
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 440–450
December 6-10, 2023 ©2023 Association for Computational Linguistics

Scaling Neural ITN for Numbers and Temporal Expressions in Tamil:
Findings for an Agglutinative Low-resource Language

Bhavuk Singhal
Uniphore Inc.

bhavuk.singhal@uniphore.com

Sindhuja Gopalan
Uniphore Inc.

sindhuja@uniphore.com

Amrith Krishna
Uniphore Inc.

krishnamrith12@gmail.com

Malolan Chetlur
Uniphore Inc.

malolan.chetlur@uniphore.com

Abstract

Inverse Text Normalization (ITN) involves
rewriting the verbalised form of text from spo-
ken transcripts to its corresponding written
form. The task inherently expects challenges
in identifying ITN entries due to spelling vari-
ations in words arising out of dialects, tran-
scription errors etc. Additionally, in Tamil,
word boundaries between adjacent words in
a sentence often get obscured due to Punarchi,
i.e. phonetic transformation of these bound-
aries. Being morphologically rich, the words in
Tamil show a high degree of agglutination due
to inflection and clitics. The combination of
such factors leads to a high degree of surface-
form variations, making scalability with pure
rule-based approaches difficult. Instead, we
experiment with fine-tuning three pre-trained
neural LMs, consisting of a seq2seq model
(s2s), a non-autoregressive text editor (NAR)
and a sequence tagger + rules combination (tag-
ger). While the tagger approach works best
in a fully-supervised setting, s2s performs the
best (98.05 F-Score) when augmented with ad-
ditional data, via bootstrapping and data aug-
mentation (DA&B). S2S reports a cumulative
percentage improvement of 20.1 %, and sta-
tistically significant gains for all our models
with DA&B. Compared to a fully supervised
setup, bootstrapping alone reports a percentage
improvement as high as 14.12 %, even with a
small seed set of 324 ITN entries.

1 Introduction

Inverse Text Normalisation (ITN) is a text-
rewriting approach that converts the verbalized
form of text in spoken conversational systems to
its written form.1 The written and verbalised forms
often diverge in their surface-forms (van Esch and
Sproat, 2017; Sproat et al., 2001).Such words,

1In speech systems, text normalisation (TN) is a step per-
formed prior to text synthesis, where written form of the text
is converted to its verbalised form. ITN does the inverse of
TN, typically during speech recognition and hence named
accordingly.

henceforth to be referred to as ITN entities, typ-
ically include numbers, dates, money, etc. At large,
such categories are referred to as semiotic classes
(Taylor, 2009). ITN is generally perceived as a
task for improving text-readability for any language
(Sunkara et al., 2021). However, recent research
suggests that identifying ITN entities may addition-
ally improve the performance of systems designed
for downstream NLU tasks (Thawani et al., 2021;
Pouran Ben Veyseh et al., 2020; Sundararaman
et al., 2022). In this work, we identify and address
the challenges in developing ITN systems for a
low-resource and morphologically rich agglutina-
tive language, Tamil.

We primarily consider four different categories
of ITN entities, in our task. Three of them are nu-
merals belonging to semiotic classes (Sproat et al.,
2001) and the fourth one is linguistic phrases denot-
ing temporal expressions. The three numerical cate-
gories are MONEY, DATE AND TIME, and OTHER

numerical values. TEMPORAL expressions, though
typically do not require a rewrite, are also con-
sidered as an additional category in our task. For
instance, consider the statement ‘I will pay by the
end of this month’. While the temporal expression
‘end of this month’ may not require a rewrite for
readability, the information it conveys is similar
to that one would expect from ITN entities, such
as ‘30th May’. Hence, such expressions are also
identified, for further downstream processing.

Tamil is a morphologically-rich agglutinative
classical Dravidian language, widely spoken in In-
dia, Sri Lanka, etc. (Eberhard et al., 2022; Koli-
pakam et al., 2018). Table 1 demonstrates various
such affixation for ‘muppattañcu’, the written form
of the numeral 35. Here, rows 7-8 and 9-10 in Table
1 portray affix synonymy (Deo, 2007). Further, the
boundaries between the adjacent words in a Tamil
sentence may be obscured due to Punarchi, ow-
ing to phonetic transformations at these boundaries
(Sastri, 1934). The obscured word boundaries may

440

Sl. No Inflected form English Translation Morphological Segmentation
1 muppattañcuṅkal.ā is it thirty-five muppattañcu + ṅkal.ā
2 muppattañcukku for thirty-five muppattañcu + kku
3 muppattañcil in thirty-five muppattañcu + il
4 muppattañcukkul.l.a within thirty-five muppattañcu + kkul.l.a
5 muppattañcuvāt.t.i thirty-five times muppattañcu + vāt.t.i
6 muppattañcukkumkūt.a even at thirty-five muppattañcu + kkumkūt.a
7 muppattañcume

all of thirty-five
muppattañcu + me

8 muppatañcaiyum muppatañcu + aiyum
9 muppattañcām

thirty-fifth
muppattañcu + ām

10 muppattañcāvatu muppattañcu + āvatu

Table 1: Surface-forms due to Inflection and Clitic for ‘muppattañcu’, the written form for 35,

lead to ambiguity in identifying individual words
from a joint form. An ITN entity may undergo
Punarchi with other unrelated non-ITN words.
Consider a Tamil sentence, “Inta mātattavan. ai mup-
pattorāyirattiyĕt.nūtti muppattañciruvā”.2 Here, the
phrase ‘inta māta’ (this month) is an ITN en-
tity. However, the word ‘māta’ (month) undergoes
Punarchi with an unrelated word ‘tavan. ai’ (install-
ment) to form ‘mātattavan. ai’3. Hence, the word
inta and the substring ‘māta’ from ‘mātattavan. ai’
needs to be identified as the ITN entity.

Identifying temporal expressions poses several
challenges. One, temporal expressions may af-
fect other related words in a sentence (Vashishtha
et al., 2020), such as the tense of the verb. Fur-
ther, a temporal expression may be represented as
multiple words, with unrelated words appearing
in between the expression. Hence, a single en-
tity may be formed by multiple non-contiguous
spans. Consider the sentence ‘nāl̇aikku kālaila
nı̄ṅka añcu man. ikkul̇l̇a iṅka vantut.uṅka’.4 Here,
the word ‘nı̄ṅka’ (you) appears between four words
that collectively represent a single temporal ex-
pression ‘nāl̇aikku’ (tomorrow) ‘kālaila’ (morning)
‘añcu man. ikku’ (5 ’O clock). The combination of
Punarchi, inflection, clitics, dialects, and potential
transcription errors make identifying ITN entities a
challenging task in Tamil.

ITN systems typically are developed using rule-
based systems (Neubig et al., 2012), neural text
rewriting methods (Zhang et al., 2019), or a
combination of neural taggers followed by rule-
based methods (Tan et al., 2023). A purely rule-

2translation: ‘This month’s instalment is |31,835.’
3māta + tavan. ai → mātattavan. ai
4translation: ‘You may come here at 5 AM tomorrow

morning’.

based approach may be challenging for Tamil, due
to the aforementioned characteristics of the lan-
guage. Hence, we explore three different neural
approaches, a sequence-to-sequence model (Xue
et al., 2022), a non-auoregressive text-editor model
(Mallinson et al., 2020) and a combination of neu-
ral tagger (Conneau et al., 2020) with rules.

We leverage pretrained large language models
for fine-tuning these models for our task. However,
Tamil is a low-resource language. Hence, we addi-
tionally explore data augmentation and bootstrap-
ping to obtain additional data to train our models.
Specifically, we perform data augmentation by ob-
taining a substitution matrix of common spelling
variations, generating verbalised forms of numer-
als, and identifying temporal expressions from pub-
licly available corpora. For bootstrapping, our de-
fault setting involves a human-in-the-loop (HitL)
approach for candidate verification at each itera-
tion. We compare the default setting with two other
experimental setups, a) a fully automated setup
replacing HitL with a number classifier, and b) a
warm start scenario with a seed set many times
larger than the default setup.

Our major observations from this work are:

1. The seq2seq model reports the best overall
score with an F-Score of 98.05, a 2.06 % in-
crease from that of the tagger+rules system.
However, in the fully supervised setting, and
also with bootstrapping, the tagger+rules sys-
tem outperformed others.

2. Bootstrapping, irrespective of the three vari-
ants, reports significant performance improve-
ments for all three models, compared to a fully
supervised setup. The percentage improve-
ments range from 9.13 to 14.12 %.

441

Input inta mātattavan. ai muppattorāyiratti ĕt.nūtti muppattañciruvā

Final output from system
{Inta māta}# [this month] ttavan. ai {muppattorāyiratti ĕt.nūtti
muppattañciruvā} [|31,835]#

Final sentence with
improved readability

Inta mātattavan. ai |31,835

Table 2: Sample input along with the corresponding system output and the sentence with improved readability for
all our proposed models.

3. Data-augmentation alone contributes to more
than half of our training data. It leads to sta-
tistically significant improvements. Seq2seq
reports the highest gain and the tagger reports
the lowest, with percentage improvements of
5.24 % and 0.74 % respectively on top of the
gains made on bootstrapping.

2 ITN Models

ITN is a monotone sequence transduction task
where the input and output sequences typically
have considerable lexical overlap and generally
follow monotonicity in their alignments (Schnober
et al., 2016; Krishna et al., 2018). Here, we formu-
late the task in three different setups. a) A sequence
tagger (Conneau et al., 2020) coupled with a rule-
based system; b) A seq2seq model (Xue et al.,
2022; Raffel et al., 2020); c) A non-autoregressive
text-editor (Mallinson et al., 2020)

Table 2 shows a sample input sequence, previ-
ously discussed in Section 1. Irrespective of the
setup we use, the input and outputs do not change,
though there may be intermediary outputs depend-
ing on the systems involved in each setup. We focus
not only on improving text readability but also to
identify ITN entities for downstream processing.
Hence, the ‘final output from the system’ contains
both the verbalised forms as well as the correspond-
ing rewrites generated. Moreover, the verbalised
form of the ITN entities is enclosed within the
‘{’ and ‘}’ markup. Similarly, its corresponding
rewrite is generated and enclosed within the ‘[’
and ‘]’ markup. Non-ITN words are devoid of any
markups. Finally, those markup blocks suffixed
with a ‘#’, along with non-ITN words, remain in
the ‘final sentence with improved readability’.

2.1 Sequence-Tagger with Rules

We first identify text spans that form ITN entities
and then perform deterministic rule-based transfor-
mations based on the label set of the tagger. We
follow a tagging scheme inspired by the IOBES and

BILOU scheme (Ratinov and Roth, 2009; Lester,
2020) for our tags. We altogether have a label set
of 94 labels, 47 of them are used for represent-
ing temporal expressions and the rest are used for
representing the other three numeral categories.

Figure 1 illustrates the tagging sequence for a
given input sentence. Here, non-entity tokens (sub-
words) are tagged with the O tag. Since we need
the entity tags for rewrite, we need to identify the
exact values of the numerals involved and that can
potentially lead to an infinite set of possible values.
Hence, the numeral entities are decomposed into
sub-units. We consider each whole number from
0 to ten as a separate label. Further, place values
from units to a trillion, and additionally place val-
ues adopted in the Indian numbering system such
as ‘lakh’ (hundred thousand) and ‘crore’ (ten mil-
lion) are also considered.

Consider the verbalised form of |31,835,
which is ‘muppattorāyirattiyĕt.nūtti muppattañ-
ciruvā’. 31,835 is decomposed5 into multiple units
and its verbalised form is tagged with the labels
30, 1, 1K, 8, 1C, 30, and 5. Here, 1K and 1C are
place values denoting a thousand and a hundred
respectively. Inspired by the BILOU scheme, The
first token of each unit is prefixed with ‘B-’, any
interior token of a unit is prefixed with ‘I-’, and a
token that fully covers a sub-unit is prefixed with
‘U-’. The last token of a whole entity is prefixed
with ‘L-’, though the final token of each sub-unit
is not separately marked. Finally, there may be
subwords that overlap the text portion of two sep-
arate units due to Punarchi. For instance, ‘iyĕt.’ in
Figure 1 represents one such case where the ‘i’ is
part of ‘āyiratti’ (thousand place value, 1K) and
‘y’ is the common string created due to Punarchi
and the remaining is part of the string representing
8. For the token, we assign it the label ‘U-8’, as
otherwise, there would be representation for the
number 8 in the sequence.

5(30 + 1)× 1000 + 8× 100 + 30 + 5

442

inta

B-Th

Mā ta, ttav, anai

B-mo, L-mo, O, O

mu, ppatt, orā, yira, tt, iyĕṭ, nū, tti

B-30, I-30, U-1, B-1K, I-1K, U-8, B-1C, I-1C

mu, ppa, ttañci, ru, vā

B-30, I-30, U-5, B-inr, L-inr

Input: inta mātattavaṇai muppattorāyiratti ĕṭnūtti muppattañciruvā

Figure 1: Tagger output for the sub-word tokens of the input sequence.

2.2 Non-autoregressive Text Editor

We follow FELIX (Mallinson et al., 2020; Rothe
et al., 2021), a non-autoregressive text editor model.
It consists of a tagging model and an insertion
model both of which can be trained independently.
Given an input sequence s, the corresponding fi-
nal output sequence from the system y is gener-
ated based on the conditional probability: p(y|s) =
pins(y|ym)ptag(yt|s)

Here, yt is the output of the tagging model. y is
the final output from the system based on a masked
sequence ym as input to the insertion model. The
masked sequence is determined using the predic-
tions from the tagging model. The tagger predicts
the labels to either retain (R) or delete (D) the to-
kens. Further, a source token is tagged either with
an R-InsK or D-InsK , where the ‘R’/‘D’ in it is the
decision for the current token and K is the number
of tokens to insert after it.

Figure 2 shows the predictions from the tagging
model, i.e. yt. Based on the tags in yt, a sequence
ym is obtained. Here, those tokens tagged with R
and R-InsK are retained. The tokens tagged with
D and D-InsK are also made part of ym but are
enclosed within a special marker to indicate that
those tokens need to be deleted. Finally, depending
on the value of Ks predicted, the corresponding
number of MASK tokens are also inserted into ym.
The sequence corresponding to the ‘Final output
from system’ row in Table 2 is then generated by
the insertion model based on ym as input.

2.3 Seq2Seq model

We use a standard auto-regressive formulation,
maximising the output sequence likelihood with
teacher forcing (Sutskever et al., 2014; Cao et al.,
2021). Here, similar to FELIX, we directly predict
the desired written form, the final output from the
system as shown in Table 2.

3 Dataset Generation

Tamil being a low resource language, we employ
both bootstrapping (Yarowsky, 1995) and data aug-
mentation (Feng et al., 2021) for obtaining the train-
ing data for the task.

3.1 Bootstrapping

Expanding from a small seed set of ITN entities
we iteratively create labeled instances from a large
set of unlabelled ASR transcriptions. The seed set
is ensured to contain at least one verbalised for
each of the 102 labels (§2.1), such that these can
be combined to form complex ITN entities.

Approximate string matching approaches such
as Jaro (Jaro, 1989) and Jaro-Winkler (Winkler,
1990; Cohen et al., 2003) are used to expand our
seed set. Matching words are then validated either
using a human-in-the-loop (HitL) approach or with
a fully automated approach using a classifier. For
the latter, a numeral classifier is built that learns to
identify verbalised forms of text belonging to valid
numerals Johnson et al. (2020).

3.2 Data-Augmentation6

To enrich our training dataset, we utilize data-
augmentation techniques in three key areas. To
handle spelling variations in transcripts caused by
transcription errors, agglutination, and Punarchi,
we create a substitution matrix of character n-grams
(up to 3-grams) based on matched entity pairs from
bootstrapping. Numerals are augmented using
Tamildict7, with suffixes added based on the sub-
stitution matrix for proper date/time formats. We
introduce sentences with temporal expressions
by aligning corresponding Tamil phrases using a
multilingual word aligner (Jalili Sabet et al., 2020).

6We elaborate on each of the following augmentation strate-
gies in the appendix (§A.2)

7https://www.tamildict.com/

443

https://www.tamildict.com/

inta

R

Mā ta, ttav, anai

R, R-Ins, R, R

mu, ppatt, orā, yira, tt, iyĕṭ, nū, tti

D, D, D, D, D, D, D, D

mu, ppa, ttañci, ru, vā

D, D, D, D, D-Ins

Input: inta mātattavaṇai muppattorāyiratti ĕṭnūtti muppattañciruvā
Figure 2: Tag sequence yt from the tagging component of the text-editor for the input sequence.

4 Experiments

4.1 Data collection8

For bootstrapping, we collect 203,187 raw-ASR
transcriptions from code-mixed Tamil-English tele-
phonic conversations, with 22.7 % token share in
English. Here, we utilize publicly available re-
sources for data generation (§3;), such as Tamildict,
Shabdkosh9, Encyclopedia10, Tyagi et al. (2021),
Kakwani et al. (2020), Ramesh et al. (2022) .

Seed Set: By default, we assume a cold-start HitL
bootstrap setting, where the seed set contains 324
commonly used ITN entries in Tamil and English.
These entries are obtained based on the labels based
on inputs from native speakers. Additionally, we
experiment with a warm start scenario with 10,000
ITN words, including entries from the cold-start
setting, Tyagi et al. (2021), and the rest from Tamil-
dict.

Train splits: The training dataset consists of
30,417 sentences exactly matching the (cold-start)
seed ITN phrases, 24,632 additional sentences from
HitL bootstrapping, and 66,713 sentences from
data augmentation, including temporal expressions
and numerals.

Validation and Test Splits: We use 2,000 sen-
tences for validation and 5,000 sentences for the
test split, which are verified and corrected by Tamil
speakers.

Number Classifier: Using warm-start seed set
and equivalent negatives, we train the classifier.
Cold start: 3,623 ITN-entries, 28,520 additional
sentences. Warm start: 8,129 ITN-entries, 60,948
additional sentences.

Metrics: We evaluate using micro-averaged Pre-
cision, Recall, and F1-Score. Edit-distance based
word-error rates are assessed for ITN entities and

8Additional details for our data collection process is elabo-
rated in the appendix (§B)

9https://www.shabdkosh.com/
10https://omniglot.com/writing/tamil.htm

System P R F IW NW
Tagger 97.46 94.72 96.07 5.69 0.42
NAR 93.29 91.62 92.45 8.28 0.59
S2S 98.62 97.48 98.05 2.46 0.18

Table 3: Overall results for ITN

non-ITN words (Sunkara et al., 2022) using the
‘Final output from system’ (Table 2).

Systems: XLM-Roberta is fine-tuned for the tag-
ger (Tagger), Mallinson et al. (2020) for the text
editor (NAR), and byT5 (Xue et al., 2022) for
seq2seq setup (S2S). We use XLM-Roberta as the
base model for the NAR (Mallinson et al., 2020)

4.2 Results11

Table 3 shows the performance of all the three sys-
tems we consider. S2S currently outperforms oth-
ers in all the metrics. We find that NAR performs
worse than both the other systems. It reports an
entity F-Score of 92.45 as against that of 98.05
and 96.07 from the S2S and the tagger respectively.
When predicting entities, all the systems report
higher precision than recall scores. Given the di-
verse decoding strategies adopted in these systems,
we also compare the error rates between the final
predicted sequence and the ground truth sequence.
S2S remains closest to the ground truth, both in the
prediction of ITN entities and the non-ITN words
with an I-WER (IW) of 2.46 and N-WER (NW) of
0.18 respectively. Table 3 also shows the IW and
NW for all three systems.

Category Level Predictions: Table 4 reports the
category-level performance (F-Score) of all the sys-
tems we consider in this work. S2S and Tagger
report the best and second-best scores respectively
in all four categories. Here, all the systems report
their lowest scores in the Money category. We ob-
serve that among the mispredictions in the Money

11Following Dror et al. (2018), we perform pairwise t-tests
and observe that all the scores reported are statistically signifi-
cant (p < 0.05) unless otherwise stated

444

https://www.shabdkosh.com/
https://omniglot.com/writing/tamil.htm

Category Tagger NAR S2S
MONEY 92.72 89.38 97.13
DATE AND TIME 96.65 92.79 98.81
OTHER Numerals 96.13 93.67 98.63
TEMPORAL 95.59 93.39 97.82

Table 4: Category level results (F-Score)

Size Tagger NAR S2S
Exact Matching

30K
87.39 82.58 81.64

Bootstrapping
+24K = 54K

95.37 90.28 93.17

Data Augmentation
+66K = 120K

96.07 92.45 98.05

Table 5: Results (F-Score) by incrementally adding data
via bootstrapping and data-augmentation.

category, 56.79 % of those get mispredicted to the
other Numerals category. NAR performs the best
in predicting ‘Other Numerals’, in relative com-
parisons to its performance on other categories.
Similarly, both S2S and Tagger tend to perform
the best in predicting the ‘Date and Time’ category
compared to other classes.

Impact of Bootstrapping and Augmentation:
While Tagger reports the best scores in the fully
supervised setup and in bootstrapping, S2S reports
the overall best score (98.05) after data augmenta-
tion. As observed in several other tasks that use
encoder-decoder models (Gu et al., 2018), we hy-
pothesise that the increased data due to augmen-
tation leads to improvements for the S2S model.
As shown in Table 5, all the systems improve their
performance after both bootstrapping and data aug-
mentation. Here, S2S reports the highest percent-
age improvement after both steps. It has a per-
centage improvement of 14.12 after incorporating
Bootstrapping and a further percentage improve-
ment of 5.24 after data augmentation.

Bootstrapping Setups: Table 6 reports the per-
formance of all the systems in 3 bootstrapping se-
tups.12 Exact matching even with the large warm-
start seed set of 10,000 entries reports an F-Score
of only 88.42 for the tagger, highest of the three sys-
tems. However, even a cold start fully-automated
‘classifier’ setup in bootstrapping, reports signifi-
cant improvements to all the models with 89.36

12None of the setups include data from data-augmentation

System Cold Start Warm Start
Human-in-
the-Loop

Classifier Classifier

Tagger 95.37 94.49 95.63
NAR 90.28 89.36 91.92
S2S 93.17 92.54 95.09

Table 6: Results (F-Score) for the three different boot-
strapping setups

being the lowest F-Score reported (for NAR). HitL
setup, our default configuration, reports statistically
significant gains compared to the ‘classifier’ setup
in the cold-start setting. Here, tagger’s performance
in the ‘classifier’ setup, decreased to an F-Score of
94.49, from 95.37, and that of the S2S decreased
to 92.54, from 93.17. However, in the warm-start
setting, the ‘classifier’ setup surpasses the HitL
cold-start setup. Here, both NAR and S2S leads to
statistically significant improvements whereas tag-
ger reports a higher score, though not statistically
significant.

5 Conclusion

Our work focuses on developing a neural ITN sys-
tem for a morphologically-rich agglutinative lan-
guage, Tamil. Tamil is a morphologically produc-
tive language with rich agglutination, which along
with Punarchi leads to high degree of surface-form
variation in the utterances generated. We observe
that both bootstrapping and data-augmentation for
data generation help improve the performance of
all the three systems we experimented with. S2S
reports the highest gain. It surpasses tagger and
reports the best score, when using data from data
generation. Without data augmentation, Tagger re-
ports the best scores in all the other settings. Even
in a cold start setting, we observe that a fully au-
tomated candidate verification can lead to perfor-
mance improvements in these models. However,
our HitL cold start setting or alternatively the fully
automated solution in the warm start setting has
shown to further improve the performance of these
models. Overall, we find that both seq2seq and
tagger models perform satisfactorily for our use
cases and helps in downstream applications.

Limitations

Our work’s scope is currently focused on a lim-
ited set of semiotic classes, three of those focusing
specifically on numerals. In future, we would like

445

to expand to other semiotic classes such as abbrevi-
ations and acronyms. Similarly, we currently focus
only on text-rewriting and identification of ITN en-
tries. However, we believe joint modelling of other
related tasks such as grammatical and spelling error
correction, punctuation restoration etc. may benefit
the performance of all the tasks. We leave this for
future work.

References
Nicola De Cao, Gautier Izacard, Sebastian Riedel, and

Fabio Petroni. 2021. Autoregressive entity retrieval.
In International Conference on Learning Representa-
tions.

William W Cohen, Pradeep Ravikumar, and Stephen E
Fienberg. 2003. A comparison of string distance
metrics for name-matching tasks. In Proceedings of
the 2003 International Conference on Information
Integration on the Web, pages 73–78.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Ashwini Deo. 2007. Derivational morphology in
inheritance-based lexica: Insights from pān. ini. Lin-
gua, 117(1):175–201.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing sta-
tistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig. 2022. Ethnologue: Languages of the World,
25 edition. SIL International, Dallas.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988, Online. Association for Computa-
tional Linguistics.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor O.K.
Li. 2018. Universal neural machine translation for
extremely low resource languages. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Pa-
pers), pages 344–354, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Masoud Jalili Sabet, Philipp Dufter, François Yvon,
and Hinrich Schütze. 2020. SimAlign: High qual-
ity word alignments without parallel training data
using static and contextualized embeddings. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1627–1643, Online. Association
for Computational Linguistics.

Matthew A Jaro. 1989. Advances in record-linkage
methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statistical
Association, 84(406):414–420.

Devin Johnson, Denise Mak, Andrew Barker, and Lexi
Loessberg-Zahl. 2020. Probing for multilingual nu-
merical understanding in transformer-based language
models. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 184–192, Online. Association
for Computational Linguistics.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M.
Khapra, and Pratyush Kumar. 2020. IndicNLPSuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for Indian
languages. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4948–
4961, Online. Association for Computational Lin-
guistics.

Vishnupriya Kolipakam, Fiona M Jordan, Michael
Dunn, Simon J Greenhill, Remco Bouckaert,
Russell D Gray, and Annemarie Verkerk. 2018.
A bayesian phylogenetic study of the dravidian
language family. Royal Society open science,
5(3):171504.

Amrith Krishna, Bodhisattwa P. Majumder, Rajesh
Bhat, and Pawan Goyal. 2018. Upcycle your OCR:
Reusing OCRs for post-OCR text correction in Ro-
manised Sanskrit. In Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning,
pages 345–355, Brussels, Belgium. Association for
Computational Linguistics.

Brian Lester. 2020. iobes: Library for span level pro-
cessing. In Proceedings of Second Workshop for NLP
Open Source Software (NLP-OSS), pages 115–119,
Online. Association for Computational Linguistics.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi, and
Guillermo Garrido. 2020. FELIX: Flexible text edit-
ing through tagging and insertion. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1244–1255, Online. Association for
Computational Linguistics.

Graham Neubig, Yuya Akita, Shinsuke Mori, and Tat-
suya Kawahara. 2012. A monotonic statistical ma-
chine translation approach to speaking style trans-
formation. Computer Speech Language, 26(5):349–
370.

446

https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
http://www.ethnologue.com
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/N18-1032
https://doi.org/10.18653/v1/N18-1032
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.blackboxnlp-1.18
https://doi.org/10.18653/v1/2020.blackboxnlp-1.18
https://doi.org/10.18653/v1/2020.blackboxnlp-1.18
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.18653/v1/K18-1034
https://doi.org/10.18653/v1/K18-1034
https://doi.org/10.18653/v1/K18-1034
https://doi.org/10.18653/v1/2020.nlposs-1.16
https://doi.org/10.18653/v1/2020.nlposs-1.16
https://doi.org/10.18653/v1/2020.findings-emnlp.111
https://doi.org/10.18653/v1/2020.findings-emnlp.111
https://doi.org/https://doi.org/10.1016/j.csl.2012.02.003
https://doi.org/https://doi.org/10.1016/j.csl.2012.02.003
https://doi.org/https://doi.org/10.1016/j.csl.2012.02.003

Amir Pouran Ben Veyseh, Franck Dernoncourt,
Quan Hung Tran, and Thien Huu Nguyen. 2020.
What does this acronym mean? introducing a new
dataset for acronym identification and disambigua-
tion. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3285–
3301, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth
Bheemaraj, Mayank Jobanputra, Raghavan AK,
Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Ma-
halakshmi J, Divyanshu Kakwani, Navneet Kumar,
Aswin Pradeep, Srihari Nagaraj, Kumar Deepak,
Vivek Raghavan, Anoop Kunchukuttan, Pratyush Ku-
mar, and Mitesh Shantadevi Khapra. 2022. Samanan-
tar: The largest publicly available parallel corpora
collection for 11 indic languages. Transactions of the
Association for Computational Linguistics, 10:145–
162.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009),
pages 147–155, Boulder, Colorado. Association for
Computational Linguistics.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702–707,
Online. Association for Computational Linguistics.

PS Subrahmanya Sastri. 1934. History of Grammatical
Theories in Tamil and their relation to the Gram-
matical Literature in Sanskrit. Journal of Oriental
Research.

Carsten Schnober, Steffen Eger, Erik-Lân Do Dinh, and
Iryna Gurevych. 2016. Still not there? comparing
traditional sequence-to-sequence models to encoder-
decoder neural networks on monotone string trans-
lation tasks. In Proceedings of COLING 2016, the
26th International Conference on Computational Lin-
guistics: Technical Papers, pages 1703–1714, Osaka,
Japan. The COLING 2016 Organizing Committee.

Richard Sproat, Alan W Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of non-standard words. Com-
puter Speech and Language, 15(3):287–333.

Dhanasekar Sundararaman, Vivek Subramanian,
Guoyin Wang, Liyan Xu, and Lawrence Carin.

2022. Improving downstream task performance by
treating numbers as entities. In Proceedings of the
31st ACM International Conference on Information
amp; Knowledge Management, CIKM ’22, page
4535–4539, New York, NY, USA. Association for
Computing Machinery.

Monica Sunkara, Chaitanya Shivade, Sravan Bodapati,
and Katrin Kirchhoff. 2021. Neural inverse text nor-
malization. In ICASSP 2021.

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles
Baechler, Yu-Chung Hsiao, Jindong Chen, Abhan-
shu Sharma, and James W. W. Stout. 2022. To-
wards better semantic understanding of mobile inter-
faces. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 5636–
5650, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Sharman Tan, Piyush Behre, Nick Kibre, Issac
Alphonso, and Shuangyu Chang. 2023. Four-in-one:
a joint approach to inverse text normalization, punc-
tuation, capitalization, and disfluency for automatic
speech recognition. In 2022 IEEE Spoken Language
Technology Workshop (SLT), pages 677–684. IEEE.

Paul Taylor. 2009. Text-to-speech synthesis. Cambridge
university press.

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro
Szekely. 2021. Representing numbers in NLP: a
survey and a vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–656, Online. As-
sociation for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Shubhi Tyagi, Antonio Bonafonte, Jaime Lorenzo-
Trueba, and Javier Latorre. 2021. Proteno: Text
normalization with limited data for fast deployment
in text to speech systems. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies: Industry Papers, pages
72–79, Online. Association for Computational Lin-
guistics.

Daan van Esch and Richard Sproat. 2017. An expanded
taxonomy of semiotic classes for text normalization.
Proc. Interspeech 2017, pages 4016–4020.

447

https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.18653/v1/2020.coling-main.292
https://doi.org/10.1162/tacl_a_00452
https://doi.org/10.1162/tacl_a_00452
https://doi.org/10.1162/tacl_a_00452
https://aclanthology.org/W09-1119
https://aclanthology.org/W09-1119
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://doi.org/10.1145/3511808.3557614
https://doi.org/10.1145/3511808.3557614
https://www.amazon.science/publications/neural-inverse-text-normalization
https://www.amazon.science/publications/neural-inverse-text-normalization
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://aclanthology.org/2022.coling-1.497
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.53
https://doi.org/10.18653/v1/2021.naacl-main.53
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/2021.naacl-industry.10
https://doi.org/10.18653/v1/2021.naacl-industry.10
https://doi.org/10.18653/v1/2021.naacl-industry.10

Siddharth Vashishtha, Adam Poliak, Yash Kumar Lal,
Benjamin Van Durme, and Aaron Steven White. 2020.
Temporal reasoning in natural language inference.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4070–4078, Online.
Association for Computational Linguistics.

William E Winkler. 1990. String comparator metrics
and enhanced decision rules in the fellegi-sunter
model of record linkage.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 189–196, Cambridge, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Hao Zhang, Richard Sproat, Axel H. Ng, Felix
Stahlberg, Xiaochang Peng, Kyle Gorman, and Brian
Roark. 2019. Neural models of text normalization
for speech applications. Computational Linguistics,
45(2):293–337.

A Dataset Generation

In this appendix, we provide additional details re-
garding the generation of the data discussed in Sec-
tion 3.

A.1 Detailed Bootstrapping Process
To obtain the training data, we employ bootstrap-
ping, combining it with data augmentation for bet-
ter coverage. Initially, we curate a seed set of
ITN entities that contains all the basic forms of
entities required for the task. We also collect syn-
onyms and paraphrases for non-numeral entries in
the seed set. To identify spelling mistakes, inflec-
tional variants, and Punarchi-related variations, we
use approximate string-matching, including Jaro
and Jaro-Winkler similarities.

In the bootstrapping process, we match seed en-
tries with text spans in the transcripts using Jaro and
Jaro-Winkler similarities, generating two sorted
lists of top-matching entries. The candidates from
these lists need to be filtered based on their validity
before adding them to the seed set for the next iter-
ation. We have two filtering options: the human-in-
the-loop (HitL) approach and the classifier-based
automated step.

In the HitL approach, candidates are verified
manually by a Tamil speaker and then added to

the seed set. For the automated step, we build a
numeral classifier that identifies verbalized forms
of valid numerals. We use a feed-forward classifier
with pretrained embeddings to encode the input.
Training data for the classifier consists of valid nu-
meral sequences as positive examples and other
verbalized text forms as negative examples. Addi-
tionally, we generate invalid numeral sequences as
further negative examples.

By employing bootstrapping and data augmenta-
tion, we iteratively expand the seed set and obtain
a large labeled dataset for training our sequence
tagger.

A.2 Detailed Data-Augmentation
In this appendix, we provide a comprehensive ex-
planation of the methodologies and implementation
details for each data-augmentation technique used
in our research.

Spelling Variations: Spelling variations in tran-
scripts, encompassing transcription errors, agglu-
tination variations, and Punarchi effects, can sig-
nificantly influence the performance of language
models. For addressing these variations, we em-
ploy a substitution matrix approach. We delve into
the creation of the character n-gram substitution
matrix, explaining how it is derived from entity
pairs matched during the bootstrapping process.
Furthermore, we describe the alignment of charac-
ter n-grams and the aggregation process to identify
the most likely substitutes.

Generating Numerals: Numerals are an essen-
tial component of many linguistic tasks. We present
the process of generating numerals using the Tamil-
dict13 resource and demonstrate how we incorpo-
rate them into transcript sentences containing other
numerals. The addition of appropriate suffixes
based on the substitution matrix is explained in
detail, as well as the constraints we implement to
ensure proper date and time formats.

Temporal Expressions: To augment our dataset
with sentences containing temporal expressions, we
elaborate on our approach using publicly available
corpora. We discuss the collection of common tem-
poral expressions in Tamil and English and provide
insights into extracting relevant sentences from the
corpora. Additionally, we delve into the alignment
of English-Tamil sentence pairs using a multilin-
gual word aligner (Jalili Sabet et al., 2020), en-

13https://www.tamildict.com/

448

https://doi.org/10.18653/v1/2020.findings-emnlp.363
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://doi.org/10.1162/coli_a_00349
https://doi.org/10.1162/coli_a_00349
https://www.tamildict.com/

suring the extraction of aligned and contextually
relevant temporal expressions in Tamil.

By providing detailed methodologies in the ap-
pendix, readers can gain deeper insights into our
data-augmentation techniques and understand their
impact on improving the quality and effectiveness
of our trained language model.

B Data Collection for Bootstrapping

In this appendix, we provide additional details re-
garding data collection discussed in Section 4.1.

For bootstrapping our ITN extraction training
data, we collected a total of 203,187 raw-ASR
transcriptions from an in-house speech collection.
These transcriptions are derived from code-mixed
Tamil-English telephonic conversations, with a to-
ken share of 22.7% in English. To further enhance
the dataset, we utilized various publicly available
resources, including:

• Tamil Text-Normalization Corpus: We lever-
aged a Tamil text-normalization corpus (Tyagi
et al., 2021) to obtain additional data for our
task.

• Unlabelled Tamil Corpus: Another publicly
available unlabelled Tamil corpus (Kakwani
et al., 2020) was utilized for data generation.

• Parallel Tamil-English Corpus: We incorpo-
rated data from a parallel Tamil-English cor-
pus (Ramesh et al., 2022) to augment our
dataset.

• Tamil and English Dictionaries: We utilized
resources such as Tamildict14, Shabdkosh15,
and Encyclopedia16 to enrich the data.

Seed Set Curation: For our cold-start scenario,
we curated a seed set containing 324 commonly
used ITN entries in both Tamil and English. This
seed set was carefully verified using the aforemen-
tioned dictionaries and encyclopedias. In the warm-
start scenario, we expanded the seed set to include
10,000 ITN words. This larger set included the
initial 324 entries from the cold-start setting, 6,163
entries from Tyagi et al. (2021), and the rest from
Tamildict.

14https://www.tamildict.com/
15https://www.shabdkosh.com/
16https://omniglot.com/writing/tamil.htm

Training Data Generation: The training dataset
for our ITN extraction task was constructed in mul-
tiple steps:

• We obtained 30,417 sentences (30K) that ex-
actly matched the seed ITN phrases.

• The HitL bootstrapping approach resulted
in an additional 24,632 sentences (24K) ex-
tracted from the raw-ASR transcriptions.

• Through bootstrapping, we identified 27.58%
additional entities in the existing 30K sen-
tences.

• Data augmentation further contributed 66,713
sentences, with 19,709 of them containing
temporal expressions, and 9,608 sentences
containing both temporal expressions and nu-
merals. Sentences with temporal expressions
were sourced from Kakwani et al. (2020) and
Ramesh et al. (2022), while sentences with nu-
merals were obtained from Tyagi et al. (2021).
Additionally, numerals were generated using
Tamildict and incorporated into existing sen-
tences.

Number Classifier: To enhance our ITN extrac-
tion training dataset, we utilize a number classifier.
The classifier is trained using the warm-start seed
set along with an equivalent number of negative
examples. In the cold start setting, it identifies
3,623 ITN entries, while in the warm start setting,
it identifies 8,129 additional ITN entries.

Evaluation Metrics: For evaluating our ITN ex-
traction models, we use micro-averaged entity-
level Precision (P), Recall (R), and F1-Score (F),
which are commonly used metrics in Named Entity
Recognition (NER) setups (Tjong Kim Sang and
De Meulder, 2003). Additionally, we calculate edit-
distance based word-error rates separately for ITN
entities (IW) and non-ITN words (NW) (Sunkara
et al., 2022). These metrics provide a comprehen-
sive assessment of the model’s performance.

Experimental Systems: In our experiments, we
employ three different systems for ITN extrac-
tion. First, we fine-tune XLM-Roberta (Conneau
et al., 2020) using a rules setup for the tagger
(Tagger). Second, we use the approach proposed
by Mallinson et al. (2020) for the text editor (NAR),
where XLM-Roberta serves as the tagger. Finally,
we utilize byT5 (Xue et al., 2022) for the seq2seq

449

https://www.tamildict.com/
https://www.shabdkosh.com/
https://omniglot.com/writing/tamil.htm

setup (S2S). For the text-editor, we utilize XLM-
Roberta as the tagger to facilitate ITN extraction.
The training hyperparameters for both models can
be found in Table 7. Default values were utilized
for all other hyperparameters.

Hyperparameters XLM-Roberta ByT5
Maximum

Sequence Length
150 450

Batch Size 100 24
Learning Rate 1e-4 5e-4

Epochs 80 4

Table 7: Hyperparameters

450

