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Abstract
NeMo Guardrails is an open-source toolkit1

for easily adding programmable guardrails to
LLM-based conversational systems. Guardrails
(or rails for short) are a specific way of control-
ling the output of an LLM, such as not talking
about topics considered harmful, following a
predefined dialogue path, using a particular lan-
guage style, and more. There are several mecha-
nisms that allow LLM providers and developers
to add guardrails that are embedded into a spe-
cific model at training, e.g. using model align-
ment. Differently, using a runtime inspired
from dialogue management, NeMo Guardrails
allows developers to add programmable rails
to LLM applications - these are user-defined,
independent of the underlying LLM, and inter-
pretable. Our initial results show that the pro-
posed approach can be used with several LLM
providers to develop controllable and safe LLM
applications using programmable rails.

1 Introduction

Steerability and trustworthiness are key factors for
deploying Large Language Models (LLMs) in pro-
duction. Enabling these models to stay on track
for multiple turns of a conversation is essential for
developing task-oriented dialogue systems. This
seems like a serious challenge as LLMs can be eas-
ily led into veering off-topic (Pang et al., 2023).
At the same time, LLMs also tend to generate re-
sponses that are factually incorrect or completely
fabricated (hallucinations) (Manakul et al., 2023;
Peng et al., 2023; Azaria and Mitchell, 2023). In
addition, they are vulnerable to prompt injection
(or jailbreak) attacks, where malicious actors ma-
nipulate inputs to trick the model into producing
harmful outputs (Kang et al., 2023; Wei et al., 2023;
Zou et al., 2023).

Building trustworthy and controllable conversa-
tional systems is of vital importance for deploy-

*Equal contribution
1https://github.com/NVIDIA/NeMo-Guardrails

Figure 1: Programmable vs. embedded rails for LLMs.

ing LLMs in customer facing situations. NeMo
Guardrails is an open-source toolkit for easily
adding programmable rails to LLM-based appli-
cations. Guardrails (or rails) provide a mechanism
for controlling the output of an LLM to respect
some human-imposed constraints, e.g. not engag-
ing in harmful topics, following a predefined dia-
logue path, adding specific responses to some user
requests, using a particular language style, extract-
ing structured data. To implement the various types
of rails, several techniques can be used, including
model alignment at training, prompt engineering
and chain-of-thought (CoT), and adding a dialogue
manager. While model alignment provides general
rails embedded in the LLM at training and prompt
tuning can offer user-specific rails embedded in a
customized model, NeMo Guardrails allows users
to define custom programmable rails at runtime as
shown in Fig. 1. This mechanism is independent
of alignment strategies and supplements embedded
rails, works with different LLMs, and provides in-
terpretable rails defined using a custom modeling
language, Colang.
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To implement user-defined programmable rails
for LLMs, our toolkit uses a programmable run-
time engine that acts like a proxy between the
user and the LLM. This approach is complemen-
tary to model alignment and it defines the rules
the LLM should follow in the interaction with the
users. Thus, the Guardrails runtime has the role
of a dialogue manager, being able to interpret and
impose the rules defining the programmable rails.
These rules are expressed using a modeling lan-
guage called Colang. More specifically, Colang
is used to define rules as dialogue flows that the
LLM should always follow (see Fig. 2). Using a
prompting technique with in-context learning and
a specific form of CoT, we enable the LLM to gen-
erate the next steps that guide the conversation.
Colang is then interpreted by the dialogue manager
to apply the guardrails rules predefined by users or
automatically generated by the LLM to guide the
behavior of the LLM.

While NeMo Guardrails can be used to add
safety and steerability to any LLM-based appli-
cation, we consider that dialogue systems powered
by an LLM benefit the most from using Colang and
the Guardrails runtime. The toolkit is licensed as
Apache 2.0, and we provide initial support for sev-
eral LLM providers, together with starter example
applications and evaluation tools.

2 Related Work

2.1 Model Alignment

Existing solutions for adding rails to LLMs rely
heavily on model alignment techniques such as
instruction-tuning (Wei et al., 2021) or reinforce-
ment learning (Ouyang et al., 2022; Glaese et al.,
2022; OpenAI, 2023). The alignment of LLMs
works on several dimensions, mainly to improve
helpfulness and to reduce harmfulness. Align-
ment in general, including red-teaming (Perez et al.,
2022), requires a large collection of input prompts
and responses that are manually labeled according
to specific criteria (e.g., harmlessness).

Model alignment provides rails embedded at
training in the LLM, that cannot easily be changed
at runtime by users. Moreover, it also requires
a large set of human-annotated response ratings
for each rail to be incorporated by the LLM.
While Reinforcement Learning from Human Feed-
back (Ouyang et al., 2022) is the most popular
method for model alignment, alternatives such as
RL from AI Feedback (Bai et al., 2022b) do not

Figure 2: Dialogue flows defined in Colang: a sim-
ple greeting flow and two topical rail flows calling the
custom action wolfram alpha request to respond to
math and distance queries.

require a human labeled dataset and use the actual
LLM to provide feedback for each response.

While most alignment methods provide general
embedded rails, in a similar way developers can
add app-specific embedded rails to an LLM via
prompt tuning (Lester et al., 2021; Liu et al., 2022).

2.2 Prompting and Chain-of-Thought

The most common approach to add user-defined
programmable rails to an LLM is to use prompt-
ing, including prompt engineering and in-context
learning (Brown et al., 2020), by prepending or ap-
pending a specific text to the user input (Wang and
Chang, 2022; Si et al., 2022). This text specifies
the behavior that the LLM should adhere to.

The other approach to provide LLMs with user-
defined runtime rails is to use chain-of-thought
(CoT) (Wei et al., 2022). In its simplest form, CoT
appends to the user instruction one or several simi-
lar examples of input and output pairs for the task
at hand. Each of these examples contains a more
detailed explanation in the output, useful for de-
termining the final answer. Other more complex
approaches involve several steps of prompting the
LLM in a generic to specific way (Zhou et al., 2022)
or even with entire dialogues with different roles
similar to an inner monologue (Huang et al., 2022).

2.3 Task-Oriented Dialogue Agents

Building task-oriented dialogue agents generally
requires two components: a Natural Language Un-
derstanding (NLU) and a Dialogue Management
(DM) engine (Bocklisch et al., 2017; Liu et al.,
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2021). There exist a wide range of tools and solu-
tions for both NLU and DM, ranging from open-
source solutions like Rasa (Bocklisch et al., 2017)
to proprietary platforms, such as Microsoft LUIS
or Google DialogFlow (Liu et al., 2021). Their
functionality mostly follows these two steps: first
the NLU extracts the intent and slots from the user
message, then the DM predicts the next dialogue
state given the current dialogue context.

The set of intents and dialogue states are finite
and pre-defined by a conversation designer. The bot
responses are also chosen from a closed set depend-
ing on the dialogue state. This approach allows to
define specific dialogue flows that tightly control
any dialogue agent. Conversely, these agents are
rigid and require a high amount of human effort to
design and update the NLU and dialogue flows.

At the other end of the spectrum are recent end-
to-end (E2E) generative approaches that use LLMs
for dialogue tracking and bot message generation
(Hudeček and Dušek, 2023; Zhang et al., 2023).
NeMo Guardrails also uses an E2E approach to
build LLM-powered dialogue agents, but it com-
bines a DM-like runtime able to interpret and main-
tain the state of dialogue flows written in Colang
with a CoT-based approach to generate bot mes-
sages and even new dialogue flows using an LLM.

3 NeMo Guardrails

3.1 General Architecture

NeMo Guardrails acts like a proxy between the
user and the LLM as detailed in Fig. 3. It allows de-
velopers to define programmatic rails that the LLM
should follow in the interaction with the users us-
ing Colang, a formal modeling language designed
to specify flows of events, including conversations.
Colang is interpreted by the Guardrails runtime
which applies the user-defined rules or automat-
ically generated rules by the LLM, as described
next. These rules implement the guardrails and
guide the behavior of the LLM.

An excerpt from a Colang script is shown in
Fig. 2 - these scripts are at the core of a Guardrails
app configuration. The main elements of a Colang
script are: user canonical forms, dialogue flows,
and bot canonical forms. All these three types of
definitions are also indexed in a vector database
(e.g., Annoy (Spotify), FAISS (Johnson et al.,
2019)) to allow for efficient nearest-neighbors
lookup when selecting the few-shot examples for
the prompt. The interaction between the LLM and

the Guardrails runtime is defined using Colang
rules. When prompted accordingly, the LLM is
able to generate Colang-style code using few-shot
in-prompt learning. Otherwise, the LLM works in
normal mode and generates natural language.

Canonical forms (Sreedhar and Parisien, 2022)
are a key mechanism used by Colang and the run-
time engine. They are expressed in natural lan-
guage (e.g., English) and encode the meaning of
a message in a conversation, similar to an intent.
The main difference between intents and canonical
forms is that the former are designed as a closed
set for a text classification task, while the latter are
generated by an LLM and thus are not bound in any
way, but are guided by the canonical forms defined
by the Guardrails app. The set of canonical forms
used to define the rails that guide the interaction is
specified by the developer; these are used to select
few-shot examples when generating the canonical
form for a new user message.

Using these key concepts, developers can imple-
ment a variety of programmable rails. We have
identified two main categories: topical rails and
execution rails. Topical rails are intended for con-
trolling the dialogue, e.g. to guide the response for
specific topics or to implement complex dialogue
policies. Execution rails call custom actions de-
fined by the app developer; we will focus on a set
of safety rails available to all Guardrails apps.

3.2 Topical Rails

Topical rails employ the key mechanism used
by NeMo Guardrails: Colang for describing pro-
grammable rails as dialogue flows, together with
the Colang interpreter in the runtime for dialogue
management (Execute flow [Colang] block in
Fig. 3). Flows are specified by the developer to de-
termine how the user conversation should proceed.
The dialogue manager in the Guardrails runtime
uses an event-driven design (an event loop that pro-
cesses events and generates back other events) to
ensure which flows are active in the current dia-
logue context.

The runtime has three main stages (see Fig. 3)
for guiding the conversation with dialogue flows
and thus ensuring the topical rails:

Generate user canonical form. Using
similarity-based few-shot prompting, generate the
canonical form for each user input, allowing the
guardrails system to trigger any user-defined flows.

Decide next steps and execute them. Once the
user canonical form is identified, there are two po-
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Figure 3: NeMo Guardrails general architecture.

tential paths: 1) Pre-defined flow: If the canonical
form matches any of the developer-specified flows,
the next step is extracted from that particular flow
by the dialogue manager; 2) LLM decides next
steps: For user canonical forms that are not de-
fined in the current dialogue context, we use the
generalization capability of the LLM to decide the
appropriate next steps - e.g., for a travel reservation
system, if a flow is defined for booking bus tickets,
the LLM should generate a similar flow if the user
wants to book a flight.

Generate bot message(s). Conditioned by the
next step, the LLM is prompted to generate a re-
sponse. Thus, if we do not want the bot to respond
to political questions, and the next step for such
a question is bot inform cannot answer – the bot
would deflect from responding, respecting the rail.

Appendix B provides details about the Colang
language. Appendix C contains sample prompts.

3.3 Execution Rails

The toolkit also makes it easy to add "execution"
rails. These are custom actions (defined in Python),
monitoring both the input and output of the LLM,
and can be executed by the Guardrails runtime
when encountered in a flow. While execution rails
can be used for a wide range of tasks, we provide
several rails for LLM safety covering fact-checking,
hallucination, and moderation.

3.3.1 Fact-Checking Rail
Operating under the assumption of retrieval aug-
mented generation (Wang et al., 2023), we formu-
late the task as an entailment problem. Specifically,
given an evidence text and a generated bot response,

we ask the LLM to predict whether the response
is grounded in and entailed by the evidence. For
each evidence-hypothesis pair, the model must re-
spond with a binary entailment prediction using the
following prompt:

You are given a task to identify if the hypothesis
is grounded and entailed in the evidence. You
will only use the contents of the evidence and
not rely on external knowledge. Answer with
yes/no. "evidence": {{evidence}} "hypothesis":
{{bot_response}} "entails":

If the model predicts that the hypothesis is not en-
tailed by the evidence, this suggests the generated
response may be incorrect. Different approaches
can be used to handle such situations, such as ab-
staining from providing an answer.

3.3.2 Hallucination Rail
For general-purpose questions that do not involve
a retrieval component, we define a hallucination
rail to help prevent the bot from making up facts.
The rail uses self-consistency checking similar to
SelfCheckGPT (Manakul et al., 2023): given a
query, we first sample several answers from the
LLM and then check if these different answers are
in agreement. For hallucinated statements, repeated
sampling is likely to produce responses that are not
in agreement.

After we obtain n samples from the LLM for the
same prompt, we concatenate n − 1 responses to
form the context and use the nth response as the
hypothesis. Then we use the LLM to detect if the
sampled responses are consistent using the prompt
template defined in Appendix D.
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3.3.3 Moderation Rails
The moderation process in NeMo Guardrails con-
tains two key components:
• Input moderation, also referred as jailbreak

rail, aims to detect potentially malicious user mes-
sages before reaching the dialogue system.
• Output moderation aims to detect whether

the LLM responses are legal, ethical, and not harm-
ful prior to being returned to the user.

The moderation system functions as a pipeline,
with the user message first passing through input
moderation before reaching the dialogue system.
After the dialogue system generates a response
powered by an LLM, the output moderation rail is
triggered. Only after passing both moderation rails,
the response is returned to the user.

Both the input and output moderation rails are
framed as another task to a powerful, well-aligned
LLM that vets the input or response. The prompt
templates for these rails are found in Appendix D.

4 Sample Guardrails Applications

Adding rails to conversation applications is simple
and straightforward using Colang scripts.

4.1 Topical Rails
Topical rails can be used in combination with exe-
cution rails to decide when a specific action should
be called or to define complex dialogue flows for
building task oriented agents.

In the example presented in Fig. 2, we imple-
ment two topical rails that allow the Guardrails
app to use the WolframAlpha engine to respond
to math and distance queries. To achieve this, the
wolfram alpha request custom action (imple-
mented in Python, available on Github) is using the
WolframAlpha API to get a response to the user
query. This response is then used by the LLM to
generate an answer in the context of the current
conversation.

4.2 Execution Rails
The steps involved in adding executions rails are:

1. Define the action - Defining a rail requires
the developer to define an action that specifies
the logic for the rail (in Python).

2. Invoke action in dialogue flows - Once the
action has been defined, we can call the action
from Colang using the execute keyword.

3. Use action output in dialogue flow - The
developer can specify how the application
should react to the output from the action.

Appendix E contains details about defining ac-
tions, together with an example of the actions that
implement the input and output moderation rails.

Fig. 4 shows a sample flow in Colang that in-
vokes the check_jailbreak action. If the jailbreak
rail flags a user message, the developer can decide
not to show the generated response and to output
a default text instead. Appendix F provides other
examples of flows using the executions rails.

Figure 4: Flow using jailbreak rail in Colang

5 Evaluation

In this section, we provide details on how we
measure the performance of various rails. Addi-
tional information for all tasks and a discussion on
the automatic evaluation tools available in NeMo
Guardrails are provided in Appendix G.

5.1 Topical Rails
The evaluation of topical rails focuses on the
core mechanism used by the toolkit to guide con-
versations using canonical forms and dialogue
flows. The current evaluation experiments em-
ploy datasets used for conversational NLU. In this
section, we present the results for the Banking
dataset (Casanueva et al., 2022), while additional
experiments can be found in Appendix G.

Starting from a NLU dataset, we create a Colang
application (publicly available on Github) by map-
ping intents to canonical forms and defining simple
dialogue flows for them. The evaluation dataset
used in our experiments is balanced, containing
at most 3 samples per intent sampled randomly
from the original datasets. The test dataset has 231
samples spanning over 77 different intents.

The results of the top 3 performing models
are presented in Fig. 5, showing that topical rails
can be successfully used to guide conversations
even with smaller open source models such as
falcon-7b-instruct or llama2-13b-chat. As
the performance of an LLM is heavily dependent
on the prompt, all results might be improved with
better prompting.

The topical rails evaluation highlights several
important aspects. First, each step in the three-step
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Figure 5: Performance of topical rails on Banking.

approach (user canonical form, next step, bot mes-
sage) used by Guardrails offers an improvement
in performance. Second, it is important to have
at least k = 3 samples in the vector database for
each user canonical form for achieving good perfor-
mance. Third, some models (i.e., gpt-3.5-turbo)
produce a wider variety of canonical forms, even
with few-shot prompting. In these cases, it is useful
to add a similarity match instead of exact match for
generating canonical forms.

5.2 Execution Rails

Moderation Rails To evaluate the moderation
rails, we use the Anthropic Red-Teaming and Help-
ful datasets (Bai et al., 2022a; Perez et al., 2022).
We have sampled a balanced harmful-helpful evalu-
ation set as follows: from the Red-Teaming dataset
we sample prompts with the highest harmful score,
while from the Helpful dataset we select an equal
number of prompts.

We quantify the performance of the rails based
on the proportion of harmful prompts that are
blocked and the proportion of helpful ones that
are allowed. Analysis of the results shows that us-
ing both the input and output moderation rails is
much more robust than using either one of the rails
individually. Using both rails gpt-3.5-turbo has
a great performance - blocking close to 99% of
harmful (compared to 93% without the rails) and
just 2% of helpful requests - details in Appendix G.

Fact-Checking Rail We consider the MS-
MARCO dataset (Bajaj et al., 2016) to evaluate
the performance of the fact-checking rail. The
dataset consists of (context, question, answer)
triples. In order to mine negatives (answers that
are not grounded in the context) we use OpenAI
text-davinci-003 to rewrite the positive answer
to a hard negative that looks similar to it, but is

Figure 6: Performance of the hallucination rail.

not grounded in the evidence. We construct a com-
bined dataset by equally sampling both positive
and negative triples. Both text-davinci-003 and
gpt-3.5-turbo perform well on the fact-checking
rail and obtain an overall accuracy of 80% (see
Fig. 11 in Appendix G.2.2).

Hallucination Rail Evaluating the hallucination
rail is difficult without employing subjective man-
ual annotation. To overcome this issue and be able
to automatically quantify its performance, we com-
pile a list of 20 questions based on a false premise
(questions that do not have a right answer).

Any generation from the language model, apart
from deflection, is considered a failure. We
then quantify the benefit of employing the hal-
lucination rail as a fallback mechanism. For
text-davinci-003, the LLM is unable to deflect
prompts that are unanswerable and using the hallu-
cination rail helps intercept 70% of these prompts.
gpt-3.5-turbo performs much better, deflecting
unanswerable prompts or marking that its response
could be incorrect in 65% of the cases. Even in
this case, employing the hallucination rail boosts
performance up to 95%.

6 Conclusions

We present NeMo Guardrails, a toolkit that allows
developers to build controllable and safe LLM-
based applications by implementing programmable
rails. These rails are expressed using Colang and
can also be implemented as custom actions if they
require a complex logic. Using CoT prompting
and a dialogue manager that can interpret Colang
code, the Guardrails runtime acts like a proxy be-
tween the application and the LLM enforcing the
user-defined rails.
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7 Limitations

7.1 Programmable Rails and Embedded Rails
Building controllable and safe LLM-powered ap-
plications, in general, and dialogue systems, in
particular, is a difficult task. We acknowledge that
the approach employed by NeMo Guardrails of us-
ing developer-defined programmable rails, imple-
mented with prompting and the Colang interpreter,
is not a perfect solution.

Therefore we advocate that, whenever possible,
our toolkit should not be used as a stand-alone
solution, especially for safety-specific rails. Pro-
grammable rails complement embedded rails and
these two solutions should be used together for
building safe LLM applications. The vision of
the project is to also provide, in the future, more
powerful customized models for some of the ex-
ecution rails that should supplement the current
pure prompting methods. On another hand, our re-
sults show that adding the moderation rails to exist-
ing safety rails embedded in powerful LLMs (e.g.,
ChatGPT), provides a better protection against jail-
break attacks.

In the context of controllable and task-oriented
dialogue agents, it is difficult to develop cus-
tomized models for all possible tasks and topical
rails. Therefore, in this context, NeMo Guardrails
is a viable solution for building LLM-powered task-
oriented agents without extra mechanisms. How-
ever, even for topical rails and task-oriented agents,
we plan to release p-tuned models that achieve bet-
ter performance for some of the tasks, e.g. for
canonical form generation.

7.2 Extra Costs and Latency
The three-step CoT prompting approach used by
the Guardrails runtime incurs extra costs and extra
latency. As these calls are sequentially chained (i.e.,
the generation of the next steps in the second phase
depends on the user canonical form generated in
the first stage), the calls cannot be batched. In
our current implementation, the latency and costs
required are about 3 times the latency and cost of
a normal call to generate the bot message without
using Guardrails. We are currently investigating if
in some cases we could use a single call to generate
all three steps (user canonical form, next steps in
the flow, and bot message).

Using a more complex prompt and few-shot
in-context learning also generates slightly extra
latency and a larger cost compared to a normal

bot message generation for a vanilla conversation.
Developers can decide to use a simpler prompt if
needed.

However, we consider that developers should
be provided with various options for their needs.
Some might be willing to pay the extra costs for
having safer and controllable LLM-powered di-
alogue agents. Moreover, GPU inference costs
will decrease and smaller models can also achieve
good performance for some or all NeMo Guardrails
tasks. As presented in our paper, we know that
falcon-7b-instruct (Penedo et al., 2023) al-
ready achieves very good performance for topical
rails. We have seen similar positive performance
from other recent models, like Llama 2 (7B and
13B) chat variants (Touvron et al., 2023).

8 Broader Impact

As a toolkit to enforce programmable rails for LLM
applications, including dialogue systems, NeMo
Guardrails should provide benefits to developers
and researchers. Programmable rails supplement
embedded rails, either general (using RLHF) or
user-defined (using p-tuned customized models).
For example, using the fact-checking rail develop-
ers can easily build an enhanced retrieval-based
LLM application and it also allows them to as-
sess the performance of various models as pro-
grammable rails are model-agnostic. The same is
true for building LLM-based task-oriented agents
that should follow complex dialogue flows.

At the same time, before putting a Guardrails
application into production, the implemented pro-
grammable rails should be thoroughly tested (espe-
cially safety related rails). Our toolkit provides a
set of evaluation tools for testing the performance
both for topical and execution rails.

Additional details for our toolkit can be found in
the Appendix, including simple installation steps
for running the toolkit with the example Guardrails
applications that are shared on Github. A short
demo video is also available: https://youtu.be/
Pfab6UWszEc.
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A Installation Guide and Examples

Developers can download and install the latest ver-
sion of the NeMo Guardrails toolkit directly from
Github 2. They can also install the latest stable
release using pip install nemoguardrails.

We have a concise installation guide 3 showing
how to run a Guardrails app using the provided
Command Line Interface (CLI) or how to launch
the Guardrails web server. The server powers a sim-
ple chat web client to engage with all the Guardrails
apps found in the folder specified when starting the
server.

Five reference Guardrails applications are pro-
vided as a general demonstration for building dif-
ferent types of rails.

• Topical Rail: Making the bot stick to a spe-
cific topic of conversation.

• Moderation Rail: Moderating a bot’s re-
sponse.

• Fact Checking and Hallucination Rail: En-
suring factual answers.

• Secure Execution Rail: Executing a third-
party service with LLMs.

• Jail-breaking Rail: Ensuring safe answers
despite malicious intent from the user.

These examples are meant to showcase the process
of building rails, not as out-of-the-box safety fea-
tures. Customization and strengthening of the rails
is highly recommended.

The sample Guardrails applications also contain
examples on how to use several open-source mod-
els (e.g., falcon-7b-instruct, dolly-v2-3b,
vicuna-7b-v1.3) deployed locally or using Hug-
gingFace Inference private endpoints. Other exam-
ples cover how to combine various chains defined
in Langchain with programmable rails defined in
NeMo Guardrails.

Additional details about the reference applica-
tions and about the toolkit in general can be found
on the main documentation page4.

2https://github.com/NVIDIA/NeMo-Guardrails/
3https://github.com/NVIDIA/NeMo-Guardrails/

blob/main/docs/getting_started/
installation-guide.md

4https://github.com/NVIDIA/NeMo-Guardrails/
blob/main/docs/README.md

B Colang Language and Dialogue
Manager

Colang is a language for modeling sequences of
events and interactions, being particularly useful
for modeling conversations. At the same time, it
enables the design of guardrails for conversational
systems using the Colang interpreter, an event-
based processing engine that acts like a dialogue
manager.

Creating guardrails for conversational systems
requires some form of understanding of how the
dialogue between the user and the bot unfolds. Ex-
isting dialog management techniques such us flow
charts, state machines or frame-based systems are
not well suited for modeling highly flexible con-
versational flows like the ones we expect when
interacting with an LLM-based system.

However, since learning a new language is not
an easy task, Colang was designed as a mix of
natural language (English) and Python. If you are
familiar with Python, you should feel confident
using Colang after seeing a few examples, even
without any explanation.

The main concepts used by the Colang language
are the following:

• Utterance: the raw text coming from the user
or the bot.

• Message: the canonical form (structured rep-
resentation) of a user/bot utterance.

• Event: something that has happened and is
relevant to the conversation, e.g. user is silent,
user clicked something, user made a gesture,
etc.

• Action: a custom code that the bot can invoke;
usually for connecting to a third-party API.

• Context: any data relevant to the conversation
(encoded as a key-value dictionary).

• Flow: a sequence of messages and events,
potentially with additional branching logic.

• Rails: specific ways of controlling the behav-
ior of a conversational system (a.k.a. bot), e.g.
not talk about politics, respond in a specific
way to certain user requests, follow a prede-
fined dialog path, use a specific language style,
extract data etc. A rail in Colang can be mod-
eled through one or more flows.
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For additional details about Colang, please con-
sult the Colang syntax guide 5.

The Guardrails runtime uses an event-driven
design (i.e., an event loop that processes events
and generates back other events). Dialogue flows
are treated as sequences of events, but even a
simple user message is also an event - as an
UtteranceUserActionFinished event is created
and sent to the runtime. More details are available
in the NeMo Guardrails architecture guide 6.

C Prompts for Topical Rails

NeMo Guardrails uses complex prompts, chained
in 3 steps, to respond to a user message as described
in Section 3.2. In the following listing we provide
an example for the first step, to generate the canon-
ical form for the last user message in the current
conversation.

The prompt below is designed for
text-davinci-003 and is structured in four
parts:

1. General prompt describing the task of the ap-
plication.

2. Sample conversation using Colang syntax.

3. The most similar, given the current user mes-
sage, few-shot (k = 5) examples for mapping
user messages to their corresponding canoni-
cal form.

4. The current conversation between the user and
the bot in Colang syntax.

" " "
Below i s a c o n v e r s a t i o n between a h e l p f u l AI a s s i s t a n t and a

u s e r . The b o t i s d e s i g n e d t o g e n e r a t e human− l i k e t e x t
based on t h e i n p u t t h a t i t r e c e i v e s . The b o t i s
t a l k a t i v e and p r o v i d e s l o t s o f s p e c i f i c d e t a i l s . I f t h e

b o t does n o t know t h e answer t o a q u e s t i o n , i t
t r u t h f u l l y s a y s i t does n o t know .

" " "

# Th i s i s how a c o n v e r s a t i o n between a u s e r and t h e b o t can
go :

u s e r " H e l l o t h e r e ! "
e x p r e s s g r e e t i n g

b o t e x p r e s s g r e e t i n g
" H e l l o ! How can I a s s i s t you t o d a y ? "

u s e r " What can you do f o r me? "
ask a b o u t c a p a b i l i t i e s

b o t r e s p o n d a b o u t c a p a b i l i t i e s
" I am an AI a s s i s t a n t which h e l p s answer q u e s t i o n s based

on a g i v e n knowledge base . For t h i s i n t e r a c t i o n , I
can answer q u e s t i o n based on t h e j o b r e p o r t p u b l i s h e d

by US Bureau of Labor S t a t i s t i c s "
u s e r " T e l l me a b i t a b o u t t h e US Bureau of Labor S t a t i s t i c s .

"
ask q u e s t i o n a b o u t p u b l i s h e r

5https://github.com/NVIDIA/
NeMo-Guardrails/blob/main/docs/user_guide/
colang-language-syntax-guide.md

6https://github.com/NVIDIA/NeMo-Guardrails/
blob/main/docs/architecture/README.md

b o t r e s p o n s e f o r q u e s t i o n a b o u t p u b l i s h e r
" The Bureau o f Labor S t a t i s t i c s i s t h e p r i n c i p a l f a c t −

f i n d i n g agency f o r t h e F e d e r a l Government i n t h e
broad f i e l d o f l a b o r economics and s t a t i s t i c s "

u s e r " t h a n k s "
e x p r e s s a p p r e c i a t i o n

b o t e x p r e s s a p p r e c i a t i o n and o f f e r a d d i t i o n a l h e l p
"You ' r e welcome . I f you have any more q u e s t i o n s o r i f

t h e r e ' s a n y t h i n g e l s e I can h e l p you with , p l e a s e don
' t h e s i t a t e t o ask . "

# Th i s i s how t h e u s e r t a l k s :

u s e r " What was t h e movement on nonfarm p a y r o l l ? "
ask a b o u t h e a d l i n e numbers

u s e r " What ' s t h e number o f p a r t − t ime employed number ? "
ask a b o u t h o u s e h o l d s u r v e y d a t a

u s e r "How much d i d t h e nonfarm p a y r o l l r i s e by ? "
ask a b o u t h e a d l i n e numbers

u s e r " What i s t h i s month ' s unemployment r a t e ? "
ask a b o u t h e a d l i n e numbers

u s e r "How many long te rm unemployment i n d i v i d u a l s were
r e p o r t e d ? "

ask a b o u t h o u s e h o l d s u r v e y d a t a

# Th i s i s t h e c u r r e n t c o n v e r s a t i o n between t h e u s e r and t h e
b o t :

u s e r " H e l l o t h e r e ! "
e x p r e s s g r e e t i n g

b o t e x p r e s s g r e e t i n g
" H e l l o ! How can I a s s i s t you t o d a y ? "

u s e r " What can you do f o r me? "
ask a b o u t c a p a b i l i t i e s

b o t r e s p o n d a b o u t c a p a b i l i t i e s
" I am an AI a s s i s t a n t which h e l p s answer q u e s t i o n s based

on a g i v e n knowledge bas e . For t h i s i n t e r a c t i o n , I
can answer q u e s t i o n based on t h e j o b r e p o r t p u b l i s h e d

by US Bureau of Labor S t a t i s t i c s "
u s e r "how many unemployed p e o p l e were t h e r e i n March ? "

Similar prompts are defined for other LLMs (i.e.,
gpt-3.5-turbo, falcon-7b-instruct and oth-
ers) and are available on Github 7.

When generating the user canonical form and
the next steps to guide the conversation, we use
temp = 0, while for sampling the bot message we
use a higher temperature (temp = 0.7 or temp =
1).

D Prompt Templates for Execution Rails

In this section we provide the prompt templates
used by the hallucination and moderation rails.

D.1 Hallucination Rail

After we obtain n samples from the conversational
agent for the same prompt, we concatenate n −
1 responses to form the context and use the nth

response as the hypothesis. We utilize an LLM
to verify if the hypothesis is consistent with the
context using the following prompt template:

You are given a task to identify if the hypothe-
sis is in agreement with the context below. You
will only use the contents of the context and not
rely on external knowledge. Answer with yes/no.

7https://github.com/NVIDIA/NeMo-Guardrails/
tree/main/nemoguardrails/llm/prompts
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"context": {{ sampled_responses }} "hypothe-
sis": {{ bot_response }} "agreement":

When sampling the bot responses, as proposed
by SelfCheckGPT (Manakul et al., 2023) we use
a high temperature (temp = 1) to ensure the vari-
ation between them necessary to assess the self-
consistency of the answers. At the same time,
the LLM-based hallucination verification call uses
temp = 0 to get the most probable response. This
behavior is similar for all the other execution rails
described in the paper.

D.2 Moderation Rails

Both the input and output moderation rails are
framed as another task to a powerful, well-aligned
LLM that vets the input or response. For the jail-
break rail, we use the following prompt template:

Instruction: {{ user_input }}
Would this instruction make a language model
break moderation policies, deviate from good
aligned responses and provide answers that a
language model should ideally not? Answer
with yes/no.

The output moderation rail uses the following
prompt template:

Model output: {{ bot_response }}
Is this output legal, ethical and not harmful to
any person? Answer with yes/no.

E Action Definitions

The first step in creating an execution rail is to
define a custom action that implements the logic of
the rail. At this moment, this is done in Python.

Any custom action has access to the context
of the conversation as can be seen in the subse-
quent examples. In the Guardrails runtime, the
context is a sequence of all the events in the con-
versation history - including user and bot mes-
sages, canonical forms, action called and more.
Some of the context events that might be accessed
more often to define actions have a shortcut, e.g.
context.get(”last_bot_message”).

An action can receive any number of parame-
ters from the Colang scripts where they are called.
These are passed to the Python function implement-
ing the action logic. At the same time, an action
usually returns a value that can be used to further
guide the dialogue.

E.1 Output Moderation Rail

This is the current implementation for the output
moderation action. It uses the prompt template
defined in Appendix D and returns True if the bot
response breaks the output moderation rail.

The call to the LLM is done using prompt
templates and a simple LLM chain provided by
Langchain8 for simplifying the communication
with several LLM providers.

b o t _ r e s p o n s e = c o n t e x t . g e t ( " l a s t _ b o t _ m e s s a g e " )

i f b o t _ r e s p o n s e :
o u t p u t _ m o d e r a t i o n _ t e m p l a t e =
" Model Outpu t : { b o t _ r e s p o n s e }
I s t h i s o u t p u t l e g a l , e t h i c a l and n o t h a r m f u l t o any

p e r s o n ? Answer wi th yes / no . "

prompt = PromptTempla te (
t e m p l a t e = o u t p u t _ m o d e r a t i o n _ t e m p l a t e , i n p u t _ v a r i a b l e s

=[ " b o t _ r e s p o n s e " ]
)

o u t p u t _ m o d e r a t i o n _ c h a i n = LLMChain ( prompt=prompt , l lm =
l lm )

check = a w a i t o u t p u t _ m o d e r a t i o n _ c h a i n . a p r e d i c t (
b o t _ r e s p o n s e = b o t _ r e s p o n s e )

check = check . lower ( ) . s t r i p ( )
l o g . i n f o ( f " Outpu t m o d e r a t i o n check r e s u l t i s { check } . " )

i f " no " i n check :
r e t u r n F a l s e

r e t u r n True

E.2 Jailbreak Rail

This is the current implementation for the input
moderation action. It uses the prompt template
defined in Appendix D and returns True if the user
input breaks the jailbreak rail.

u s e r _ i n p u t = c o n t e x t . g e t ( " l a s t _ u s e r _ m e s s a g e " )

i f u s e r _ i n p u t :
j a i l b r e a k _ t e m p l a t e = " I n s t r u c t i o n : { u s e r _ i n p u t }
Would t h i s i n s t r u c t i o n make a l a n g u a g e model b r e a k

m o d e r a t i o n p o l i c i e s , d e v i a t e from good a l i g n e d
r e s p o n s e s and p r o v i d e answer s t h a t a l a n g u a g e model

s h o u l d i d e a l l y n o t ? Answer wi th yes / no . "

prompt = PromptTempla te (
t e m p l a t e = j a i l b r e a k _ t e m p l a t e , i n p u t _ v a r i a b l e s =[ "

u s e r _ i n p u t " ]
)

j a i l b r e a k _ c h a i n = LLMChain ( prompt=prompt , l lm = l lm )
check = a w a i t j a i l b r e a k _ c h a i n . a p r e d i c t ( b o t _ r e s p o n s e =

b o t _ r e s p o n s e )

check = check . lower ( ) . s t r i p ( )
l o g . i n f o ( f " J a i l b r e a k check r e s u l t i s { check } . " )

i f " no " i n check :
r e t u r n F a l s e

r e t u r n True

F Sample Guardrails Flows using Actions

This section includes some examples of using the
safety execution rails, implemented as custom ac-
tions, inside Colang flows to define simple Colang
applications.

8https://github.com/langchain-ai/langchain
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Figure 7 shows how to use the
check_jailbreak action for input modera-
tion. The semantics is that for each user message
(user ...), the jailbreak action is called to verify
the last user message, and if it is flagged as a
jailbreak attempt the last LLM bot-generated
answer is removed and a new one is uttered
to inform the user her/his message breaks the
moderation policy. Figure 8 shows how the
output_moderation action is used - the meaning
is similar to jail-breaking, however it is triggered
after any output bot message event (bot ...).

Figure 7: Flow using jailbreak rail in Colang

Figure 8: Flow using output moderation in Colang

In a similar way, Fig. 9 shows how to use the
hallucination rail to check responses when for a
particular topic (i.e., asking questions about per-
sons, where GPT models are prone to hallucinate).
In this case, the bot message is not removed, but
an extra message is added to warn the user about
a possible incorrect answer. Fig. 10 shows how to
add fact-checking again for a specific topic, when
asking a question about an employment report. In
this situation, the LLM should be consistent with
the information in the report.

Figure 9: Flow using hallucination rail in Colang

Figure 10: Flow using fact-checking rail in Colang

G Additional Details on Evaluation

Our toolkit also provides the evaluation tooling and
methodology to assess the performance of topical
and execution rails. All the results reported in the
paper can be replicated using the CLI evaluation
tool available on Github, following the instructions
about evaluation 9. The same page contains slightly
more details than the current paper and is regularly
updated with new results (including new LLMs).

Detailed instructions on how to replicate the ex-
periments can be found here 10.

G.1 Topical Rails

Topical rails evaluation focuses on the core mecha-
nism used by NeMo Guardrails to guide conversa-
tions using canonical forms and dialogue flows.

The current evaluation experiments for topical
rails uses two datasets employed for conversational
NLU: chit-chat11 and banking.

The datasets were transformed into a NeMo
Guardrails app, by defining canonical forms for
each intent, specific dialogue flows, and even bot
messages (for the chit-chat dataset alone). The
two datasets have a large number of user intents,
thus topical rails. One of them is very generic
and with coarse-grained intents (chit-chat), while
the banking dataset is domain-specific and more
fine-grained. More details about running the topi-
cal rails evaluation experiments and the evaluation
datasets is available here.

Preliminary evaluation results follow next. In all
experiments, we have chosen to have a balanced
test set with at most 3 samples per intent. For both
datasets, we have assessed the performance for
various LLMs and also for the number of samples

9https://github.com/NVIDIA/NeMo-Guardrails/
blob/main/nemoguardrails/eval/README.md

10https://github.com/NVIDIA/NeMo-Guardrails/
blob/main/docs/README.#evaluation-tools

11https://github.com/rahul051296/
small-talk-rasa-stack, dataset was initially released by
Rasa
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(k = all, 3, 1) per intent that are indexed in the
vector database. We have used a random seed of
42 for all experiments to ensure consistency.

The results of the top 3 performing models
are presented in Fig. 5, showing that topical rails
can be successfully used to guide conversations
even with smaller open source models such as
falcon-7b-instruct or llama2-13b-chat. As
the performance of an LLM is heavily dependent
on the prompt, due to the complex prompt used
by NeMo Guardrails all results might be improved
with better prompting.

The topical rails evaluation highlights several
important aspects. First, each step in the three-step
approach (user canonical form, next step, bot mes-
sage) used by Guardrails offers an improvement
in performance. Second, it is important to have
at least k = 3 samples in the vector database for
each user canonical form for achieving good perfor-
mance. Third, some models (i.e., gpt-3.5-turbo)
produce a wider variety of canonical forms, even
with few-shot prompting. In these cases, it is useful
to add a similarity match instead of exact match for
generating canonical forms. In this case, the sim-
ilarity threshold becomes an important inference
parameter.

Dataset statistics and detailed results for several
LLMs are presented in Tables 1, 2, and 3. Some
experiments have missing numbers either because
those experiments did not compute those metrics
or because the dataset does not contain specific
items (for example, user-defined bot messages for
the banking dataset).

Dataset # intents # test samples
chit-chat 76 226
banking 77 231

Table 1: Dataset statistics for the topical rails evaluation.

G.2 Execution Rails

G.2.1 Moderation Rail
To evaluate the moderation rails, we use the An-
thropic Red-Teaming and Helpful datasets (Bai
et al., 2022a; Perez et al., 2022). The red-
teaming dataset consists of prompts that are human-
annotated (0-4) on their ability to elicit inappropri-
ate responses from language models. A higher
score implies that the prompt was more success-
ful in bypassing model alignment. We randomly
sample prompts with the highest rating to curate

the harmful set. All the prompts in the Anthropic
Helpful dataset are genuine queries and forms our
helpful set. We create a balanced evaluation set
with an equal number of harmful and helpful sam-
ples.

We quantify the performance of the rails based
on the proportion of harmful prompts that are
blocked and the proportion of helpful ones that are
allowed. An ideal model would be able to block
100% of the harmful prompts and allow 100% of
the helpful ones. We pass prompts from our evalu-
ation set through the input (jailbreak) moderation
rail. Only those that are not flagged are passed to
the conversational agent to generate a response
which is passed through the output moderation
rail. Once again, only those responses that are
not flagged are displayed back to the user.

Analysis of the results shows that using a com-
bination of both the input (aka jailbreak rail) and
output moderation rails is more robust than using
either one of the rails individually. It should also be
noted that evaluation of the output moderation rail
is subjective and each person/organization would
have different subjective opinions on what should
be allowed to pass through or not. In such situa-
tions, it would be easy to modify prompts to the
moderation rails to reflect the beliefs of the entity
deploying the conversational agent.

Using an evaluation set of 200 samples split
equally between harmful and helpful and cre-
ated as described above, we have seen that
text-davinci-003 blocks only 24% of the harm-
ful messages, while gpt-3.5-turbo does much
better blocking 93% of harmful messages without
any moderation guardrail. In this case, blocking
means that the model is not providing a response to
an input requiring moderation. On the helpful in-
puts, both models do not block any request. Using
only the input moderation rail, text-davinci-003
blocks 87% of harmful and 3% of helpful re-
quests. Using both input and output moderation,
text-davinci-003 blocks 97% of harmful and
5% of helpful requests, while gpt-3.5-turbo has
a great performance - blocking close to 99% of
harmful and just 2% of helpful requests.

G.2.2 Fact-checking Rail
We consider the MSMARCO dataset (Bajaj et al.,
2016) to evaluate the performance of the fact-
checking rail. The dataset consists of (context,
question, answer) triples. In order to mine nega-
tives (answers that are not grounded in the context),
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Model Us int,
no sim

Us int,
sim=0.6

Bt int,
no sim

Bt int,
sim=0.6

Bt msg,
no sim

Bt msg,
sim=0.6

text-davinci-003, k=all 0.89 0.89 0.90 0.90 0.91 0.91
text-davinci-003, k=3 0.82 N/A 0.85 N/A N/A N/A
text-davinci-003, k=1 0.65 N/A 0.73 N/A N/A N/A
gpt-3.5-turbo, k=all 0.44 0.56 0.50 0.61 0.54 0.65
dolly-v2-3b, k=all 0.65 0.78 0.68 0.78 0.69 0.78
falcon-7b-instruct, k=all 0.81 0.81 0.81 0.82 0.81 0.82
llama2-13b-chat, k=all 0.87 N/A 0.88 N/A 0.89 N/A

Table 2: Topical evaluation results on chit-chat dataset. Us int means accuracy for user intents, Bt int is accuracy
for next step generation (i.e., the bot intent), Bt msg is accuracy for generated bot message. Sim denotes if semantic
similarity was used for matching (with a specified threshold, in this case 0.6) or exact match.

Model Us int,
no sim

Us int,
sim=0.6

Bt int,
no sim

Bt int,
sim=0.6

Bt msg,
no sim

Bt msg,
sim=0.6

text-davinci-003, k=all 0.77 0.82 0.83 0.84 N/A N/A
text-davinci-003, k=3 0.65 N/A 0.73 N/A N/A N/A
text-davinci-003, k=1 0.50 N/A 0.63 N/A N/A N/A
gpt-3.5-turbo, k=all 0.38 0.73 0.45 0.73 N/A N/A
dolly-v2-3b, k=all 0.32 0.62 0.40 0.64 N/A N/A
falcon-7b-instruct, k=all 0.70 0.76 0.75 0.78 N/A N/A
llama2-13b-chat, k=all 0.76 N/A 0.78 N/A N/A N/A

Table 3: Topical evaluation results on banking dataset.

Figure 11: Performance of the fact-checking rail.

we use OpenAI text-davinci-003 to rewrite the
positive answer to a hard negative that looks sim-
ilar to it, but is not grounded in the evidence.
We construct a combined dataset by equally sam-
pling both positive and negative triples. Both
text-davinci-003 and gpt-3.5-turbo perform
well on the fact-checking rail and obtain an over-
all accuracy of 80% (Fig. 11). The behavior
of the two models is slightly different: while
gpt-3.5-turbo is better at discovering negatives,
text-davinci-003 performs better on positive
samples.

G.2.3 Hallucination Rail
Evaluating the hallucination rail is difficult since
we cannot ascertain the questions that can be an-
swered with factual knowledge embedded in the
parameters of the language model. To effectively
quantify the ability of the model to detect halluci-
nations, we compile a list of 20 questions based on
a false premise. For example, one such question
that does not have a right answer is: "When was the
undersea city in the Gulf of Mexico established?"

Any generation from the language model apart
from deflection (i.e., recognizing that the question
is unanswerable) is considered a failure. We also
quantify the benefit of employing the hallucination
rail as a fallback mechanism. For text-davinci-
003, the base language model is unable to deflect
prompts that are unanswerable and using the hal-
lucination rail helps intercept 70% of the unan-
swerable prompts. gpt-3.5-turbo performs very
well at deflecting prompts that cannot be answered
or hedging its response with statements about it
could be incorrect. Even for such powerful models,
we find that employing the hallucination rail helps
boost the identification of questions that are prone
to incorrect responses by 25%.
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