
Tk-Instruct11B 0.07 35.04 34.79 0.00 50.65 54.01 0.00 48.48 51.99
ChatGPT-3.5 0.00 86.58 86.78 0.00 83.69 83.13 0.00 85.12 84.91
GPT-4 0.00 88.20 88.95 0.00 88.38 88.44 0.00 89.02 88.96

Long

Flan-T5SMALL 0.00 6.33 5.98 0.00 14.92 14.75 0.00 16.81 16.06
Flan-T5BASE 0.00 82.32 82.22 0.00 82.42 82.49 0.00 82.14 82.16
Flan-T5LARGE 0.00 89.81 89.86 0.00 89.85 89.85 0.00 89.55 89.56
Flan-T5XL 0.00 90.33 90.62 0.00 89.86 90.12 0.00 90.43 90.66
Flan-T5XXL 0.00 90.75 90.97 0.00 91.58 91.51 0.00 91.50 91.35
Flan-UL2 0.00 91.02 91.68 0.00 91.45 91.90 0.00 91.67 92.05
Tk-Instruct3B 0.00 23.90 26.76 0.00 66.89 67.63 0.00 65.19 66.04
Tk-Instruct11B 0.00 64.09 65.20 0.00 67.93 69.06 0.00 61.38 63.65
ChatGPT-3.5 0.00 86.28 86.59 0.00 86.16 85.81 0.00 87.08 86.90
GPT-4 0.00 89.57 89.76 0.00 90.01 89.95 0.00 90.73 90.65

Table 12: Validation performance for prompting baselines on STS-B.
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Instructions

Definition: Evaluate the similarity between
the two sentences, with respect to the condi-
tion. Assign the pair a score between 1 and
5 as follows:
1 : The two sentences are completely dis-
similar with respect to the condition.
2 : The two sentences are dissimilar, but are
on a similar topic with respect to the condi-
tion.
3 : The two sentences are roughly equiva-
lent, but some important information differs
or is missing with respect to the condition.
4 : The two sentences are mostly equivalent,
but some unimportant details differ with re-
spect to the condition.
5 : The two sentences are completely equiv-
alent with respect to the condition.

Query

Input: Sentence 1: Elderly man sitting on
a blue couch reading a paper.
Sentence 2: Older man riding public trans-
portation while reading a newspaper.
Condition: The location of the man.
Output:

Figure 6: The full text input for the zero-shot evaluation
with large language models, using ‘long’ instructions.
Emphasis and section titles added for clarity.
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We will be hosting more HITs in the future and we invite you to attend those.
Please send any feedback you have to: placeholder@gmail.com

Task summary
Our goal is to understand the similarity of a sentence pair based on a condition.
Concretely, for a sentence pair (S1 and S2), provide one condition (C-High) such that S1 and S2
have high similarity, and one condition (C-Low) such that they have low similarity.

As an example:
S1: A large green ball was bouncing on the street.
S2: I bought a small green avocado.

C-High: The color (High Similarity because it is green in both sentences)
C-Low: The size (Low Similarity because it is large in the first and small in the second

sentence)

Conditions are English phrases which are used to choose an aspect of the sentence.

Guidelines for conditions

You are allowed to use the internet to understand the sentences, but the conditions need to be
written by you. The following guidelines need to be followed.

1. Conditions should be grammatically correct English phrases or sentences.
2. Avoid conditions which reference missing information that cannot be inferred from

sentences. For example, avoid the following condition, because the color of the animal in
S2 is unclear.

a. S1: Brown bears attacked people in the night.
b. S2: Some dogs were barking on the road.
c. C-High: The color of the animal.

But the following is a good condition because it can be inferred that the game is chess:
d. S1: Black ultimately reached an endgame two pawns up.
e. S2: Now the white king comes just in time to support his pawn.
f. C-High: The game being played.

3. Conditions should reference aspects or attributes of sentences and not the
values. For example, the following (“The color is green”) is an incorrect condition
because it directly mentions “green”, which is the value of the attribute “color”:

a. S1: A large green watermelon.

Figure 7: Annotation Guidelines
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b. S2: A green avocado in the basket.
c. C-High: The color is green.

Instead, the same condition can correctly be written as: “The color of the fruit”.
4. Avoid conditions which explicitly use words like “sentences”. For example, instead

of saying “the color in the sentence”, just say “The color”.
5. Avoid vague conditions which do not help narrow down a specific aspect of the

sentence. For example, avoid conditions which simply say “The activity”, which does not
help narrow down the aspect. Instead use more informative words like “the sport” or “the
hobby” as much as possible.

6. Whenever possible, try to write conditions which refer to abstract similarity.
Consider the following sentences:

a. Two women are celebrating a goal.
b. A couple is eating a tasty meal.

A condition which is more abstract is preferred:
c. Abstract condition: The sentiment of the people.

Although a more literal condition is valid, it is less preferred:
d. Literal condition: The number of people.

Examples

We provide good and bad examples of conditions for sentence pairs, along with the reasoning.

Good examples

All the following conditions are valid because they follow our guidelines.

Sentence 1 Sentence 2 Condition Similarity Explanation

The moon looked
incredible!

The car was
completely covered in
snow.

The color of
the object.

High The color is white in both cases.
This is a good condition because it
references the color of the object without
explicitly mentioning it.

A group of people
wearing helmets and
riding on bikes.

A group of bikers are
gathered together
and taking pictures.

The speed of
the cyclists.

Low The group of cyclists is moving in the first
sentence whereas they are not in the
second. Hence their speeds are
dissimilar.

Three people are
holding a ladder
while another climbs
it.

Three people are
listening to music in a
car.

The number
of people.

Low There are four people in the first sentence
but only three in the second sentence.
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Bad examples

All the following conditions are invalid because they ignore one or more of our guidelines.

Sentence 1 Sentence 2 Condition Reason for invalidity of condition

Egyptians appeased
gods with offerings
and prayers.

People in this era put
faith in specific gods
to protect their lives.

The culture
involved.

It violates guideline 2.
The culture in the second sentence cannot be inferred
and is missing information.

An adult elephant is
playing in the river.

A boulder is rolling
down the hill.

The size of
the object is
large.

It violates guideline 3.
The condition should have been “The size of the
object”, without explicitly referring to it being “large”.

A guitarist is playing
on a bench.

A man in a green hat
is playing the guitar
on the road.

The
instrument in
the sentence.

It violates guideline 4.
The condition would be good if “in the sentence” was
removed so that it is just “The instrument”.

A middle-aged man
is helping construct a
grass hut.

Three men work on a
roof.

The activity. This condition is too vague and does not reference a
specific aspect. A better condition would be: “The type
of construction”.

A man on top of a
partially completed
roof laying down
more shingles.

A man in a hard hat
and safety gear
stands in a
construction site.

The number
of people.

While this condition is valid, it violates guideline 6,
which says that an abstract condition should be
considered wherever possible.
A better condition would have been, “The occupation
of the man”, which is “construction worker” in both
cases.
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We will be hosting more HITs in the future and we invite you to attempt those.
Please send any feedback you have to: placeholder@gmail.com

Task summary
Our goal is to understand the similarity of a sentence pair based on a condition.
Concretely, for a sentence pair (S1 and S2), and a condition ‘C’, provide a score which indicates
the similarity of S1 and S2 with respect to C.

As an example:
S1: A large green ball was bouncing on the street.
S2: I bought a small green avocado.
C: The size of the object

Similarity: 1 (Low Similarity because it is large in the first and small in the second sentence)

Guidelines for annotating similarity

Part 1
Given two sentences and a condition, first check if the condition applies to both the
sentences. If the condition does not apply even to one of the sentences, please check the box
provided to indicate the same. For example:

S1: A small dog happily runs across the street.
S2: I bought a small green avocado.
C: The sentiment

In the above example, the condition does not make sense for S2 because there is no sentiment
that can be inferred from it.

Part 2
If the condition makes sense, given two sentences and a condition, please ascribe a similarity
score for the sentences when interpreted with respect to the condition.
The score has to be one of the following numbers: {1, 2, 3, 4, 5}.
Tips:

● Please avoid overusing the middle range score (3) as much as possible.
● Feel free to use the extreme scores (1 and 5) if they make sense to you.

The following is the meaning of the different scores:
1. Score = 1: The two sentences are completely dissimilar with respect to the condition.

For example:

Figure 8: Verification Guidelines
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S1: A man cooks in the kitchen.
S2: A woman is riding a bike on the road.
C: The gender (Man and woman are dissimilar with respect to gender)

2. Score = 2: The two sentences are dissimilar, but are on a similar topic with respect to
the condition.
For example:

S1: A man plays the guitar.
S2: A little girl listens to the violin.
C: The instrument (Both are string instruments, similar but different instruments)

3. Score = 3: The two sentences are roughly equivalent, but some important information
differs or is missing with respect to the condition.
For example:

S1: A small crowd gathered around the injured person.
S2: A crowd jumps up and down to the tunes played by an artist.
C: Number of people
(While both are crowds, it is important and unclear how many people there are.)

4. Score = 4: The two sentences are mostly equivalent, but some unimportant details differ
with respect to the condition.
For example:

S1: The little girl plays the jazz guitar.
S2: The guitar looked nice and shiny.
C: The instrument (Guitar in both cases, but the exact type is different and unimportant)

5. Score = 5: The two sentences are completely equivalent as they mean the same thing
with respect to the condition.
For example:

S1: Three boys play on the playground.
S2: There are 3 girls near the fountain.
C: The number of people (3 and three are strictly equivalent)
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