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Abstract

Schema induction involves creating a graph
representation depicting how events unfold in
a scenario. We present SAGEViz, an intuitive
and modular tool that utilizes human-AI collab-
oration to create and update complex schema
graphs efficiently, where multiple annotators
(humans and models) can work simultaneously
on a schema graph from any domain. The tool
consists of two components: (1) a curation
component powered by plug-and-play event
language models to create and expand event
sequences while human annotators validate and
enrich the sequences to build complex hierar-
chical schemas, and (2) an easy-to-use visu-
alization component to visualize schemas at
varying levels of hierarchy. Using supervised
and few-shot approaches, our event language
models can continually predict relevant events
starting from a seed event. We conduct a user
study and show that users need less effort in
terms of interaction steps with SAGEViz to
generate schemas of better quality. We also
include a video demonstrating the system1.

1 Introduction

Event schemas are central to understanding and
reasoning about events. They provide a way to or-
ganize and represent how complex events unfold
(Schank and Abelson, 1975; Mooney and DeJong,
1985). Schema-based reasoning enables reliable
and explainable prediction of next events, inference
of missing events or entities (Chambers and Juraf-
sky, 2008, 2009; Manshadi et al., 2008; Chambers,
2013; Balasubramanian et al., 2013; Pichotta and
Mooney, 2016; Weber et al., 2018; Koupaee et al.,
2021; Rezaee et al., 2021), and drawing connec-
tions between events that have already occurred
(Kwon et al., 2020). For example, when a disease

*Equal contribution
1https://github.com/sugamxp/SAGEViz

outbreak happens, it is likely that an investigation
into the outbreak and mitigation steps will follow.
One main challenge in schema-based reasoning is
in acquiring the schematic knowledge at scale.

One approach to automate schema curation is
to learn from manually created reference schemas.
Manual creation of complex hierarchical schemas
require expert annotation, which is time-consuming
and not scalable. Further, supervised systems (Ji
and Grishman, 2008; Lin et al., 2021) are domain-
specific, of poor quality and unable to handle un-
seen world events2.

We propose SAGEViz, a human-in-the-loop
schema curation and visualization pipeline, a
combined approach to producing human-verified
schemas using automated acquisition strategies.
We leverage Large Language Models (LLMs) for
acquiring various types of events and entity knowl-
edge automatically. We use human inputs to en-
sure the contextual validity of model produced
outputs at various stages in the curation pipeline.
SAGEViz’s visualization allows a human cura-
tor to easily navigate through the complex event
schemas at various levels of granularity starting
with the higher level big picture and drilling down
to the lower levels or vice versa.
SAGEViz allows users to build and curate

a schema from scratch or edit existing ones.
SAGEViz begins from a set of domain-expert-
identified seed events. For each seed event, an
event language model produces a suggested set of
next events in a systematic fashion. For each partic-
ipant in the seed event, we generate next events by
asking the model to predict the next events in which
the participant plays agent-based or patient-based
roles (Event Expansion).

Human curator selects a subset of valid events
2models built till 2019 could not reason about COVID-19

since it had not occurred yet
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Figure 1: SAGEViz architecture capturing several curation stages and visualization. 1. Expert defines a high-level
event structure for the domain 2. Based on some seed event, event language model recursively generates and
expands events for the seed. 3. The candidate generated events are filtered by the expert 4. Filtered events are
enhanced by adding additional event-specific information 5. Different categories of links are defined between the
events 6. The schema at any point can be visualized as a multi-level graph.

from the model generated lists (Event Filtering)
and enhances it with explanations, event-entity de-
tails such as roles, coreference and wikidata links
(Event Enhancement) before linking event pairs
based on logical, temporal and hierarchical event
relationships (Relation Linking). Human curation
in the enhancement stage ensures proper identifi-
cation of entities with the goal of linking an event
to multiple valid related documents. In the link-
ing stage, we identify and validate the relationship
between an event pair with the goal of building
schemas with a hierarchical structure to support
both specific and generic events. SAGEViz’s vi-
sualizer displays the schema as a graph at different
levels of granularity, showing various event relation
types with different widgets and color schemes.

SAGEViz has multiple advantages. First, multi-
ple human annotators can provide input and curate
a single complex schema in parallel. Second, it
allows for iterative updating, to add, edit and delete
non-conforming events at any stage. Third, with
SAGEViz allows for modeling complex schemas
through quick and intuitive means for generating
and expanding sub-events and visualizing relations
between them. Last, the back end and front end
architecture of the tool allows curators to ensure
global coherence of the generated schemas, across
iterative updates and multiple simultaneous anno-
tators, leading to more reliable schemas especially

suited for safety-critical downstream applications.
In summary, our contributions are as follows:

• We present a unified web-based tool to visual-
ize and analyze complex event sequences.

• We leverage various LLMs to create and ex-
pand new and existing schemas.

• Our tool enables both human-human and
human-AI collaboration for the task of
schema generation.

2 System Description

In this section we provide a high-level overview
and a detailed description of our human-in-the-loop
schema curation framework.

2.1 Overview

A high-level overview of our system is illustrated
in Figure 1. The system has two main components:
(i) Schema curator - a system for curating the
schema through LLM and expert collaboration. (ii)
Schema visualizer - a system for visualizing the
curated schema at any point during curation.

The schema curation process for a complex
event starts with a domain expert creating a high-
level structure of events to indicate event pro-
gression from start to end. For example, for
the complex event pandemic outbreak, the ex-
pert creates a high level structure capturing its
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Figure 2: Main interface of SAGEViz. At this stage
you can either select an existing domain from the drop-
down menu to expand or edit. There are also four ac-
tions (along with their descriptions) that can be taken as
shown in the figure.

progressive event stages as pathogen_origin
Ñ illness_progression Ñ investigation
Ñ mitigation Ñ treatment Ñ research Ñ
legal-actions Ñ health-agency-response.
Each of the sub-events is recursively expanded until
a desired level of granularity is achieved. While the
initial list of sub-events is generated by a domain
expert, the candidate subevents for these recursive
expansions, are generated using an event language
model that is trained for the next event prediction
task. The relevant subevents from the candidate
subevents are then selected by trained annotators.
The selected events are mapped to their canonical
form by linking them to corresponding Wikidata
qnode entries. For each event, our system also has
the provision to record text excerpts from a news
article or other online documents, that act as evi-
dence or justification for including the event in the
overall schema.

There are multiple types of relationships be-
tween events where each relation type uniquely
identifies how a pair of complex or sub-events and
entities are related. Every event-entity, event-event
and entity-entity pairs is related through one of
hierarchical (parent, child), temporal (before, af-
ter) and logical (OR, AND, XOR) relationships
by trained annotators after resolving event corefer-
ences automatically. Our system supports multiple
annotators annotating these structures in parallel.
The schema visualizer enables the user to view the
schema at different hierarchical levels with varying
levels of granularity. The various relation types
are displayed using different widgets and coloring
schemes to easily grasp how the event sequences
are related. The annotation process is incremental
and iterative where annotators and models can re-
vise an old annotation based on the current state of
the overall annotation. The visualizer ensures the
annotator can view the current state at all times to

ensure a coherent schema is generated.

2.2 Detailed System Description
The following sections will talk about the compo-
nents of SAGEViz in more detail.

Event Generator The first and one of the most
important components of the curator tool, is the
event generator. These event generators can be
finetuned event language models that are trained
on the event sequences or can be any other large
language model that can generate events (zero-shot
or few-shot). The current version of the tool has
two event generation models described below, how-
ever SAGEViz is designed such that incorporating
new models is very easy as long as it uses a similar
input/output structure.
Question-guided event language model: The first
model used in the tool, is a finetuned event lan-
guage model that takes a set of events and a ques-
tion about an entity of interest as the context and
generates the next event (Koupaee et al., 2023).
The users can have control over the entities and can
ask the system to generate the events with respect
to the desired entities.
GPT-3.5 one-shot event generator: Given the effi-
cacy of the large language models such as GPT
models (Brown et al., 2020) for generation in
zero/few shot settings, we incorporated GPT-3.5 as
the second model in the tool.

Entity Coreference Resolution Since the ques-
tions or prompts to the event generator are entity-
based, it is important to track entities across dif-
ferent events. Event generators might generate dif-
ferent mentions of the entities for different events
(for example “they” and “attackers” referring to the
same entity), however, we assign the same identi-
fier to the various mentions across all events (this
allows us to easily track all the events in which the
entity “attackers” is involved in).

We incorporate the current state-of-the-art coref-
erence resolution model SpanBERT (Joshi et al.,
2019) which identifies clusters of coreferent en-
tity mentions. We assign a unique identifier to all
the entities in a cluster and use the identifier when
referring to entities in the event sequence leading
to more generalized schemas. Since the corefer-
ence model does not identify entities with a single
mention, we identify noun phrases in the event se-
quence using the spaCy (Honnibal and Montani,
2017) library and assign unique identifiers to the
entities that do not belong to a coreference cluster.
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Figure 3: Curator section of SAGEViz user interface. This part of the UI is used to generate event sequences using
different models that can be selected from the drop-down menu. Events generation, entity coreference resolution,
etc. are all done on the curator section.

Event Role Labeler An event generated by our
event language model consists of a subject-verb-
object (SVO) format. Identifying the semantic roles
of the entities enriches schematic knowledge re-
garding it participants. This version of SAGEViz
uses manual assignment of semantic roles to enti-
ties (as existing systems do not perform well on
events tuple representations) but the system design
supports replacing it with an automatic system.

Q-node Linker Using the SVO formatted events,
we use the entity linking model and python library
BLINK (Wu et al., 2020) to identify Q-nodes for
the verb (to represent the event), and Q-nodes for
entities in both the subject and object. Since an
entity or event could be associated with multiple
Q-nodes, users can search for a Q-node from a
provided list.

Schema Visualizer Once the schema is saved, all
the information about the events, their relationships
and the participating entities are converted to JSON
format. This file is parsed into a directed graph
structure, which is then ingested, visualized and
presented in the visualizer, as shown in Figure 1.

2.3 User Interface
Multiple users can interact with SAGEViz (and
its different components) simultaneously and cu-
rate or visualize schemas through an easy-to-use
interface. Figure 2 shows the main interface of
the system with its core components (curator and
visualizer).

Curator Choosing the curator button will take
users to another page (shown in Figure 3) where
they can start with the event generator component.
They can specify a seed event and an entity of
interest (shown in the top section of Figure 3) and
then the system provides users with a list of events
specific to that entity (Generate Events box in the
middle section of Figure 3). Now, the user has the
option of selecting as many relevant events as they
desire, edit the generated events, or add an event
which they think might fit in the sequence to guide
the next generation steps of the model. The events
will be added to the Event Sequence box (left side
of Figure 3) as the user selects them.

Once the user is done generating events for a
seed, they can use the Entity identifier tab of
the Event Sequence box to ask the system to iden-
tify the coreferring entities and assign unique ids
to them (as described earlier).

Finally, the EventDetails box (Figure 3) is
where the users can search the Qnodes of the events
as well as assign importance scores to the events.
Once the user is satisfied with the generated se-
quence and after filling in all the necessary details,
they can use the Save Schema tab to save it.

Visualizer The Visualizer component of the
UI can represent the generated schemas in a multi-
level graph representation. Once you click on
Visualizer button, you will see the high-level
graph structure of the (disease outbreak) schema
containing the high-level stages as shown in Fig-
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Figure 4: A high level view of the Disease Outbreak schema showing the first-level stages or sub-schemas. These
sub-schemas can further be expanded into other sub-schemas or primitive events.

Figure 5: An expanded view of the illness_progression
sub-schema. This is a sub-schema within the disease
outbreak schema shown in Figure 4.

ure 4 and the temporal relations between these
stages. You can further click on each node and
then you can see the fine-grained representation of
each stage consisting of all the events, entities, and
the relations between entities and events (shown in
Figure 5). You can keep getting deeper into the rep-
resentation for all non-primitive events (primitive
events are the atomic events that are not expanded).

2.4 Implementation Details

We now describe the technical details of the web
application and how it is built in detail.

Frontend The frontend application uses React, a
JavaScript library for creating user interfaces with
modular components. To maintain visual consis-
tency, React-Bootstrap is employed, providing a set
of commonly used components. We utilize Web-
pack to generate static assets for the application and
Express.js to serve the application. A significant
challenge we encountered was optimizing the bun-
dle size to enhance the application’s performance
and overall user experience. To address this, we fo-
cused on developing reusable components, which
allowed us to reduce redundancy and improve ef-
ficiency. Additionally, we leveraged the browser’s
built-in caching capabilities to cache static assets,
resulting in faster subsequent visits and reduced
server load. Finally, we deployed the application
on Amazon EC2 (EC2, 2023) which offers a robust,
scalable, and cost-effective infrastructure.

Backend The backend APIs are developed us-
ing Flask (Grinberg, 2018), a lightweight Python
web framework, which makes it an ideal choice

for hosting our Question-guided event language
model. We load the language model (Koupaee
et al., 2023) and SpanBERT model (for corefer-
ence resolution) during application startup. For
the GPT-3.5 few-shot event generator we use the
OpenAI python library which gives us access to
the gpt-3.5-turbo model. To optimize the usage
of the gpt-3.5-turbo model and enhance overall
performance, we implement a response caching
mechanism. This caching system stores the re-
sponses obtained from the OpenAI API (OpenAI,
2023), preventing the need for repeated calls for
the same or similar queries. By doing so, we re-
duce the number of API requests and consequently,
minimize costs and latency. The caching strategy
efficiently handles recurrent queries and ensures
that if an identical request is made in the future, the
corresponding response can be retrieved from the
cache, avoiding unnecessary re-computation.

3 User Study

We aimed to study the effectiveness and efficiency
of SAGEViz at generating schemas using the pro-
cess outlined in Koupaee et al. (2023) and com-
pared it with the schema generation interactive sys-
tem (CLI) used in this study. For a fair comparison,
we selected only the event generator component of
SAGEViz. We followed the same guidelines and
used the same test data consisting of 35 seeds from
8 domains. Four different users interacted with the
system spending 4 minutes on each seed, as was
done in the previous study, selecting and adding
events to the schema that are sensible, relevant,
unique and typical for the schema context.

For each 4-minute interaction, a user started with
a seed event as the schema context and a partici-
pating entity to use in the question to the event
generator, and generated events using the Ques-
tion Guided Event Language Model (QGELM)
(Koupaee et al., 2023). From the generated events,
the user selected and added each event that satis-
fied all 4 of the selection criteria (each is a binary
judgment). If any of the events was selected and
added, the generation step is counted as an accepted

332



Metric CLI SAGEViz
# events Ĳ 8.8 12.1
% accepted steps Ĳ 73.3 80.0
% rejected steps İ 26.7 20.0
total steps 12.0 7.48

Table 1: Quantitative analysis of schema generation
using the our tool and the baseline. The higher the
average the better a system is for metrics with Ĳ whereas
lower values are desired for metrics with İ.

step and if none of the events fit the criterion, no
events are added, and the step is counted as a re-
jected step before the user generates for the next
step. Generation is stopped when the 4 minutes
elapse or if no events that fit the selection criteria
can be found in the generations. The participating
entity (in the question to the event generator) can
be changed in any step to encourage the generation
of diverse events that fit the selection criteria. As
shown in Table 1, SAGEViz allows a user to gen-
erate schemas more effectively and efficiently when
compared to CLI (Koupaee et al., 2023). On aver-
age, SAGEViz, allows a user to select more events
(# events) with fewer interactions (total steps). The
capability to edit generated events in SAGEViz
leads to fewer regenerations (% rejected steps) with
more generation steps (% accepted steps) accepted
by users.

4 Related Work

4.1 Schema Induction

Chambers and Jurafsky (2008, 2009) automati-
cally learned a schema from newswire text based
on coreference and statistical probability models.
Peng and Roth (2016); Peng et al. (2019) gener-
ated an event schema based on their proposed se-
mantic language model., representing the whole
schema as a linear sequence of abstract VerbNet
(Schuler, 2005) verb senses. In these works, the
schema was created for a single actor (protago-
nist). It caused limited coverage in a more complex
scenario. Further, the generated schema, a simple
linear sequence, failed to consider different alterna-
tives such as XOR. More recently, Li et al. (2020,
2021) used transformers to handle schema genera-
tion in a complex scenario. It treated a schema as a
graph instead of a linear sequence. However, this
approach was unable to transfer to new domains
where the supervised event retrieval and extrac-
tion model failed. Dror et al. (2022) took GPT-3
generated documents to build a schema which by-

passed the event retrieval and extraction process
and solved the domain transfer problem, but, it suf-
fered from the incompleteness and instability of
GPT-3 outputs. Currently, there is neither a perfect
solution for schema induction without manual post-
processing, nor a human correction system (Du
et al., 2022). Our demonstration system develops a
curation interface that can generate a comprehen-
sive schema with a human curator in the loop.

4.2 Human-in-the-loop Schema Curation
Interface

Another related area is the human-in-the-loop
schema generation, where annotators collaborate
with computational models to create a high-quality
event schema. Machine-Assisted Script Curation
(Ciosici et al., 2021) was created for script induc-
tion. With a fully interactive interface, they have
shown the feasibility of realtime interaction be-
tween humans and pre-trained LLMs (e.g. GPT-2
or GPT-3). The main differences are the level of au-
tomation to other generative models. Our interface
makes use of pre-trained LLMs to automatically
generate schema content, compared to their inter-
face which largely counts on human input. Another
interface built for schema curation focuses on vi-
sualization of the schema structure, such as the
temporal relations between event nodes and inter-
nal relations among entities (Mishra et al., 2021).
While this interface provides a user-friendly expe-
rience when it comes to schema graph curation, it
requires the user to come up with the content of
event schemas in json format, which requires much
more human effort compared to our interface. In
addition, our interface also provides an optional
grounding function after the event graph curation
step, which is not presented in this interface.

5 Conclusion

Prior work on schema induction either relied on
existing information extraction pipelines to con-
vert unstructured documents into event graphs, or
required massive human effort to annotate event
schemas. The former lacks the guarantee of being
high-quality, while the latter is hard to scale due
to its demands of time, effort and cost. We alle-
viated these problems with a web application that
leverages the power of LLMs and the reliability pro-
vided by human intervention to create, expand, and
visualize event schemas. Our tool enables users to
collaboratively and seamlessly generate and update
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event sequences. We believe that our human-in-
the-loop tool reduces expert effort for creating new
schemas and analyzing complex event sequences.
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