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Abstract
Edit distance has been successfully used to ex-
tract training data, i.e., misspelling-correction
pairs, of spelling correction models from search
query logs in languages including English.
However, the success does not readily apply to
Japanese, where misspellings are often dissimi-
lar to correct spellings due to the romanization-
based input methods. To address this problem,
we introduce lattice path edit distance, which
utilizes romanization lattices to efficiently con-
sider all possible romanized forms of input
strings. Empirical experiments using Japanese
search query logs demonstrated that the lattice
path edit distance outperformed baseline meth-
ods including the standard edit distance com-
bined with an existing transliterator and mor-
phological analyzer. A training data collection
pipeline that uses the lattice path edit distance
has been deployed in production at our search
engine for over a year.

1 Introduction

Edit distance (Levenshtein, 1966; Damerau, 1964)
is indispensable for query spelling error correc-
tion, which is an essential component in modern
search engines. Training spelling correction mod-
els requires a huge amount of training data, i.e.,
misspelling-correction pairs, but creating such data
by hand is costly. To address this problem, previous
studies have automatically extracted misspelling-
correction pairs from query logs by using edit
distance between two queries as a clue (Zhang
et al., 2006; Hasan et al., 2015; Zhou et al., 2019;
Kuznetsov and Urdiales, 2021).

In Japanese, however, edit distance is not ef-
fective for detecting misspelling-correction pairs
due to the unique input methods (IMs) (c.f., Sec-
tion 2.1). In typical Japanese IMs, users first enter
romanized text and then convert it into Japanese
characters. In the latter step, a typo can pro-
duce misspellings that are dissimilar to the correct
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Misspelling Correct spelling
きめつのやいば 鬼滅の刃 ‘Demon Slayer1’
(kimetunoyaiba) (kimetunoyaiba)
いんさt 印刷 ‘printing’
(insat) (insatu)

Table 1: Difficult-to-detect misspellings and their cor-
rect spellings. The romanized forms that are entered by
IMs are presented in the parentheses. English transla-
tions are assigned to the correct spellings.

spellings (Table 1). Note that the misspellings and
correct spellings in Table 1 do not share many char-
acters in common. Such misspellings are abundant
in query logs, but difficult to detect by using edit
distance.

To deal with such difficult-to-detect misspellings,
we explore using romanized forms that are entered
by IMs. As shown in Table 1, even if the correct
spellings and misspellings are dissimilar, their ro-
manized forms that are entered by IMs are often
similar or even identical2. This observation rea-
sonably leads us to the idea of computing edit dis-
tance between romanized forms rather than surface
strings.

Using romanized forms is simple in theory but
in actuality it is difficult to implement in Japanese
(c.f., Section 2.2). Estimating romanized forms that
are entered by IMs from surface strings is challeng-
ing because it requires sense disambiguation and
Japanese has multiple romanization systems.

To bypass the difficulty in estimating romanized
forms, we introduce lattice path edit distance, an
edit distance that uses all possible romanized forms
of input strings rather than uniquely determined
romanized forms. Because Japanese characters
generally have many possible romanized forms, it
is inefficient to simply consider every possible com-

1https://en.wikipedia.org/wiki/Demon_Slayer:
_Kimetsu_no_Yaiba

2Different spellings can have the same romanized forms in
Japanese.
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Intended Text IM Input Candidate List IM Output
鬼滅の刃 ‘Demon Slayer’ kimetunoyaiba 鬼滅の刃 きめつのやいば

(kimetsunoyaiba) 毀滅の刃

きめつのやいば

印刷 ‘printing’ insat いんさt いんさt
(insatu) 蔭佐t

院さt

Table 2: How difficult-to-detect misspellings are caused by Japanese IMs. The first column shows the text the users
intended to enter and its correct romanized form. The second column shows the (possibly misspelled) romanized
text that the users actually entered, and the third column shows the automatically generated candidate list. The last
column is the candidate selected by the user.

bination. This problem is addressed by a dynamic
programming (DP) algorithm that makes use of the
lattice structure.

Experiments using Japanese search query
logs compared the qualities of the misspelling-
correction pairs extracted by using five types of edit
distances, one of which is the lattice path edit dis-
tance. The results demonstrated that the lattice path
edit distance outperformed the others including the
standard edit distance combined with an existing
transliterator and morphological analyzer. It was
also demonstrated that the standard edit distance
and the lattice path edit distance were complemen-
tary, and their combination improved the extraction
results.

2 Problems

This section provides in-depth discussions on the
problems to be addressed in this work.

2.1 Ineffectiveness of edit distance

Japanese text is written using a combination of
four scripts: the Latin alphabet, Chinese characters,
and two Japanese syllabic scripts (i.e., hiragana
and katakana). Because there exist thousands of
distinct Chinese characters, it is not straightforward
to enter Japanese text from keyboards, in contrast
to English.

To enter text from keyboards, certain IMs are
commonly used in Japanese (Tokunaga et al., 2011;
Maeta and Mori, 2012; Okuno and Mori, 2012). In
typical Japanese IMs, users first enter romanized
Japanese text using a keyboard and then convert
it into Japanese characters, which is composed of
the four scripts. Because many-to-many mapping
generally exists between Japanese text and its ro-
manized form, the conversion is done by manually
selecting the appropriate one from automatically-

generated candidates.
The IMs in Japanese often cause misspellings

that are difficult to detect by using edit distance
(Table 2). In the first example, the user entered the
romanized text ‘kimetunoyaiba’ with the intention
of writing ‘鬼滅の刃 (Demon Slayer).’ Although
the resulting candidate list includes the intended
one, s/he inadvertently selected the wrong candi-
date ‘きめつのやいば’, which accidentally has
the same romanized form as ‘鬼滅の刃 (Demon
Slayer).’ In the second example, the user entered
the wrong romanized text ‘insat’ (the correct ro-
manized text is ‘insatu’). As a result, the candidate
list no longer includes the intended one. Neverthe-
less, s/he accidentally selected the wrong candidate
‘いんさt’. In both examples, the misspellings, (i.e.,
IM Output), and correct spellings, (i.e., Intended
Text), are dissimilar and do not share many char-
acters in common. Unfortunately, many search
engine users do not always type precisely, and such
misspellings are abundant in search query logs.

Japanese IMs in which users enter Katakana
forms rather than romanized forms are also popular.
Although this work exclusively explores romanized
forms because they are familiar to both native and
non-native Japanese readers, the proposed lattice
path edit distance can also be applied to Katakana
forms straightforwardly.

2.2 Difficulty of estimating romanized forms
To deal with misspellings that are difficult to de-
tect, this paper explores using romanized forms
that are entered by IMs. As seen from the first two
columns in Table 2, even if correct spellings and
misspellings are dissimilar, their romanized forms
are often similar or even identical: ‘鬼滅の刃’ and
‘きめつのやいば’ have exactly the same roman-
ized forms ‘kimetunoyaiba,’ while ‘印刷’ and ‘い
んさt’ have similar romanized forms, ‘insatu’ and
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‘insat.’ Thus, it is reasonable to compute the edit
distance of romanized forms rather than surface
strings.

Using romanized forms is simple in theory but
difficult to realize in Japanese because the follow-
ing two ambiguities make it difficult to estimate
romanized forms from surface strings.

Sense ambiguity Most Chinese characters have
multiple senses, and each sense has a different pro-
nunciation. Consequently, the characters can be ro-
manized in different ways depending on the sense
they represent in the context. For example, the
character ‘行’ is romanized as ‘i’ when it means
‘go’ and ‘okona’ when it means ‘do’ (Suzuki et al.,
2009). This indicates that estimating romanized
forms requires sense disambiguation, which is a
difficult task.

Transliteration ambiguity The Japanese lan-
guage has multiple romanization systems (i.e.,
ways of transliterating Japanese characters into
Latin alphabet) such as Hepburn romanization.
Therefore, even characters other than Chinese char-
acters can be romanized in multiple ways. For
example, the Hiragana character ‘し’ can be ro-
manized as either ‘si’, ‘shi’ or ‘ci’ depending on
the romanization system. Because we are unable
to access the specific romanization systems used
by the users, it is impossible to predict the exact
romanized forms from surface strings.

Although existing tools such as transliterators
and morphological analyzers can be used to ad-
dress those ambiguities, they are not sufficient in
practice. The experiment in Section 4 investigates
baseline methods that make use of these tools, and
the results demonstrate that they are suboptimal.

It is worth noting that improving edit distance
by using representations of pronunciations, such
as romanized forms, has been common in previous
studies (Jurafsky and Martin, 2023). As a notable
example, the GNU Aspell algorithm (Atkinson,
2019) uses simple rules (Philips, 1990) to convert
input strings into representations of pronunciations,
between which edit distance is computed. However,
these studies primarily focused on English. Such
approaches are not applicable to Japanese.

3 Lattice Path Edit Distance

This section introduces the proposed lattice path
edit distance, which is aware of romanized forms
of input strings.

Figure 1: Romanization lattices for ‘印刷’ (top) and ‘い
んさt’ (bottom).

3.1 Formulation

To bypass the difficulty of estimating romanized
forms, we explore a new edit distance that uses all
possible romanized forms of input strings rather
than uniquely determined romanized forms. Specif-
ically, the new edit distance is defined as the mini-
mum edit distance between all possible romanized
forms of input strings:

d(x, y) = min
a∈Rx,b∈Ry

dbase(a, b), (1)

where x and y are input strings, Rx and Ry repre-
sent sets of all possible romanized forms of x and y,
respectively. We presume that the romanized forms
are obtained by using a romanization dictionary.
The function dbase(a, b) is referred to as the base
edit distance. The base edit distance is assumed
to be the Levenshtein distance (Levenshtein, 1966)
in the following discussion but can be extended
straightforwardly to the Damerau-Levenshtein dis-
tance (Appendix A).

The brute-force computation of d(x, y) is inef-
ficient when |Rx| and |Ry| are large. To avoid
this problem, we use romanization lattices, which
implicitly encode all possible romanized forms of
strings (Figure 1), as representations of Rx and
Ry. In the romanization lattice, all edges are la-
beled with a single Latin letter, and every path from
the start to the end node represents one romanized
form. In what follows, we presume that the nodes
are indexed by integers (starting from zero) in the
topological order.

3.2 Distance computation

This subsection presents a DP algorithm for com-
puting d(x, y), which is hereafter referred to as
lattice path edit distance. The algorithm is based
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Algorithm 1 Distance computation

1: for i← 0 to N do
2: for j ← 0 to M do
3: Compute D[i][j] by using Equation (3)
4: end for
5: end for
6: return D[N ][M ]

on a DP table D defined as below:

D[i][j] = min
a∈Ri

x,b∈Rj
y

d(a, b), (2)

where Ri
x is a set of romanized forms in Rx ending

with the node i. In Figure 1 (top), for example,
R4

‘印刷’ = {in, inn}, R10
‘印刷’ = {insa, innsa}, etc.

Note that we have d(x, y) = D[N ][M ], where N
and M are the indices of the end nodes of Rx and
Ry, respectively.
D[N ][M ], or equivalently d(x, y), can be effi-

ciently computed by using the following formula
(Algorithm 1):

D[i][j] = min





min
l∈Py(j)

D[i][l] + 1,

min
k∈Px(i)

D[k][j] + 1,

min
k∈Px(i)
l∈Py(j)

D[k][l] + δπx
k:i,π

y
l:j
,

(3)

where Px(i) denotes a set of direct predecessors of
the node i in Rx, and πx

k:i denotes the label (i.e.,
Latin letter) of the edge going from the node k to i
in Rx. Py(j) and πy

l:j are defined similarly. δ·,· is
the Kronecker delta. See Appendix B for relations
to existing algorithms.

3.3 Neighborhood checking

Algorithm 1 can be accelerated by reducing
the search space if it suffices to check whether
D[N ][M ] is equal to or less than a pre-defined
threshold θ. Because the costs of the edit opera-
tions are non-negative, D[i][j] is a monotonically
increasing function of i and j. Therefore, once
D[i][j] exceeds θ, we can safely remove D[i][j]
from consideration to avoid unnecessary computa-
tion.

This results in Algorithm 2. The algorithm visits
the node pair (i, j) that satisfies D[i][j] ≤ θ in the
topological order by using the priority queue Q,
and updates D by using the following equations for

Algorithm 2 Neighborhood checking

1: D[0][0]← 0
2: Add (0, 0) to Q
3: while Q is not empty do
4: (i, j)← Q.pop()
5: if θ < D[i][j] then
6: continue
7: end if
8: if (i, j) = (N,M) then
9: return TRUE

10: end if
11: Update D using Equations (4-6)
12: Add updated node pairs to Q
13: end while
14: return FALSE

all k ∈ Sx(i) and l ∈ Sy(j)

D[i][l] = min{D[i][l], D[i][j] + 1}, (4)

D[k][j] = min{D[k][j], D[i][j] + 1}, (5)

D[k][l] = min{D[k][l], D[i][j] + δπx
i:k,π

y
j:l
}, (6)

where Sx(i) denotes a set of direct successors of
i in Rx. The algorithm successfully terminates by
returning TRUE (line 9) when the node pair (N,M)
is visited and D[N ][M ] ≤ θ is satisfied.

4 Experiment

Empirical experiments were conducted using
Japanese search query logs to investigate the qual-
ity of the misspelling-correction pairs extracted by
using the lattice path edit distance.

4.1 Task setting

When designing the experimental task, we consid-
ered a hypothetical use case in which edit distance
is used to extract misspelling-correction pairs from
query logs, with reference to (Hasan et al., 2015;
Kuznetsov and Urdiales, 2021). Specifically, we
considered two consecutive queries issued by the
same users are extracted as misspelling-correction
pairs, if the following conditions are all satisfied:

1. The two queries are issued within 60 seconds.

2. The number of unique users who issued the
second query is more than five times larger
than the first query.

3. A set of terms in one query does not subsume
the other.
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Levenshtein Damerau-Levenshtein
Precision Recall Precision Recall

Base edit distance 70.5 43.2 71.2 44.7
Phonological edit distance 80.8 29.2 81.5 30.6

Romanization (kakasi) 88.2 60.3 88.3 61.2
Romanization (mecab+kakasi) 88.1 59.6 88.3 60.5
Lattice path edit distance 87.8 71.1 88.0 72.1

Table 3: Precision and recall for the misspelling-correction pair detection task.

4. The edit distance between the two queries is
equal to or less than a predefined threshold.

We constructed an evaluation dataset that sim-
ulates such a use case. A total of 29,359 query
pairs that satisfy the first three conditions described
above were collected from the query logs of a
Japanese Web search engine. The collected query
pairs were then manually annotated by experts as to
whether or not they are true misspelling-correction
pairs. As the result, 1743 out of 29,359 were anno-
tated as true misspelling-correction pairs.

Using this dataset, the goodness of edit dis-
tance was measured on the basis of misspelling-
correction pair detection task in which two queries
are regarded as true misspelling-correction pairs
when their edit distance is equal to or less a pre-
defined threshold. The result of this detection task
represents the quality of the extracted misspelling-
correction pairs in the abovementioned use case.
The threshold was set to one considering the im-
portance of the precision of the extraction results
as training data.

The romanization dictionary was constructed
from the UniDic dictionary (Version 3.1.0)3.

4.2 Baseline methods

Both the Levenshtein and Damerau-Levenshtein
distances were tested as the base edit distance. In
both cases, the following baseline methods were
implemented for comparison.

Base edit distance The base edit distance of the
lattice path edit distance (i.e., either Levenshtein or
Damerau-Levenshtein distane) is used as is.

Phonological edit distance This method also
uses the base edit distance, but allows only edit
operations of phonograms (i.e., Latin alphabet, Hi-
ragana, and Katakana characters) to avoid exces-
sive edits. This baseline is inspired by previous

3https://unidic.ninjal.ac.jp

studies that successfully used edit distance for ex-
tracting Japanese spelling variants with a focus on
Katakana words (Masuyama et al., 2004).

Romanization (kakasi) The input strings are
deterministically romanized by using kakasi (ver-
sion 2.2.1)4, a transliteration library for Japanese,
and then their base edit distance is computed.

Romanization (mecab+kakasi) The input
strings are first processed by a Japanese mor-
phological analyzer, mecab (version 0.996)5, to
estimate pronunciations (i.e., Katakana forms),
and then the results are romanized by kakasi.
This method intends to take the advantage of the
existent morphological analyzer to accurately
estimate pronunciations.

Hereafter, the first two baseline methods are
collectively referred to as surface-level distances,
while the latter two and the lattice path edit distance
are referred to as romanization-aware distances.

4.3 Results

Main results Table 3 shows the results of the
misspelling-correction pair detection in the two set-
tings (i.e., Levenshtein and Damerau-Levenshtein
distances used as the base edit distance). As shown,
romanization-aware distances outperformed the
surface-level ones, which demonstrates the im-
portance of using romanized forms to detect mis-
spellings in Japanese. In addition, the lattice path
edit distance increased the recall by over 10 points
at a negligible cost of precision, compared with the
two romanization-aware baselines. This result sug-
gests that methods based on uniquely determined
romanized forms are subpotimal and it is a better
strategy to consider all possible romanized forms.
The existing transliterator and morphological ana-
lyzer (i.e., kakasi and mecab) may not have been
effective for the following reasons. First, they can

4https://github.com/miurahr/pykakasi
5https://taku910.github.io/mecab
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Figure 2: Precision-recall curves. Left: Levenshtein
distance. Right: Damerau-Levenshtein distance.

address the sense ambiguity at least in principle
but are incapable of addressing the transliteration
ambiguity (c.f., Section 2.2). Second, they are de-
signed to process clean text rather than misspelled
text.

Figures 2 illustrates the precision-recall curves
with changing the threshold value. We can confirm
that the lattice path edit distance was able to achieve
better precision-recall trade-off compared with the
other methods regardless of the choice of base edit
distance.

Distance combination Thus far, the
romanization-aware distances have demon-
strated greater effectiveness over the surface-level
ones. However, there exist misspellings that the
surface-level distances can detect more effectively
than romanization-aware distances (Appendix C),
and therefore the two types of edit distances are
considered complementary.

Thus, we investigate combining the lattice path
edit distance and the surface-level distance by us-
ing a simple combination method of taking the
minimum of two distances (Table 4). The result
demonstrated that the combination with the phono-
logical base distance improved the recall at the
cost of a small decrease in precision. This sim-
ple combination method can be a good starting
point to make the best use of the surface-level and
romanization-aware distances. Meanwhile, the re-
sult of the combination with the base edit distance
was not very promising. It achieved the highest re-
call, but the precision decreased significantly. This
suggests that it remains challenging to achieve this
level of recall without sacrificing precision. Future
work should include exploring more sophisticated
approaches.

Time efficiency A comparison between Algo-
rithms 1 and 2 shows that Algorithm 2 achieved a
16 times speed-up when the threshold was set to
one (Appendix D). This demonstrates the practical
usefulness of Algorithm 2 as only checking neigh-

Precision Recall
Lattice path edit distance 88.0 72.1
+Base edit distance 79.9 81.0
+Phonological edit distance 87.4 76.7

Table 4: Results for the combination of the lattice path
edit distance and the surface-level distances.

bors, rather than computing the exact distance, is
usually sufficient in practical use cases.

4.4 Example

Table 5 presents example misspellings that the
kakasi baseline failed to detect but the lattice path
edit distance succeeded. In the first example, not
only ‘aitikekorona’ but ‘aitiiekorona’ are plausi-
ble romanized forms of ‘愛知家コロナ,’ which
is a meaningless string. In the second example,
not only ‘chadougu’ but ‘tyadougu’ are correct
romanized forms of ‘茶道具 (tea-things)’ due to
the transliteration ambiguity. In both cases, the
only correct romanized forms do not exist. The
kakasi baseline accidentally preferred the roman-
ized forms that result in larger edit distance, thus
failing to detect the two misspellings. Such detec-
tion errors are considered inevitable. On the other
hand, the proposed lattice path edit distance suc-
cessfully detected the two misspellings since it is
able to consider all possible romanized forms.

4.5 Discussion

The threshold on the lattice path edit distance was
set to one in the experiment. While we consider
this threshold value is reasonable in practice, the
recall in Table 3 suggests that the lattice path edit
distance is still larger than one in a non-negligible
percentage of cases.

One may suspect that most of those misspelling-
correction pairs are long queries. To test this hy-
pothesis, we investigated the query length6 of the
1743 misspelling-correction pairs used in the ex-
periment. The 1743 pairs were divided into two
groups: the lattice path edit distance is less than
or equal to one in one group, while more than one
in the other. The result demonstrated that the aver-
age query length in the latter group is only slightly
longer than the former (12.79 vs. 13.46), suggest-
ing that the query length cannot sufficiently explain
the difference of the lattice path edit distance.

6Specifically, the sum of the lengths of the two queries.
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Misspelling Correct spelling
愛知家コロナ 愛知県コロナ ‘Aichi prefecture Covid’
(aitikekorona) (aitikenkorona)

chadougu 茶道具 ‘tea-things’
(chadougu)

Table 5: Misspellings that the kakasi baseline failed to detect but the lattice path edit distance succeeded. The
romanized forms that achieve the minimum edit distance are presented in the parentheses. In the second example,
the user entered the correct romanized form but forgot to activate IM. This results in the misspelling ‘chadougu.’

Our manual investigation revealed that only pre-
fix of the intended query is often entered when the
lattice path edit distance is larger than one, e.g.,
‘いんたーんし’ and ‘インターンシップ (intern-
ship).’ Detection methods based on edit distance is
not designed to handle such misspellings. Differ-
ent approaches like query auto-completion (Kim,
2019) are considered desirable.

5 Related Work

Previous studies successfully used the Levenshtein
distance to extract misspelling-correction pairs
from GitHub’s commit logs (Hagiwara and Mita,
2020) and Wikipedia’s revision history (Tanaka
et al., 2020). Although this may seem to contradict
with our findings, these successes are reasonable
because the text domains explored in those studies
are substantially different from search query logs
(Appendix E).

Some studies (Suzuki et al., 2009; Saito et al.,
2017) investigated edit distance between represen-
tations of pronunciations as a clue for spelling vari-
ant extraction. Suzuki et al. (2009) deterministi-
cally converted input strings into romanized forms
and then computed the edit distance between them.
Their approach is essentially the same as the ro-
manization baseline explored in our experiment.

Synthetically generating misspellings from cor-
rect spellings, rather than extracting misspelling-
correction pairs from some linguistic resources
(e.g., query logs), is another common approach to
addressing the scarcity of training data for spelling
error correction. It is interesting to see that this line
of attempts has also emphasized the importance of
considering pronunciations in parallel to this work
(Wang et al., 2018; Kakkar et al., 2023).

As discussed in Appendix B, the lattice path edit
distance is closely related to finite-state automata.
The contributions of this work compared to the
previous studies on finite-state automata are two
folds. First, we explored a new application of finite-

state automata to the misspelling-correction pair
detection in Japanese. Second, we introduced a
simplified variant of the Mohri’s algorithm (2003)
that is tailored to the new application setting, where
the input automata have lattice structures.

6 Conclusion and Future Work

We have introduced lattice path edit distance, a
romanization-aware edit distance, with a focus
on extracting misspelling-correction pairs from
Japanese search query logs. A DP algorithm and its
faster variant were proposed for the efficient com-
putation of the lattice path edit distance. The empir-
ical results demonstrated that the lattice path edit
distance outperformed the standard edit distance
even if an existing transliterator and morphological
analyzer were employed together.

Although this work focused on Japanese, similar
problems are considered to arise in other Asian lan-
guages that have their own IMs. For example, the
Chinese language also has its own romanization
system, pinyin, and language-specific IMs based
on it. Application of the lattice path edit distance to
such languages is a future direction worth explor-
ing.
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A Extension to Damerau-Levenshtein
Distance

Thus far, we have assumed that the base edit dis-
tance is the Levenshtein distance, but it is also
possible to use the Damerau-Levenshtein distance
(Damerau, 1964). Algorithm 1 can be extended

240

https://doi.org/10.18653/v1/D15-1051
https://doi.org/10.18653/v1/D15-1051
http://web.stanford.edu/~jurafsky/slp3/B.pdf
http://web.stanford.edu/~jurafsky/slp3/B.pdf
https://doi.org/10.18653/v1/2023.acl-industry.66
https://doi.org/10.18653/v1/2023.acl-industry.66
https://doi.org/10.18653/v1/D19-1507
https://doi.org/10.18653/v1/D19-1507
https://aclanthology.org/W12-4801
https://aclanthology.org/W12-4801
https://aclanthology.org/C04-1176
https://aclanthology.org/C04-1176
https://aclanthology.org/W12-4802
https://aclanthology.org/W12-4802
https://aclanthology.org/W12-4802
https://aclanthology.org/I17-1094
https://aclanthology.org/I17-1094
https://aclanthology.org/I17-1094
https://aclanthology.org/D09-1154
https://aclanthology.org/D09-1154
https://aclanthology.org/D09-1154
https://doi.org/10.18653/v1/2020.acl-srw.31
https://doi.org/10.18653/v1/2020.acl-srw.31
https://aclanthology.org/W11-3502
https://aclanthology.org/W11-3502
https://doi.org/10.18653/v1/D18-1273
https://doi.org/10.18653/v1/D18-1273
https://doi.org/http://hdl.handle.net/2065/29070


to the Damerau-Levenshtein distance by adding
another term

min
k∈Px(i),k′∈Px(k)
l∈Py(j),l′∈Py(l)

s.t. πx
k′:k=πy

l:j∧πx
k:i=πy

l′:l

D[k′][l′] + 1 (7)

to Equation (3). A similar extension can also be
made to Algorithm 2.

B Relation to Existing Algorithms

The proposed DP algorithm is closely related to
existing algorithms such as the Wagner-Fischer al-
gorithm for computing the Levenshtein distance
(Wagner and Fischer., 1974). Because the proposed
algorithm is reduced to the Wagner-Fischer algo-
rithm when both romanization lattices have linear
chain structures, it can be seen as an extension
of the Wagner-Fischer algorithm from strings to
lattices.

It is also worth considering the proposed algo-
rithm from the viewpoint of a finite-state automa-
ton. Note that the lattice is a special form of a
finite-state automaton. Mohri (2003) argued that
the minimum edit distance among strings accepted
by two unweighted automata, A1 and A2, is equal
to the shortest path distance of the weighted au-
tomaton U = A1 ◦ T ◦A2, where T is an edit dis-
tance transducer and ◦ is the composition operation.
See (Mohri, 2003) for detailed descriptions. There-
fore, the lattice path distance can also be computed
by the shortest path search over such an automaton.

An interesting observation here is that a bijec-
tion exists between the positions (i, j) in D and the
states in U , and that D[i][j] is equal to the shortest
path distance to the state corresponding to (i, j)
(Figure 3). Therefore, the proposed algorithm can
be interpreted as performing the same shortest path
search as in (Mohri, 2003) while eliminating the
needs of the complex composition operations for
constructing U . In this sense, the proposed algo-
rithm is a simplified variant of Mohri’s algorithm
that is applicable when both A1 and A2 have lattice
structures.

C Motivating Example for Distance
Combination

Table 6 represents an example of a misspelling that
is more easily detected by surface-level distances
than by romanization-aware ones. In this exam-
ple, the Damerau-Levenshtein distance between

Figure 3: Mohri’s algorithm (2003) for lattice-structured
unweighted automata. Left: Lattice-structured un-
weighted automata, A1 and A2, defined over an alphabet
{a, b, c}, and the weighted automaton A1 ◦ T . Right:
the weighted automaton U = A1 ◦ T ◦ A2, which is
obtained by composing (or intersecting) A1 ◦ T and A2

(only a fraction of the edges are illustrated for simplic-
ity). Because states in U correspond to pairs of states in
A1 ◦ T and A2, they are indexed by the corresponding
integer pairs. The red edges represent the shortest path.
Notice the similarity between the automaton U and the
DP table D.

Correct spelling Misspelling
マリトッツォ ‘maritozzo’ マトリッツォ

(maritottso) (matorittso)

Table 6: Misspelling that is more easily detected by
surface-level distances than by romanization-aware ones.
The romanized forms are presented in the parentheses.

the surface strings is 1 because only one transposi-
tion operation is required to transform the correct
spelling into the misspelling, while the distance
between the romanized forms is 4. Such an ex-
ample motivates us to combine surface-level and
romanization-aware edit distances.

D Time Efficiency

Figure 4 compares the time in seconds required to
process the evaluation data by Algorithms 1 and
2. For Algorithm 2, three threshold values (1, 2,
and 3) were tested. The results revealed that Algo-
rithm 2 attained a speed-up of up to 16.83 times
compared with Algorithm 1. This demonstrates the
practical usefulness of Algorithm 2 because only
testing neighbors, rather than computing the exact
distance, is usually sufficient in practical use cases.

E Comparison between Search Query
Logs and GitHub’s commit logs

Figure 5 compares the distributions of the normal-
ized Levenshtein distances between misspellings
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Figure 4: Processing times of Algorithms 2. The hori-
zontal axis represents the threshold value. The dotted
line represents Algorithm 1. The numbers above the
bars represent the speed gains relative to Algorithm 1.
All results were obtained by averaging over five inde-
pendent runs.

Figure 5: Distributions of the normalized Levenshtein
distances between misspellings and corrections. Left:
Search query logs. Right: GitHub’s commit logs.

and corrections in the search query logs (c.f., Sec-
tion 4.1) and GitHub’s commit logs7. As the fig-
ure shows, the types of spelling errors in the two
datasets are different in nature; the misspellings
and their corrections are quite similar in the com-
mit logs but not in the search query logs. This
difference is considered to be the reason that the
Levenshtein distance was effective in previous stud-
ies but not in this work.

7The Japanese portion of GitHub Typo Corpus (version
1.0.0) was used.
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