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Abstract
Although In-Context Learning has proven ef-
fective across a broad array of tasks, its effi-
ciency is noticeably influenced by the selection
of demonstrations. Existing methods tend to
select different demonstrations for each test in-
stance, which is time-consuming and poses lim-
itations in practical scenarios. Therefore, this
study aims to address the challenge of selecting
a representative subset of in-context demon-
strations that can effectively prompt different
test instances in a specific task. We propose
that this representative subset should be of high
quality and diversity. Our empirical analyses
confirm that demonstrations that meet these
criteria can indeed bolster model performance.
To satisfy these criteria, this paper further in-
troduces a two-stage Determinantal Point Pro-
cess (DPP) method designed to incorporate
both quality and diversity in the process of
demonstration selection, thereby obtaining rep-
resentative in-context demonstrations. Through
comprehensive experimentation, we have con-
firmed the efficacy of our proposed method,
paving the way for more practical and effective
In-Context Learning.

1 Introduction

The emergence of Large Language Models (LLMs)
has swept various Natural Language Processing
(NLP) tasks and brought new research paradigms
(Bommasani et al., 2021; Wei et al., 2022; Ope-
nAI, 2023). In-Context Learning (ICL) (Brown
et al., 2020) is the primary paradigm for leverag-
ing LLMs, which enables the model to generalize
rapidly from a few examples without parameter
update. Recent studies have shown that ICL has
significantly improved over the zero/few-shot set-
ting and even surpassed the performance of full
data fine-tuning (Dong et al., 2022).

However, ICL is insufficiently stable and robust
in performance when compared to traditional fine-
tuning, and exhibits sensitivity to numerous fac-
tors, including demonstration selection (Liu et al.,
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Figure 1: Comparison between existing retrieval-based
in-context demonstration selection and our representa-
tive in-context demonstration selection.

2022; Rubin et al., 2022), demonstration formats
(Min et al., 2022), demonstration labels (Zhao et al.,
2021; Yoo et al., 2022), and demonstration order
(Lu et al., 2022). Among these factors, demon-
stration selection is the most significant, as they
provide only information about the task (Liu et al.,
2022). Therefore, selecting suitable demonstra-
tions is necessary.

Existing demonstration selection methods usu-
ally adopt retrieval-based solutions, which aim to
select different demonstrations for each test in-
stance (Liu et al., 2022; Sorensen et al., 2022;
Rubin et al., 2022; Zhang et al., 2022a). How-
ever, these retrieval-based methods can be costly
in practice. In detail, these methods can only per-
form inference on one sample at a time, which
incurs high costs in terms of token usage, particu-
larly when considering leveraging batch prompting
(Cheng et al., 2023). Besides, performing demon-
stration selection for each testing example is obvi-
ously time-costing (§4.3). Based on this, as shown
in Figure 1, this paper aims to select a representa-
tive demonstration subset from a pool of training
examples for all test instances in a specific task
rather than each test instance.

To select a representative demonstration subset
for a task, we argue that there are two criteria that
should be satisfied: quality and diversity. Firstly,
in ICL, the quality of an instance is defined as the
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degree that it can help the LLM to make correct
predictions. Intuitively, high-quality instances can
improve the LLM’s performance on as many test
examples as possible. Secondly, diversity means
that the elements in the selected demonstration sub-
set should be mutually dissimilar and represent the
training set as comprehensively as possible. More-
over, in this paper, we argue that diversity can be
refined into semantic diversity and influence diver-
sity. Semantic diversity means that the selected
examples should be diverse enough to cover more
semantics or expressions in the given training set,
which is consistent with existing representative sub-
set selection in traditional deep learning (Coleman
et al., 2020; Guo et al., 2022). Influence diversity
means that each selected example should help the
model correctly classify a diverse set of testing sam-
ples, enabling the total demonstration set to support
the correct classification of more test instances for
the given LLM. Pilot experiments (§2) also ver-
ify that the demonstration subsets satisfying these
criteria could improve ICL performance.

In this paper, we make the following efforts to
meet the above criteria. To achieve the quality
criterion, we resort to recent instance-based ex-
planation methods (Koh and Liang, 2017; Pruthi
et al., 2020). Different from them, this paper ex-
tends existing instance-based explanation methods
to ICL and defines the influence score to measure
the contribution of a training example to the correct
classification of another example. To achieve the
diversity criterion, this paper seeks the help of the
determinantal point process (DPP), which is a prob-
abilistic model that could maintain high diversity
among different instances by pairwise repulsion
between instances (Kulesza et al., 2012).

Moreover, to incorporate both high quality and
diversity for demonstration selection, this paper fur-
ther proposes a two-stage DPP selection method. In
specific, in the first stage (§3.2.1), we utilize the se-
mantic information measure instance similarity and
then leverage DPP to obtain a subset of instances
with high semantic diversity. In the second stage
(§3.2.2), we first compute the quality score of each
instance in this subset based on our defined influ-
ence scores (§2.2), which could reduce a significant
amount of meaningless inference time compared
to computing the quality for each training example.
Then we utilize the obtained influence scores to
measure influence similarity between instances and
construct another DPP. Besides, we also introduce

the quality scores (§2.2) of these examples to this
DPP. As a result, both quality and influence diver-
sity could be optimally introduced in the selection
process. This two-stage DPP selection method en-
ables the selected demonstration subset could not
only cover more semantics in the training set but
also help the given LLM classify more examples
with better performance.

Our contributions can be summarized as follows:

• This paper aims to select representative in-
context demonstrations and propose two cri-
teria (quality and diversity) that such demon-
strations should satisfy.

• To satisfy the proposed criteria, this paper pro-
poses a two-stage DPP selection method. Ac-
cording to our method, the selected demon-
strations could not only be representative of
the large training set but also facilitate the
model’s generalization to new instances.

• Extensive experimental results demonstrate
the effectiveness of our proposed method.
And we also show the significant advantage
in inference time and token usage compared
to retrieval-based methods.

2 Pilot Experiments

This section explores whether the proposed criteria
could improve the performance of ICL. In specific,
we measure the impact of three factors: semantic
diversity, instance quality, and influence diversity.
We choose SST-2 (Socher et al., 2013) as the test
dataset and conduct 4-shot experiments on GPT2-
xl (1.5B) (Radford et al., 2019), GPT-J (6B) (Wang,
2021) and GPT-NeoX (20B) (Black et al., 2022).

2.1 Impact of Semantic Diversity
To explore the impact of semantic diversity,
we firstly utilize sentence-BERT (Reimers and
Gurevych, 2019) to encode all train instances.
Then, with these sentence representations, we
use K-means (Hartigan and Wong, 1979) to par-
tition all train instances into 4 clusters. Finally,
we design three strategies with different seman-
tic diversity: 1) single-cluster: we sample
4 examples from each cluster. 2) random: ran-
dom sampling 4 examples from the whole train-
ing set. 3) multi-cluster: we sample one ex-
ample from each of these 4 clusters. Obviously,
multi-cluster has the best semantic diversity
and single-cluster has the worst diversity.
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(b) Impact of instance quality
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(c) Impact of influence diversity

Figure 2: Comparisons of the three factors: semantic diversity, instance quality, and influence diversity. We list the
4-shot performance on SST-2 for three LLMs: GPT2-xl (1.5B), GPT-J (6B), and GPT-NeoX (20B).

Figure 2(a) presents the corresponding results
of the five sample strategies. From the figure, we
observe that multi-cluster is always superior to
the other two strategies across these three LLMs.
According to these results, we could find that better
semantic diversity could lead to higher accuracy
across models of different scales.

2.2 Impact of Instance Quality

To measure the quality of an instance, we need to
define the influence score of an instance at first.
Existing example-based explanation methods (Koh
and Liang, 2017; Pruthi et al., 2020) define the
influence of an example in a training set as the pre-
diction difference of the test set between the model
trained with and without this example. Inspired by
this, we define the influence of the demonstration e
on another example ei = (xi, yi) in ICL as follows:

Inf(e, ei) = pLM(yi|e, xi)− pLM(yi|xi) (1)

where yi is the golden label of example xi.
pLM(yi|e, xi) and pLM(yi|xi) refers to the output
probability of yi conditioned on (e, x) and x for a
given language model LM, respectively.

Inf(e, ei) could measure the contribution of e to
the correctness of the example ei. Based on this,
we define the quality metric of the demonstration e
as follows:

Q(e) =

∑
ei∈Dscore

Inf(e, ei)
T

(2)

where Dscore denotes the score set used for measur-
ing quality and T refers to its size. Q(e) character-
izes the contribution of e to the model performance
on the score set. The higher the value of this metric,
the more e can help the language model in making
correct predictions on this score set.

To improve efficiency, we randomly choose 100
examples and measure their quality by randomly
sampling an additional 200 samples as the score
set. Then we design three strategies with different
quality: 1) high-quality: we choose the top 4
examples with the highest quality as demonstra-
tions. 2) low-quality: we choose the bottom 4
examples with the lowest quality as demonstrations.
3) random: we randomly choose 4 examples from
these 100 examples as demonstrations.

Figure 2(b) shows the experimental results.
From these results, we find that demonstrations
with higher quality could get better performance.

2.3 Impact of Influence Diversity
With the same setting in §2.2, we have obtained
the influence scores on 200 score instances, which
could be seen as a 200-dimension vector. Based
on this, we can get the influence vector for each
instance and then we utilize the similar cluster
method in §2.1 to partition the 100 examples
into 4 clusters. We construct the following sam-
pling strategies with different influence diversity:
1) similar-influence: we sample 4 examples
from each cluster and average their performance.
2) diverse-influence: we sample one example
from each cluster as demonstrations. 3) random
randomly sample 4 examples as demonstrations.

Figure 2(c) shows the corresponding results. Ac-
cording to these results, we observe that demonstra-
tions with better influence diversity could improve
ICL performance for LLMs of different scales.

2.4 The Conclusion on Pilot Experiments
Our three experiments show that semantic diver-
sity, instance quality, and influence diversity all can
improve ICL performance, which verifies the ef-
fectiveness of the proposed criteria. Therefore, our
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method would try to introduce these three factors
in the selection process.

3 Method

In §3.1, we illustrate the formulation of in-context
learning and the background of the determinantal
point process. Then, we introduce the implementa-
tion of our method in §3.2, which could introduce
the three factors in the whole selection process.

3.1 Preliminary
3.1.1 In-context Learning
In-context learning is the core emergent ability of
LLMs and only requires a few examples and corre-
sponding labels to solve a task. Formally, a demon-
stration ei = (xi, yi) consists of an instance xi
and its label yi. For a new test instance xtest, K-
shot in-context learning generate its label ypredict
as follows:

PLM(ypredict|e1, e2, · · · , eK , xtest) (3)

where ei is sampled from the whole train dataset
and {e1, e2, · · · , eK} is usually called context.

3.1.2 Determinantal Point Process
Determinantal Point Process (DPP) is an ele-
gant probabilistic model with the ability to ex-
press negative interactions (Kulesza et al., 2012).
DPP could help us find a representative subset
while keeping high diversity among different items
(Chen et al., 2018). Formally, for an index set
A = {1, 2, · · · ,M} and its corresponding item
set IA = {a1, a2, · · · , aM}, DPP provides a prob-
ability measurement for 2N item subsets. Given
the feature representation aaai for the item ai, DPP
computes a positive semi-definite (PSD) matrix
LLL ∈ RM×M , where LLLij = k(aaai, aaaj) for an ker-
nel function k(·, ·) and LLLij usually measures the
correlation between ai and aj . Based on this, if
a subset is determined by the index set Y ⊆ A,
the probability of selecting Y could be defined as
follows:

P (Y ) =
det(LLLY )

det(LLL+ III)
(4)

whereLLLY refers to a submatrix of LLL and consists of
LLLij for i, j ∈ Y . III is an identity matrix and det(·)
is the determinant of a matrix.

Under this distribution, we could select the rep-
resentative subset Ybest of size k as follows:

Ybest = argmax
Y⊆A,|Y |=k

det(LLLY ) (5)

Obviously, the maximum a posteriori inference in
DPP has high time complexity (Kulesza and Taskar,
2011). Following Chen et al. (2018), the time com-
plexity of selecting a subset of size k is O(k2M).

The core of DPP is how to obtain the correspond-
ing PSD matrix. Existing studies usually incorpo-
rate task-relevant information into this matrix, in
order to utilize DPP to achieve diversity.

3.2 Two-Stage DPP Selection Method
In this section, we introduce a novel two-stage DPP
selection method, which could introduce semantic
diversity, high quality, and influence diversity in
demonstration selection.

3.2.1 First Stage: Selecting Candidate Subset
with Semantic Diversity

According to Equation 1, computing the influence
score requires inference time. Thus, computing the
influence score for each instance in the training set
is infeasible for its high costs. Intuitively, we need
to reduce the size of the set that requires calculating
influence scores.

Based on this, this paper selects a small sub-
set from the original training set by introducing
semantic diversity. Formally, the training set
D = {e1, e2, · · · , eN} contains N instances where
ei = (xi, yi). We firstly utilize sentence-BERT
(Reimers and Gurevych, 2019) to encode these in-
stances and obtain their semantic representations
{xxx1,xxx2, · · · ,xxxN}. Then we could easily get the
dataset representation sss ∈ RN×d by stack, where
d is the dimension of each sentence. Finally, we
could get the PSD matrix LLLS in DPP as follows:

LLLS = ssssssT (6)

Obviously,LLLS ∈ RN×N is a real symmetric matrix.
With LLLS , we could obtain a candidate subset Dsem
of size Nsem according to Equation 5.

3.2.2 Second Stage: Selecting Demonstrations
via High Quality and Influence Diversity

In previous parts, we have introduced semantic di-
versity into Dsem. In the following parts, we would
illustrate how to select high-quality instances while
maintaining influence diversity to form the final
demonstration set.

Firstly, we need to select the score set to measure
the quality of an instance in Dsem according to
Equation 2. Recent probing studies (Min et al.,
2022; Yoo et al., 2022) show the importance of
the label for ICL. Therefore, we only require the
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Algorithm 1 Two-Stage DPP Selection
Input: Training set D = {ei}Ni=1, language model LM, can-

didate subset size Nsem, score set size T , demonstration
set size k, sentence encoder sbert.

Output: Demonstration Subset Ddem
1: for ei ∈ D do
2: xxxi = sbert(xi)
3: end for
4: sss = stack(xxx1,xxx2, · · · ,xxxN )
5: LLLS = ssssssT

6: Dsem = argmaxY ⊆D,|Y |=Nsem
det(LLLY )

det(LLLS+III)

7: random sampling Dscore of size T from D/Dsem
8: for ei ∈ Dsem do
9: for ej ∈ Dscore do

10: Inf(ei, ej) = pLM(yj |ei, xj)− pLM(yj |xj)
11: end for
12: Q(ei) =

∑
ej∈Dscore Inf(ei,ej)

T
13: eieiei = (Inf(ei, e1), Inf(ei, e2), · · · , Inf(ei, eT ))
14: end for
15: III = stack(eee1, eee2, · · · , eeeNsem)
16: QQQ = (Qe1

,Qe2
, · · · ,QeNsem

)

17: LLLI =QQQ · IIIIIIT ·QQQ
18: Ddem = argmaxY ⊆Dsem,|Y |=k

det(LLLY )
det(LLLI+III)

19: return Ddem

examples in the scoring set to include all of the
labels. With this premise satisfied, we obtained the
score set Dscore of size T through a random sample
from D/Dsem. With the score set, we could easily
compute the influence score and quality of each
instance in Dsem according to Equation 1 and 2.

For item xj ∈ Dsem, we could obtain T -
dimension influence embedding IjIjIj where each di-
mension denotes its influence on each instance in
the score set and its quality score Q(ej). Then, we
can obtain the total influence representation ma-
trix III ∈ RNsem×T and the quality representation
of QQQ ∈ RT by stacking and contacting operation.
Thus we can compute another PSD matrix LLLI as
follows:

LLLI =QQQ · IIIIIIT ·QQQ (7)

Actually, IIIIIIT could construct a basic PSD ma-
trix to help us introduce influence diversity. In-
spired by Chen et al. (2018), we further introduce
QQQ to help us select high-quality instances. In this
way, DPP which is based onLLLI could help us select
high-quality and diverse examples. Concretely, for
k-shot ICL, we can select a demonstration subset
Ddem of size k according to Equation 5.

In summary, Algorithm 1 presents the whole
process of our two-stage DPP selection method.
Figure 9 shows a more direct illustration of our
method. Besides, a recent study (Lu et al., 2022)
shows the ordering of demonstrations also has a
significant influence on the performance. But in

this paper, we only focus on demonstration selec-
tion and just determine the order in ascending order
of their quality scores in Dscore.

4 Experiments

4.1 Experimental Setups

4.1.1 Datasets
Following previous studies (Zhao et al., 2021; Liu
et al., 2022), we conduct experiments on six text
classification tasks: SST-2 (Socher et al., 2013),
TREC (Voorhees and Tice, 2000), CB (De Marn-
effe et al., 2019), AGNews (Zhang et al., 2015),
DBPedia (Zhang et al., 2015) and RTE (Dagan
et al., 2006). And we utilize accuracy as the evalu-
ation metric. Statistics and the prompt format for
each dataset could be found in Appendix A.

4.1.2 Large Language Models
This paper conducts experiments on three large lan-
guage models of different scales: GPT2-xl (1.5B)
(Radford et al., 2019), GPT-J (6B) (Wang, 2021)
and GPT-NeoX (20B) (Black et al., 2022).

4.1.3 Baselines
In this paper, we compare our method with the fol-
lowing baseline methods: Representative Subset
Selection in Deep Learning: Least Confidence
(LC) (Coleman et al., 2020) selects representa-
tive examples according to the max probability
on all labels. Cal (Margatina et al., 2021) se-
lects representative examples with the biggest
logits divergence from neighbors. Recent Rep-
resentative Demonstration Selection Methods:
Random selects demonstrations by randomly sam-
pling. Cluster (Zhang et al., 2022b; Gao et al.,
2023) selects k demonstrations by choose k cluster
centers of K-means cluster by semantic. DPP (Levy
et al., 2023) utilize the semantic information select
k demonstrations according to k-DPP (Kulesza and
Taskar, 2011; Chen et al., 2018).

4.2 Main Results

Table 1 presents the corresponding results. Tra-
ditional representative subset selection methods
get poor performance in ICL settings. Least
Confidence even gets a worse performance than
random selection and Cal just gets a comparable
performance with random selection. Our designed
baselines Cluster and DPP, which both introduce
semantic diversity, achieve some improvements
compared to random selection. And DPP could
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SST-2 Trec CB AGNews DBpedia RTE AVG
Model Method 2/4/8 2/4/8 2/4/8 2/4/8 2/4/8 2/4/8 2/4/8

LC 52.14/ 53.72/55.86 18.20/22.40/36.20 43.78/44.85/46.75 37.62/38.48/41.27 39.45/46.74/52.08 48.95/51.02/50.24 40.02/42.86/47.06
Cal 53.88/56.04/59.17 19.10/24.30//38.10 45.86/46.55/46.62 41.02/42.58/45.12 54.36/61.32/69.56 50.22/49.35/50.89 44.07/46.70/51.58

Random 52.33/55.27/56.97 17.36/23.76/37.20 46.43/46.47/46.57 40.50/41.86/43.84 55.80/61.24/68.06 51.84/52.20/52.56 44.04/46.80/50.87
Cluster 53.08/55.43/60.37 18.34/26.40/44.97 47.38/48.76/52.15 63.57/64.89/68.02 59.33/67.28/75.47 51.33/50.96/51.76 48.84/50.29/58.79

DPP 53.02/56.12/63.59 18.20/27.60/50.80 47.07/50.00/55.36 63.88/66.72/69.86 58.48/69.44/78.77 51.57/51.01/53.43 48.70/53.48/61.97

GPT2-xl
1.5B

Ours 59.86/64.31/72.40 32.68/38.60/57.22 48.21/56.07/59.14 67.21/73.91/76.42 65.93/67.74/75.35 53.07/53.79/53.77 54.49/59.07/65.72

LC 81.87/84.76/88.02 34.20/37.10/40.60 24.45/50.27/53.87 53.87/54.98/66.04 60.96/76.65/80.47 50.07/51.88/52.24 50.90/59.27/63.54
Cal 84.35/89.04/89.57 37.02/38.86/43.76 27.98/54.55/58.04 56.65/58.72/69.27 64.43/81.69/83.58 52.02/52.96/53.94 53.74/62.63/66.36

Random 84.20/88.57/89.06 36.80/38.08/44.40 25.36/53.57/55.36 55.74/56.80/67.19 62.23/80.46/81.44 55.02/56.31/53.86 53.23/62.30/65.22
Cluster 85.34/88.96/90.90 37.22/39.50/46.26 33.24/52.87/58.15 64.88/67.83/71.04 68.44/83.52/84.93 51.88/52.45/54.02 56.83/64.19/67.55

DPP 86.32/89.67/90.81 38.40/40.60/53.40 47.47/56.10/62.07 74.26/76.30/80.54 75.03/86.28/88.95 52.65/54.90/63.18 62.36/67.31/73.16

GPT-J
6B

Ours 88.20/91.67/92.61 58.02/67.60/72.78 49.50/58.66/64.29 79.66/82.26/84.09 80.45/89.26/92.47 53.02/55.48/56.63 68.14/74.16/77.15

LC 82.55/85.47/89.14 42.18/51.53/60.89 46.99/58.74/60.02 69.43/72.29/75.86 70.08/78.24/83.04 54.82/55.67/57.88 61.01/66.99/71.14
Cal 84.40/90.01/93.22 44.72/54.88/61.97 50.05/61.37/62.18 73.62/75.47/79.15 74.20/83.09/84.22 56.44/57.05/57.92 63.91/70.31/73.11

Random 83.57/89.25/92.89 44.56/53.80/63.12 49.13/60.71/60.00 74.13/73.73/77.91 72.66/81.84/83.68 57.26/59.06/57.83 63.55/69.73/72.57
Cluster 84.48/90.39/93.02 44.88/55.12/63.87 51.18/61.27/62.05 75.89/76.78/80.42 74.05/82.56/84.32 57.40/58.02/58.34 64.65/70.69/73.67

DPP 86.59/93.19/93.41 46.00/57.20/65.40 50.00/62.93/63.29 77.36/80.34/83.43 80.76/89.32/91.08 58.48/56.48/58.87 66.53/73.24/75.91

GPT-NeoX
20B

Ours 88.76/93.80/94.48 61.12/71.03/79.94 54.18/65.56/69.27 81.57/84.76/86.48 84.14/92.27/93.62 58.43/58.87/59.22 71.37/77.72/80.50

Table 1: 2-shot/4-shot/8-shot performance comparison on six datasets across three LLMs. AVG denotes the average
performance of the whole six datasets.
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Figure 3: Comparsions of average 8-shot performance
of the six datasets across the three LLMs.

achieve better performance compared to Cluster,
which indicates that DPP is the better choice to in-
troduce diversity. Compared to these baselines, our
methods significantly improve the performances
among all datasets in different settings across these
three LLMs. In specific, compared to random,
our methods bring more than 10% improvements
across the three shots for GPT2-xl and GPT-J and
8% improvements across the three shots for GPT-
NeoX. Compared to DPP (only stage 1, §3.2.1),
which is the strongest baseline, our method also
achieves an improvement ranging from 4% to 7%
under different settings, which verifies the effec-
tiveness of the second stage (§3.2.2).

4.3 Comparison with Retrieval Methods

Performance Comparison We compare our
method to the retrieval-based methods BM25 (Wang
et al., 2022) and KATE (Liu et al., 2022), which re-
trieve the demonstrations according to the BM25
scores (Liu et al., 2009) and the RoBERTa embed-

dings (Liu et al., 2019). Figure 3 shows the average
8-shot performance of the six datasets. From these
results, it is not surprising that these two methods
could achieve better performance. This is because
they both introduce information about the test set
while our method does not.

To make a fair comparison, we also try to incor-
porate test set information into our method. Specifi-
cally, we used a retriever to find the most similar ex-
amples from the training set to construct the score
set Dscore for our method. We name the variants
using the BM25 retriever in BM25 and the Roberta
retriever in Kate as Ours+BM25 and Ours+Emb, re-
spectively. According to the results, these two vari-
ants achieve further performance improvements
and the performance gaps with retrieval methods
decrease as the model size increases.
Benefits of Our Method Actually, it is inevitable
that the performance of representative demonstra-
tions is inferior to that of retrieval methods, as
they provide different demonstrations for each test
instance. However, providing the same demon-
stration subset (our method) can save a significant
amount of resources in real-world scenarios (Cheng
et al., 2023). In specific, if the demonstration sub-
set is kept the same, they can be pre-encoded1, thus
saving a significant amount of time spent on demon-
stration encoding when prediction. Figure 4 shows
a comparison of the time spent on inferring 5000
instances on AGNews. With the support of pre-

1This paradigm has been widely implemented in
Huggingface and these pre-encoded sentences are called
past_key_values in current available LLMs.
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BM25 KATE Ours+batch prompting

2-shot 15357 15349 4093
4-shot 26653 26677 4160
8-shot 49241 46274 4160

Table 2: Comparisons of token costs when testing Trec
with text-davinci-002 API, whose maximum input
length is 4097. We list the results of three shots.
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Figure 4: Comparsions of inference time of 5000 in-
stances from AGNews for GPT-J.

encode, only about 1/3 of the inference time is re-
quired. In the API calling scenario, the cost is calcu-
lated based on tokens. Cheng et al. (2023) proposes
batch prompting, which could generate responses
for multiple examples in one batch using the same
demonstration set. We calculate the token costs
when testing Trec with text-davinci-002. Ta-
ble 2 presents the comparisons. With batch prompt-
ing, ICL with the same demonstration subset shows
a significant advantage in token usage, requiring
only 1/10 of the token costs of the retrieval-based
method for 8-shot learning.

Therefore, we believe that representative demon-
stration selection is the more practical paradigm,
which could save a significant amount of inference
time and token costs.

4.4 Effect of Factors: Semantic Diversity,
Instance Quality, and Influence Diversity

In this part, we explore the effect of the proposed
three key factors in our selection method: semantic
diversity, instance quality, and influence diversity.

Table 3 presents the corresponding results and
Appendix B shows the detail of each baseline.
From these results, we find that instance quality
is the most important factor, which contributes sig-
nificantly to performance improvement. Semantic
diversity also plays a significant role, which is con-
sistent with the results of Cluster and DPP. And

variant SST-2 Trec AGNews

random 54.86 26.11 42.07

sem_div 57.58 32.20 66.82
ins_qua 61.93 37.08 68.11
inf_div 54.26 29.47 65.97
sem_div + ins_qua 63.86 39.92 69.88
sem_div + inf_div 59.29 34.87 68.08
ins_qua + inf_div 62.47 37.76 68.75

sem_div + ins_qua + inf_div (ours) 65.52 42.83 72.51

Table 3: Effect of the three factors: semantic diversity
(sem_div), instance quality (ins_qua), and influence
diversity (inf_div). We list the average performance
among the three shots for GPT2-xl.
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Figure 5: Order sensitivity on GPT2-xl. We conduct
4-shot experiments on SST2, Trec, CB, and AGNews
and show the results of the total 24 orders.

the influence diversity would have a relatively posi-
tive effect when it appears with instance quality.

5 Discussions

5.1 Order Sensitivity of Representative
In-Context Demonstrations

Lu et al. (2022) shows that ICL performance is
highly sensitive to the demonstration order. There-
fore, we also test whether the carefully selected
representative demonstrations suffer from the order
problem. In specific, we compare our method with
random selection and the strongest baseline DPP.

Figure 5 presents the corresponding results on
GPT2-xl. From these results, we could observe
that DPP could reduce the order sensitivity of ICL
and our method further reduce the order sensitivity.
According to this, we conjecture that the selected
representative in-context demonstrations could ef-
fectively characterize the corresponding task, lead-
ing to a reduction in order sensitivity of ICL, which
is also consistent Chen et al. (2022).
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Figure 6: Transferability of representative demonstrations. We test the representative demonstrations selected based
on GPT2-xl, GPT-J, and GPT-NeoX models on six different models GPT2-large, GPT2-xl, GPT-J, GPT-NeoX,
text-davinci-002, and text-davinci-003. We show the average performance on Trec of 2-/4-/8- shots.

5.2 Transferability of Representative
In-Context Demonstrations across LLMs

In this section, we investigate the transferability of
the selected representative demonstrations.

In specific, we utilize the demonstrations se-
lected based on the original model to test its per-
formance on the new model. We choose GPT2-
xl, GPT-J, and GPT-NeoX which were employed
in previous experiments as the original models,
and GPT2-large, GPT2-xl, GPT-J, GPT-NeoX,
text-davinci-002, and text-davinci-003 as
the new models, whose scale varies from 762M
to 175B. Figure 6 shows the corresponding results.

From these results, we observe that the selected
representative demonstrations all achieve better per-
formance compared to random selection, which
verifies their transferability. Besides, we also find
that the transferability will be better when the size
of the original model and the new model is closer.

5.3 Assessing the Quality of the Selected
In-Context Demonstrations

In this part, we explore the quality of the selected
in-context demonstrations. Considering that it is
not feasible to enumerate all possible combinations
in a training dataset, we conduct simulations under
the following conditions.

Specifically, we sample 10 instances from SST-
2, yielding C(10,4) = 210 possible combinations
for 4-shot experiments. Then we test each of these
210 combinations on the test set and obtained the
corresponding test accuracy for each combination.
Finally, we examine the ranking of the combina-
tions selected by our method among all possible
combinations.
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Figure 7: Cumulative distribution of the C(10,4) = 210
4-shot combinations on SST-2. And we sign our method
with the red line, which outperforms more than 90%
proportion of combinations.

As shown in Figure 7, we show the cumula-
tive distribution of the 210 combinations. And
our method is signed with the red line. From the
results, we can find that our method outperforms
90% combinations, which reveals the effectiveness
of our method.

5.4 Effect of Subet Size Dsem

In Algorithm 1, we get a subset of size Dsem after
the first stage DPP and select high-quality instances
from this subset. However, it is inevitable to filter
out some high-quality instances in the first stage.
Therefore, we explore the effect of the subset size
in this section. In our main experiments, we set
|Dsem| = 200, and we show the performances of
more value here and show the results of SST-2 on
GPT2-xl in Figure 8.

We could observe that our method achieves bet-
ter performance with the bigger subset size across
different shots. This indicates bigger subset size
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Figure 8: Effect of the subset size of SST-2 for GPT2-xl.

could introduce more high-quality instances in the
candidate set. Based on this, the second stage could
select better demonstrations. However, we could
also observe that the performance improvements
diminish significantly once the size exceeds 200.
Considering that the bigger size would introduce
much more inference costs when computing qual-
ity scores, this paper just selects 200 to conduct
experiments for efficiency.

6 Related Work

6.1 In-Context Learning
Existing studies have shown ICL is sensitive to
demonstration selection (Liu et al., 2022), demon-
stration formats (Dong et al., 2022), demonstration
labels (Min et al., 2022; Yoo et al., 2022), and
demonstration order (Lu et al., 2022). This paper
focuses on the selection of demonstrations.

Existing methods aim to find different demon-
strations for each test instance by retrieval-based
methods. These methods can be divided into two
categories based on whether the retriever requires
training (Dong et al., 2022). The training-free meth-
ods utilize the sentence representations (Liu et al.,
2022), BM25 (Wang et al., 2022), mutual informa-
tion (Sorensen et al., 2022), and perplexity (Go-
nen et al., 2022) to select demonstrations. As for
methods that require training, Zhang et al. (2022a)
utilized reinforcement learning to train a retriever.
Rubin et al. (2022) trained an example scorer using
contrastive learning with signals from LLM. More
recently, Li et al. (2023) integrated different tasks
to train a universal retriever, further enhancing the
performance of retrieval methods.

However, these methods have certain limitations
in real-world applications, especially in more in-
ference time and high token costs (§4.3). Based
on this, this paper tries to solve a more challeng-
ing problem: selecting representative in-context

demonstrations, which could prompt each test ex-
ample with the same demonstrations.

6.2 Determinantal Point Process

Determinantal Point Process (DPP) is an elegant
probabilistic model that could select representative
subsets while maintaining high diversity among
each instance (Kulesza et al., 2012). Such effi-
cient method has been applied to introduce diver-
sity in various tasks: objection detection (Azadi
et al., 2017), recommendation (Chen et al., 2018),
summary (Cho et al., 2019), and parsing (Shi et al.,
2021). More recently, Levy et al. (2023) using DPP
in composition tasks, sampling a diverse subset
of in-context examples to cover more sub-phrases,
which is task-specific and dependent on the specific
model. Ye et al. (2023) improve the retrieval-based
methods by introducing diversity into the retrieved
examples via DPP. However, this paper focuses on
a totally different paradigm.

7 Conclusion

This paper aims to address the challenge of select-
ing a representative demonstration subset and pro-
poses two criteria (quality and diversity) that such
demonstrations should satisfy. And we further pro-
pose a two-stage DPP method to incorporate both
high quality and diversity in the selection process.
Extensive experimental results show the effective-
ness of our method and the significant advantages
compared to retrieval-based methods.
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Limitations

The main limitation of this paper is the proposed
method could not be transferred into the black-box
scenario such as the GPT-3.5 family. Existing Ope-
nai APIs only provide the log probability of the
top-5 tokens, which leads to inaccurate calculation
of the influence score. With such an inaccurate
influence score, the accuracy of the values of the
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two important factors, instance quality and influ-
ence diversity, will also be affected. Therefore,
our method is difficult to be transferred to these
black-box models.

Besides, we have realized the defined influence
score (Equation 1) is not the optimal choice. We
also design a more accurate influence score and
Equation 1 is just a special case. These more ac-
curate scores would bring more performance im-
provements. However, the computational cost of
this more accurate method is several tens of times
higher than Equation 1 used in this paper. For large
language models, this cost is unacceptable (Yang
et al., 2023). Therefore, this paper made trade-offs
between efficiency and performance. And we leave
the challenge of how to efficiently incorporate the
more accurate influence scores into our method as
our future work.

Ethics Statement

This paper aims to select representative demonstra-
tions for in-context learning, and the experiments
are conducted on publicly available datasets with
available LLMs. As a result, there is no data pri-
vacy concern. Meanwhile, this paper does not in-
volve human annotations, and there are no related
ethical concerns.
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A Details of Datasets

Table 4 shows the data statistics of our used datasets
in the experiments. Considering the test set of
DBPedia is too large, we just sample 3000 exam-
ples for testing in retrieval-based comparisons (Fig-
ure 3).

Dataset Class Train Test

SST-2 2 6921 1821
Trec 6 5452 500
CB 3 250 250

AGNews 4 120000 7600
DBPedia 14 50000 70000

RTE 2 2490 3000

Table 4: Stastics of the datasets.

Table 5 shows the prompt formats for the six
datasets. Following Zhao et al. (2021), we let the
model predict the label for the given sentence for
SST-2 and AGNews. For TREC and DBPedia, we
add the instruction sentence to illustrate the label
space. For CB and RTE, which is a sentence match-
ing task, we take the first sentence as background
and combine the second sentence with a question
as a prompt.

B Details of the Ablation Baseline

Table 3 presents the effect of the three factors. In
this part, we illustrate the details of each baseline.
sem_div introduces semantic diversity via DPP

and chooses k demonstrations, which is the same
as the DPP baseline and similar to the first stage
(§3.2.1). ins_qua randomly samples the candi-
date subset and computes the influence score of
each instance. Then we choose the top-k sam-
ples with the highest quality scores as demonstra-
tions. ins_qua also randomly samples the can-
didate subset and computes the influence score
of each instance. Then we introduce influence
diversity via DPP and choose k demonstrations.
sem_div+ins_qua obtains the candidate subset by
semantic DPP and computes the influence score of
each instance. Then we choose the top-k samples
with the highest quality scores as demonstrations.
sem_div+inf_div obtains the candidate subset by
semantic DPP and computes the influence score
of each instance. Then we introduce influence
diversity via DPP and choose k demonstrations.
ins_qua+inf_div randomly samples the candi-
date subset and computes the influence score of

each instance. Following the second stage (§3.2.2),
we utilize DPP to incorporate both quality and in-
fluence diveristy to choose k demonstrations.

C Frame of Our Method

To provide a more direct illustration of our method,
we present the overall workflow in Figure 9, which
aids in better understanding Algorithm 1.
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Task Prompt Label Names

SST-2 Review: [sentence]
Sentiment:

Positive, Negative

AGNews Article: [sentence]
Answer:

World, Sports, Business,
Technology

TREC Classify the questions based on whether their answer
type is a Number, Location, Person, Description, En-
tity, or Abbreviation.

Question: [sentence]
Answer Type:

Number, Location, Person,
Description, Entity, Ab-
breviation

DBPedia Classify the documents based on whether they are
about a Company, School, Artist, Athlete, Politician,
Transportation, Building, Nature, Village, Animal,
Plant, Album, Film, or Book.

Article: [sentence]
Answer:

Company, School, Artist,
Athlete, Politician, Trans-
portation, Building,
Nature, Village, Animal,
Plant, Album, Film, Book

CB [sentence1]
question: [sentence2] True, False, or Neither?
answer:

True, False, Neither

RTE [sentence1]
question: [sentence2] True or False?
answer:

True, False

Table 5: The prompt formats used for the six datasets.

Candidate Set

Score Set

··· ···

sbert

sampling

semantic
similarity DPP

···

···

···

···
···

Demonstration Set

···DPP

stack

stackaverage

stack

Figure 9: Total frame of our method (Algorithm 1).
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