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Abstract

We present CorPipe, the winning entry to
the CRAC 2023 Shared Task on Multilingual
Coreference Resolution. Our system is an
improved version of our earlier multilingual
coreference pipeline, and it surpasses other
participants by a large margin of 4.5 percent
points. CorPipe first performs mention detec-
tion, followed by coreference linking via an
antecedent-maximization approach on the re-
trieved spans. Both tasks are trained jointly on
all available corpora using a shared pretrained
language model. Our main improvements com-
prise inputs larger than 512 subwords and
changing the mention decoding to support en-
sembling. The source code is available at
https://github.com/ufal/crac2023-corpipe.

1 Introduction

The goal of coreference resolution is to identify
and cluster multiple occurrences of entities in the
input text. The CRAC 2023 Shared Task on Multi-
lingual Coreference Resolution (Zabokrtsky et al.,
2023) aims to stimulate research in this area by
featuring coreference resolution on 17 corpora in
12 languages from the CorefUD 1.1 dataset (Novak
et al., 2022). The current shared task is a reiter-
ation of the previous year’s CRAC 2022 Shared
Task (Zabokrtsky et al., 2022).

CorPipe, our entry to the CRAC 2023 Shared
Task, is an improved version of our earlier multi-
lingual coreference pipeline (Straka and Strakov4,
2022), which was the winner of the last year’s
shared task. Our system first performs mention de-
tection, followed by the coreference linking via an
antecedent-maximization approach on the retrieved
spans. However, CorPipe is not a pure pipeline,
because we train both tasks jointly using a shared
pretrained language model. Performing mention
detection first avoids the challenge of end-to-end
systems that need to consider an overwhelming
number of possible spans, and also permits recog-
nition of single-mention entities. Finally, all our
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models are multilingual and are trained on all avail-
able corpora.

Our contributions are as follows:

e We present a winning entry to the CRAC 2023
Shared Task with state-of-the-art results, sur-
passing other shared task participants by a
large margin of 4.5 percent points.

e We improve our last year’s system by (a) in-
creasing the size of the inputs during predic-
tion, while keeping it smaller during training,
(b) using larger pretrained language models,
(c) proposing a different mention decoding
approach, that allows (d) implementing en-
sembling to further improve the performance.

e We perform a thorough examination of the

newly introduced components.
The source code of our system is available at
https://github.com/ufal/crac2023-corpipe.

2 Related Work

While coreference resolution was traditionally car-
ried out by first performing mention detection fol-
lowed by coreference linking (clustering), recent
approaches are often end-to-end (Lee et al., 2017,
2018). Likewise, the baseline of CRAC 2022 and
2023 Shared Tasks (Prazak et al., 2021) as well as
the CRAC 2022 second-best solution (Prazak and
Konopik, 2022) follow this approach.

The recent work of Bohnet et al. (2023)
pushes the end-to-end approach even further,
solving both mention detection and corefer-
ence linking jointly via a text-to-text paradigm,
reaching state-of-the-art results on the CoNLL
2012 dataset (Pradhan et al., 2012). Given
that our system uses the same pretrained en-
coder but a custom decoder designed specifi-
cally for coreference resolution instead of a gen-
eral but pretrained decoder, it would be interest-
ing to perform a direct comparison of these sys-
tems.
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Figure 1: The proposed CorPipe model architecture.

3 CorPipe Architecture

The CorPipe architecture is based heavily on our
earlier system (Straka and Strakovd, 2022), which
won the CRAC 2022 Shared Task (Zabokrtsky
et al., 2022). We describe just the changes we pro-
pose; please refer to (Straka and Strakova, 2022)
for the description of our original system.

In short, our system first obtains a contextual-
ized representation of the input by employing a
pretrained model. These representations are then
used first to perform mention detection, and then,
together with the predicted mentions, to perform
coreference linking. The mentions are predicted
one sentence at a time, but both previous and fol-
lowing contexts are included up to the specified
context length. The architecture overview is dis-
played in Figure 1.

3.1 The mT5 Pretrained Models

In the original architecture, we employed large-
sized models XLM-R large (Conneau et al., 2020)
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and RemBERT (Chung et al., 2021). However,
even bigger models consistently deliver better per-
formance in various applications (Kale and Rastogi,
2020; Xue et al., 2021; Rothe et al., 2021; Bohnet
et al., 2023). We therefore decided to utilize the
largest possible pretrained multilingual model. To
our best knowledge, we are aware of a single family
of such models, the mT5 (Xue et al., 2021), a mul-
tilingual variant of the encoder-decoder pretrained
model T5 (Kale and Rastogi, 2020) based on the
Transformer architecture (Vaswani et al., 2017).!

The mTS5 pretrained models have one more con-
siderable advantage — because of relative positional
embeddings, they are capable of processing inputs
longer than 512 subwords, compared to both XLLM-
R large and RemBERT. In Section 5.1, we demon-
strate that processing longer inputs is advantageous
for coreference resolution.

'The ByT5 (Xue et al., 2022), a byte version of multilin-
gual TS, is also available, but because it represents words as

individual UTF-8 bytes, it processes smaller inputs compared
to mT5, which is undesirable for coreference resolution.



3.2 Mention Decoding

In the original architecture, we reduce the represen-
tation of embedded and possibly crossing mentions
to a sequence classification problem using an exten-
sion of BIO encoding. Each input token is assigned
a single tag, which is a concatenation of a sequence
of stack-manipulating instructions:

e any number of POP(7) instructions, each clos-

ing an opened mention from the stack. To
support crossing mentions, any mention on
the stack (not just the top one) can be closed,
identified by its index ¢ from the top of the
stack (i.e., POP(1) closes the mention on the
top of the stack, POP(2) closes the mention
below the top of the stack);
any number of PUSH instructions, each starting
a new mention added to the top of the stack;
any number of POP(1) instructions, each clos-
ing a single-token mention started by a PUSH
instruction from the same tag (such single-
token mentions could be also represented by a
dedicated instruction like UNIT, but we prefer
smaller number of instructions).
To produce hopefully valid (well-balanced) se-
quences of tags, we originally used a linear-chain
conditional random fields (CRF; Lafferty et al.
2001). Because of the Markovian property, ev-
ery tag had to be parametrized also with the size of
the stack before the first instruction (we call these
tags the depth-dependent tags).

The described approach has two drawbacks.
First, the predicted sequence of tags might still
be unbalanced (which we observed repeatedly in
the predictions). Furthermore, it would be more
challenging to perform ensembling, because ev-
ery model would have a different sequence-based
partition function.?

To alleviate both mentioned issues, we propose
to replace the CRF with per-token classification
during training and perform a constrained dynamic
programming decoding during inference using the

2When ensembling models, we average the distributions
the models predict; in other words, unnormalized logits must
first be normalized into (log-)probabilities. While this is
straightforward for simple classification, CRF models nor-
malize over all possible label sequences. Ensembling several
CRF models would therefore require that, during each step
of the sequential decoding of token labels, every model com-
puted the (log-)probabilities of all sequences with the label in
question conditioned on the already decoded labels. Such an
algorithm would have the same asymptotic complexity as the
usual CRF decoding times the number of models. However,
we did not implement it ourselves.
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Viterbi algorithm.? Such approach admits ensem-
bling in a straightforward manner by averaging pre-
dicted distributions for each token independently.

Without the CREF, the tags no longer need to be
parametrized by the current size of the stack — the
depth of the stack can be tracked just during de-
coding (we consider stack depths of at most 10;
Section 5.2 demonstrates that depth 3 is actually
sufficient). Such depth-independent tags have the
advantage of being scarcer,* admitting better statis-
tical efficiency, and we utilize them in our primary
submission. The comparison of both tag sets as
well as the CRF and dynamic programmic decod-
ing is performed in Section 5.2.

3.3 Multilingual Training Data

All our models are trained on all 17 CorefUD 1.1
corpora. Given that their size range from tiny (457
training sentences in de and en parcorfull) to
large (almost 40k training sentences in cs pdt and
cs pcedt), we try to level the individual corpora
performances by sub-/over-sampling the datasets.
Concretely, we sample each batch example (a sen-
tence with its context) proportionally to mix ratios,
the corpora-specific weights. We consider the fol-
lowing possibilities:

o uniform: we sample uniformly from all cor-
pora, ignoring their sizes;
linear: we sample proportionally to the sizes
of individual corpora;
square root: following (van der Goot et al.,
2021), we sample proportionally to the square
roots of corpora sizes;
logarithmic: similar to (Straka and Strakova,
2022), we sample proportionally to the cor-
pora sizes logarithms, which are linearly
rescaled so that the largest corpus is ten times
more probable than the smallest corpus.

Since different corpora might require particu-
lar annotations, we also consider adding a corpus
id subword (dataset label) to the input to indicate
the dataset of origin and the required style of an-
notations. These corpus ids, evaluated already in
(Straka and Strakova, 2022), are just a different
implementation of treebank embeddings proposed
in Stymne et al. (2018).

*The decoding algorithm differs from CRF decoding in just
two aspects: (a) the logits are normalized into log-probabilities
for each token separately, (b) the transition matrix only forbids
invalid transitions, all valid transitions have the same weight.

*There are 54 and 207 unique depth-independent and
depth-dependent tags in the whole training data, respectively.
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System Avg €@  pcedt pdt parc pots gum parc fr korko szege 1t bookm nynor Pl ru tr
UFAL CorPipe 7490 82.59 79.33 7920 7212 71.09 7657 69.86 83.39 69.82 6892 69.47 7587 78.74 78.77 79.54 8246 55.63
orfipe 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A : 7041 7951 75.88 7639 6437 6824 7229 59.02 80.52 66.13 64.65 6625 70.09 7532 73.33 77.58 80.19 47.22
nonymous 2 2 2 2 3 5 2 3 2 2 3 2 2 2 2 2 2 2
Ond: 69.19 76.02 7482 74.67 71.86 69.37 71.56 61.62 77.18 6032 6638 6575 6852 7239 7091 7690 7650 41.52
nda 3 3 3 3 2 3 3 2 3 4 2 4 3 4 4 3 4 4
McGill 6543 7175 67.67 70.88 4158 7020 6672 4727 7378 65.17 60.74 6593 6577 7373 7243 76.14 77.28 4528
¢l 4 4 7 4 7 2 4 4 4 3 4 3 6 3 3 4 3 3
DeepBlueAl 6229 67.55 7038 69.93 48.81 63.90 63.58 4333 69.52 55.69 54.38 63.14 66.75 69.86 68.53 73.11 74.41 36.14
cepblue 5 7 4 5 5 7 6 5 5 6 5 5 4 6 5 5 5 8
DFKLAdant 61.86 6821 6872 6734 5252 69.28 65.11 36.87 69.19 5896 51.53 5856 66.01 70.05 6821 67.98 7248 40.67
-Adap 6 6 5 6 4 4 5 7 6 5 7 6 5 5 6 6 6 5
Morfh 59.53 6823 64.89 64.74 39.96 64.87 62.80 40.81 69.01 53.18 5291 56.41 64.08 68.17 66.35 67.88 68.53 39.22
oribase 7 5 8 8 9 6 8 6 7 8 6 7 7 7 7 7 8 6
BASELINE! 56.96 6526 6772 6522 44.11 57.13 63.08 35.19 66.93 5531 40.71 5532 63.57 65.10 65.78 66.08 69.03 22.75
8 8 6 7 6 9 7 8 8 7 9 8 8 9 8 8 7 9

DEKLMPromp; 3376 5345 60.39 5613 4034 59.75 57.83 3432 5831 5296 44.53 48.79 56.52 65.12 6299 61.15 61.96 37.44
- Pt 9 9 9 9 8 8 9 9 9 9 8 9 9 8 9 9 9 7

Table 1: Official results of CRAC 2023 Shared Task on the test set (CoONLL score in %). The system  is described
in Prazdk et al. (2021); the rest in Zabokrtsk}’/ et al. (2023).

Our primary submission relies on logarithmic
mix ratios with corpus ids. The concrete values of
all proposed mix ratios together with their perfor-
mance comparison are presented in Section 5.5.

3.4 Training

When utilizing the mT5 pretrained models, we
train CorPipe models with the Adafactor opti-
mizer (Shazeer and Stern, 2018) using a slanted
triangular learning schedule — we first linearly in-
crease the learning rate from O to 5e-4 in the first
10% of the training, and then linearly decay it to O
at the end of the training. The models are trained
for 15 epochs, each comprising 8000 batches. For
models up to size large, we utilize batch size 8,
which is the maximum one fitting on a single A100
GPU with 40GB RAM. The xI-sized models are
trained on four 40GB A 100, with a maximum possi-
ble batch size 12. The training took 10 and 20 hours
for the mT5-large and mT5-x1 models, respectively.

For the XLLM-R and RemBERT ablation exper-
iments, we utilize the lazy variant of the Adam
optimizer (Kingma and Ba, 2015) and the learning
rates of 2e-5 and Te-5, respectively.

All classification heads employ label smooth-
ing (Szegedy et al., 2016) of 0.2.

During training, we use context length of 512
subwords and limit the right context length to 50,
but we use context length of 2560 subwords during
inference with the mT5 models.

The competition submissions were selected from
a pool of 30 models based on mT5-large and mT5-
x1 pretrained models with different random seeds
and slightly perturbed hyperparameters,’ by con-

SLearning rate 5e-4, 6e-4, 7e-4; double or quadruple
batch size; 8k or 10k batches per epoch.
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System Head-match Partial-match Exact-match +Singletons
UFAL CorPipe  74.90 (1) 73.33 (1) 71.46 (1) 76.82 (1)
Anonymous 70.41 (2) 69.23 (2) 67.09 (2) 73.20 (2)
Ondfa 69.19 (3) 68.93 (3) 53.01(8) 68.37 (3)
McGill 65.43 (4) 64.56 (4) 63.13 (3) 68.23 (4)
DeepBlueAl 62.29 (5) 61.32(5) 59.95 (4) 54.51 (5)
DFKI-Adapt 61.86 (6) 60.83 (6) 59.18 (5) 53.94 (6)
Morfbase 59.53 (7) 58.49 (7) 56.89 (6) 52.07 (7)
BASELINE 56.96 (8) 56.28 (8) 54.75(7) 49.32 (8)
DFKI-MPrompt  53.76 (9) 51.62 (9) 50.42 (9) 46.83 (9)

Table 2: Official results of CRAC 2023 Shared Task on
the test set with various metrics in %.

sidering for each corpus the best performing check-
point of every epoch of every trained model. Our
primary submission is for each corpus an ensemble
of 3 best checkpoints of 3 models.°

4 Shared Task Results

The official results of the CRAC 2023 Shared Task
are presented in Table 1. Our CorPipe system de-
livers the best overall score of 74.9%, surpassing
the other participants by a large margin of 4.5 per-
cent points, and also achieves the best scores for
all individual corpora.

4.1 Results of Additional Metrics

The CRAC 2023 Shared Task primary metric em-
ploys head matching, where a predicted mention is
considered correct if it has the same mention head
as the gold mention, and excludes singletons. Com-
parison with other metrics is performed in Table 2.
Apart from the head matching, the organizers eval-
uated also partial matching (a predicted mention is
correct if it is a subsequence of the gold mention

®We implemented ensembling by loading each model to
its dedicated A100 GPU, thus parallelizing the execution of
the individual models.
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Submission Avg  ca pcedt pdt parc pots gum parc es fr korko szege 1t bookm nynor pl rd tr
Original CorPipe 2022 703 799 76.0 768 633 72.6 723 57.6 812 654 662 654 68.6 754 73.6 79.0 784 425
Single mTS5 large model +2.6 +22 +2.1 +08 +6.7 -12 +1.6 +40 +09 +0.1 +1.6 +3.3 +74 +3.5 +22 -05 +24 +7.6
Single mT5 xI model +2.7 420 +2.0 +1.5 +2.7 -30 +29 +6.8 +1.6 +2.6 -0.7 +4.1 +47 +33 +37 -03 +2.6 +10.3
Per-treebank best mT5 model +34 +2.6 +1.7 +1.6 +13.1 -4.1 +32 +103 +12 +33 -02 +2.0 +6.6 +3.0 +42 -0.8 +3.8 +7.6
Per-treebank 3-model ensemble +4.6 +2.7 +3.3 +24 +88 -1.5 +4.3 +123 +2.2 +44 +2.7 +4.1 +73 433 452 +0.5 +4.1 +13.1
Per-treebank 8-model ensemble +4.9 +3.3 433 +2.7 +7.7 -0.8 +4.2 +13.4 +2.3 +32 +3.3 +54 +7.8 +4.2 +54 +0.8 +4.2 +14.0

Table 3: Official results of ablation experiments on the test set (CoNLL score in %). The 8-model ensemble (in
italics) was evaluated during the post-competition phase.

and contains the gold mention head), exact match-
ing (a predicted mention is correct if it is exactly
equal to the gold mention), and head matching in-
cluding singletons (entities with a single mention).

The ranking of all systems is unchanged in all
evaluated metrics, with a single exception — the
system Ondfa exhibits low exact-matching perfor-
mance, presumably because it reduces predicted
mentions to just their heads.”

4.2 Results of Our Additional Submissions

To quantify this year’s CorPipe improvements, we
present the official results of our additional submis-
sions in Table 3.

We first trained the original CorPipe on this
year’s data, achieving a 70.3% CoNLL score,
which is 0.1 percent points below the second-best
submission. Incorporating mT5-large/mT5-x1 mod-
els, context size of 2560, and constrained decoding
with depth-independent tags resulted in an increase
of 3.4 percent points. Furthermore, employing a
3-model ensemble provides another 1.2 percent
points raise. In the post-competition phase, we also
evaluated an 8-model ensemble, which delivered
a final modest improvement of 0.3 percent points
and reached our best performance of 75.2%.

All these submissions choose the best model
checkpoints for every corpus independently. How-
ever, for deployment, a single checkpoint is more
appropriate — therefore, we also assessed the single
best-performing mT5-large checkpoint, resulting in
a72.9% score (0.8 percent points lower than choos-
ing the best mT5-large/mT5-x1 checkpoint per cor-
pus). The single best-performing mT5-x1 check-
point achieved very similar performance of 73.0%.
We note that these single-checkpoint submissions
would comfortably win the shared task too.

"Reducing mentions to heads was a strategy for improving
partial-matching score in the previous edition of the shared
task; with the head-matching score, it can be avoided, which
allows also correct evaluation of the exact matching.
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5 Ablations on the Development Set

To evaluate the effect of various hyperparameters,
we perform further experiments on the develop-
ment set. Because we observed a significant vari-
ance with different random seeds and we also ob-
served divergence in some training runs, we de-
vised the following procedure to obtain credible
results: For each configuration, we perform 7 train-
ing runs and keep only the 5 ones with the best
overall performance. We then want to perform
early stopping for every corpus. However, choos-
ing for every corpus a different epoch in every run
could lead to maximization bias in case the results
oscillate considerably — therefore, for every corpus,
we choose the single epoch achieving the highest
average 5-run score (i.e., we use this epoch for all
5 runs). Finally, we either average or ensemble the
5 runs for every corpus.

5.1 Pretrained Models and Context Sizes

The effect of increasing context sizes on the mT5-
large pretrained model is presented in Table 4.A.
The performance improves consistently with in-
creasing context size up to 2560; however, con-
text size 4096 deteriorates the performance slightly.
Considering context size 512, decreasing the con-
text size by 128 to 384 decreases the performance
by 1.6 percent points, while increasing the context
size by 128 to 768 increases it by 1.2 percent points,
with performance improving up to 2 percent points
for context length 2560.

For the mT5-xl pretrained model, the behavior
is virtually analogous, as captured by Table 4.B.

In Table 4.C, we compare the performance of dif-
ferent pretrained models using the context size 512.
We include different sizes of the mT5 model (Xue
et al., 2021), together with RemBERT (Chung et al.,
2021), XLM-R base, and XLM-R large (Conneau
et al., 2020).8

¥We do not include other base-sized models like XLM-

V (Liang et al., 2023) or mDeBERTaV3 (He et al., 2023),
because they lack behind the large-sized models.
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Configuration Avg ca pcedt pdt parc pots gum parc es fr korko szege 1t bookm nynor pl ru tr
A) CONTEXT SIZES FOR THE MT5-LARGE MODEL

mT5-large 512 728 78.1 781 769 707 754 756 674 803 686 70.6 673 774 778 787 758 7T1.1 48.6
mT5-large 256 -59 -88 40 -53 -7.1 -32 -53 -11.7 -60 -41 -29 -45 -86 -64 -64 -48 -67 -4.6
mT5-large 384 -16 -29 -13 -18 -06 -03 -20 -16 -22 -13 -14 -1.1 -27 -24 =26 -12 -20 -15
mT5-large 768 +12 425 +12 +15 07 400 +09 -14 +15 +13 -06 +2.1 +04 +27 +22 +04 +27 433
mT5-large 1024 +1.6 +32 +1.8 +19 -1.0 +0.0 +1.1 -14 +21 +1.7 -1.1 +23 405 +35 +2.6 +0.7 +3.6 +4.7
mT5-large 1536 +1.9 +33 +22 +2.1 -1.0 +40.0 +12 -14 +24 +15 -1.1 +24 +0.5 +3.8 +31 +1.0 +4.1 +6.8
mT5-large 2048 +2.0 +35 +22 421 -1.0 +0.0 +1.2 -14 +25 +2.0 -1.1 +24 +0.5 +3.8 +3.0 +12 +4.1 +74
mT5-large 2560 +2.0 +3.5 +22 421 -1.0 +0.0 +1.2 -14 +25 +1.7 -1.1 +25 +05 +3.7 +3.0 +1.3 +4.1 +8.6
mT5-large 4096 +1.7  +34 421 420 -1.0 +0.0 +1.2 -14 +25 +1.5 -1.1 +25 +05 +3.7 +28 +12 +44 +3.1
B) CONTEXT SIZES FOR THE MT5-XL MODEL

mT5-x1512 733 715 784 772 739 761 754 729 80.1 684 703 672 772 777 783 76.1 713 476
mT5-x1 256 -6.1 -86 -39 -54 -92 -37 -58 -96 -57 -49 -28 -46 -10.1 -6.1 -65 -47 -67 -47
mT5-x1 384 -1.7 26 -13 -19 -24 +01 -16 -04 -22 -15 -16 -12 -25 -22 -23 -13 -25 -0.6
mT5-x1 768 +1.1 +22  +13 417 44 +0.1 +13 409 +1.7 +1.5 -13 +19 +1.5 +2.6 +22 +05 +2.6 +24
mT5-x1 1024 +1.5 +32 +19 +23 44 401 +15 +1.0 +23 +2.1 -15 +2.1 +1.2 +33 +29 408 +39 +32
mT5-x1 1536 +1.8 +34 +24 +2.6 44 401 +1.7 +1.0 +2.7 +21 -15 +22 +12 +3.8 435 +1.1 +52 435
mT5-x12048 +1.8 +35 +2.6 +2.6 44 +0.1 +1.7 +1.0 +2.8 +2.1 -15 +22 +12 +3.7 439 +13 455 436
mT5-x12560 +1.9 +34 426 426 -44 +0.1 +1.7 +1.0 +28 +2.0 -1.5 +22 +12 437 +3.6 +14 +53 457
mT5-x1 4096 +1.7  +35 +2.6 +25 -44 +0.1 +1.7 +1.0 +28 +1.8 -1.5 +22 +12 +3.6 +3.6 +14 453 +2.6
C) PRETRAINED LANGUAGE MODELS WITH CONTEXT SIZE 512

mT5-large 512 728 78.1 781 769 70.7 754 756 674 803 68.6 706 673 774 778 787 758 7T1.1 48.6
mT5-small 512 -9.7 -102 -11.3 -119 -10.6 -119 -80 -2.8 -95 -84 -127 -86 -81 -70 -92 -112 -11.6 -12.8
mT5-base 512 -39 42 41 -45 -38 -52 -38 +12 -36 -33 -83 -38 -16 -33 -30 -43 -46 -7.1
XLM-R-base 512 -19 -28 -34 -40 -05 -39 -35 +24 26 -15 -28 -17 +09 -18 -23 -33 -0.8 -23
XLM-R-large 512 +1.1  +1.2 +0.7 409 +1.5 +0.8 +0.8 +2.7 +09 +1.7 -09 +2.7 +1.0 +1.2 +1.0 +06 +2.1 -0.8
RemBERT 512 +0.2  +0.7 +1.2 +0.7 434 +25 +0.1 +42 +05 +1.0 -33 +00 -1.1 +0.0 +0.0 +0.9 +2.2 -10.0
mT5-x1512 +0.5 -0.6 +03 +03 432 +0.7 -02 455 -02 -02 -03 -0.1 -02 -0.1 -04 +03 +02 -1.0
D) COMPARISON OF PRETRAINED LANGUAGE MODELS WITH DIFFERENT CONTEXT SIZES

mT5-large 512 728 78.1 781 769 70.7 754 756 674 803 68.6 706 673 774 778 787 758 7T1.1 48.6
mT5-base 512 -39 42 41 -45 -38 -52 -38 +12 -36 -33 -83 -38 -16 -33 -30 -43 -46 -7.1
XLM-R-base 256 -73 -100 -66 -80 -151 -55 -7.1 -98 -76 -46 -44 -47 -80 -63 -85 -65 -69 -53
XLM-R-base 384 -40 -52 -50 -56 -32 -41 -50 -22 -49 -29 -53 -28 -26 -38 -52 -38 -39 -25
XLM-R-base 512 -19 -28 -34 -40 -05 -39 -35 +24 26 -15 -28 -17 +09 -18 -23 -33 -0.8 -23
XLM-R-base mT5-512 -3.4 -49 -5.0 -56 -34 -41 -44 -06 -46 -23 -50 -35 +0.1 -29 -39 -36 -23 =22
XLM-R-large 256 -39 -60 -28 -35 -76 -21 -39 -23 41 -26 -23 -07 -76 -38 -50 -24 -46 -53
XLM-R-large 384 -07 -10 -06 -05 -1.6 +02 +00 +1.6 -13 +0.1 -21 +15 -25 -12 -18 +00 -09 -34
XLM-R-large 512 +1.1 +1.2 407 +09 +1.5 +0.8 +0.8 +2.7 +09 +1.7 -09 +2.7 +1.0 +12 +1.0 +06 +2.1 -08
XLM-R-large mT5-512 -0.1 -09 -0.6 -0.6 +0.5 +04 +0.0 +23 -0.9 +08 -2.1 +0.8 -0.7 +02 -04 +0.3 +05 -3.0
RemBERT 256 -49 -73 -24 -39 -42 +1.0 -45 -47 -54 -30 -59 -35 -99 -58 -63 -31 -41 -113
RemBERT 384 -5 -19 -01 -08 +1.1 +28 -15 +08 -19 -03 -53 -1.1 -36 -26 -20 -0.1 -04 -95
RemBERT 512 +0.2  +0.7 +12 +40.7 434 +25 +0.1 +42 +05 +1.0 -33 +00 -1.1 +0.0 +0.0 +09 +2.2 -10.0
RemBERT mT5-512 -0.6 -1.0 +0.1 -06 +54 +2.6 -05 +23 -13 +04 -54 -03 -12 -1.0 -05 +0.7 +0.5 -10.5
mT5-large 768 +1.2 +25 +12 +15 -07 +0.0 409 -14 +15 +13 -0.6 +2.1 +04 +27 +22 +04 +2.7 433
mT5-large 2560 +20 +3.5 +22 +21 -1.0 400 +12 -14 +25 +1.7 -1.1 +25 +05 +3.7 +3.0 +13 +4.1 486
mT5-x1512 +0.5 -06 +03 +03 +32 +0.7 -02 +55 -02 -02 -03 -0.1 -02 -0.1 -04 +03 +02 -1.0
mT5-x1 2560 +24 +2.8 +29 +29 -12 408 +1.5 +6.5 +2.6 +1.8 -1.8 +2.1 +1.0 +3.6 +3.2 +1.7 +55 +4.7

Table 4: Ablation experiments evaluated on the development sets (CONLL score in %). We report the average of
best 5 out of 7 runs, using for every corpus the single epoch achieving the highest average 5-run score. The runs in
italics use largest context length not exceeding 512 subwords when tokenized with the mTS5 tokenizer.

As expected, the increasingly bigger mT5 mod-
els improve the performance. Somewhat surpris-
ingly, the XLM-R-base surpasses mT5-base and
XLM-R-large and RemBERT surpass mT5-large.
However, we discovered that the difference is
caused primarily by different tokenization: The
mTS5 tokenizer produces on average more subwords
than the XLLM-R and RemBERT tokenizers, which
effectively decreases the context size of the mT5
models — but the performance is considerably de-
pendent on the context size.

To expose the issue, Table 4.D compares vari-
ous pretrained models with different context sizes.
Most importantly, we include the performance of
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the XLM-R and RemBERT models using a context
that would be tokenized into 512 subwords by the
mT5 tokenizer (presented in italics and denoted
by the mT5-512 context size). In these cases, the
performance is quite similar to the performance of
the corresponding mT5 model (with the notable
exception of RemBERT’s performance on Turkish,
which is considerably worse). However, the mT5
models support larger context sizes (due to rela-
tive positional embeddings); already with context
size 768, the mT5 models surpass all models of
corresponding size and context size 512, ultimately
providing the best results.



Confieuration Label A , °©s cs de de en en s o hu hu no no 1 ru tr
gurati Smoothing Ve pcedt pdt parc pots gum parc korko szege bookm nynor P
A) CONSTRAING DECODING WITH VARYING DEPTH AND DEPTH-INDEPENDENT TAGS
Depth 10 0.2 748 81.6 803 79.0 69.7 754 768 66.0 828 703 695 69.8 779 815 81.7 77.1 752 572
Depth 3 0.2 +0.0 -0.1 +0.0 -0.1 +0.0 +0.0 +0.0 +0.0 -0.3 +0.0 +0.0 +0.0 +0.0 -0.1 +0.0 +0.0 +0.0 +0.0
Depth 2 02 -02 -07 -06 -09 +04 +0.5 -04 +0.0 -09 -0.1 +0.0 +0.0 +0.0 -02 -0.1 -04 +0.0 +0.0
Depth 1 02 -23 -59 -58 -6.1 -23 -1.1 -35 -04 -70 -13 -0.7 +0.1 +0.2 -20 -1.1 -19 -05 -06
Depth 10 00 -0.1 -04 -03 -02 +13 -08 -0.6 +0.0 -02 -02 -1.I +40.0 +1.0 -0.1 -0.8 -0.1 +1.1 -0.6
Depth 3 00 -0.1 -0.5 -03 -02 +13 -08 -0.6 +0.0 -04 -02 -1.I +40.0 +1.0 -0.1 -0.8 -0.2 +1.1 -0.6
Depth 2 00 -03 -1.0 -08 -1.0 +13 -05 -1.0 +400 -13 -02 -1.0 +40.0 +1.0 -0.1 -0.8 -0.6 +I1.1 -0.6
Depth 1 00 -25 -67 -58 -63 -1.7 -22 -48 +02 -79 -16 -1.0 +0.1 +1.0 -1.7 -1.5 -22 +0.7 -1.1
Depth 10 0.1 -02 -0.1 -02 -02 +02 +0.2 -04 +0.1 +0.2 -0.1 -14 -0.5 +0.5 +0.1 -05 +0.1 +0.0 -1.6
Depth 3 0.1 -02 -02 -02 -03 +02 +0.2 -05 +0.1 +0.0 -0.1 -14 -0.5 +0.5 +0.0 -0.5 +0.0 +0.0 -1.6
Depth 2 0.1 -05 -08 -07 -1.1 +02 +04 -09 +0.1 -08 -02 -14 -05 +0.5 +40.0 -0.7 -0.5 +0.0 -1.6
Depth 1 01 -25 -62 -59 -62 -18 -09 -41 +0.5 -72 -14 -17 -04 +06 -18 -1.6 -2.0 -05 -2.0
B) COMPARISON OF DIFFERENT DECODING STRATEGIES
Constraint decoding, depth 10, 746 916 803 790 697 754 768 660 828 703 69.5 698 77.9 815 817 7.1 752 572
depth-independent tags
Greedy, depth-dependent tags 0.0 -13 -1.1 -1.1 -13 -46 -03 -08 -15 -10 -07 -24 -10 -13 -08 -04 -04 -02 -3.1
+ constraint decoding 00 -04 -06 -02 +0.1 -16 +0.7 -04 -0.1 -04 -05 -0.5 -0.1 -0.6 -05 -0.1 -02 -03 -12
Greedy, depth-dependent tags 0./ -13 -12 -12 -14 -32 -12 -10 -77 -1.1 -0.1 -16 -09 405 -02 -0.1 -0.I +14 -2.6
+ constraint decoding 0.1 -03 -06 -04 -0.I +13 -0.1 -06 -49 -05 +0.2 +0.9 -0.1 +0.7 +0.1 +0.0 +0.2 +1.2 -22
Greedy, depth-dependent tags 0.2 -13 -13 -09 -12 -23 -1.0 -08 +0.8 -1.I -02 -3.1 -1.I -20 -13 -06 -0.7 -0.1 -54
+ constraint decoding 02 -03 -1.0 -03 +0.0 +25 -0.6 -04 +33 -04 +00 -09 -04 -03 -09 -03 -05 +0.0 -438
Conditional random fields 00 -02 -04 -03 -0.1 +1.7 -0.7 +0.0 +1.5 -05 -06 -03 403 +04 -09 -04 -04 -03 -22
+ constraint decoding 00 -0.1 -03 -03 +0.0 +1.7 -0.6 +0.0 +1.8 -03 -06 -02 +0.3 +0.5 -1.0 -05 -04 -03 -22
Conditional random fields 0.1 -02 -04 +0.1 +03 +03 -1.1 +02 +1.1 -0.1 -03 -03 -02 -03 -02 -0.1 +0.0 +0.6 -3.6
+ constraint decoding 0.1 -02 -03 +0.1 +04 +05 -1.2 +0.2 +0.6 -0.1 -02 -03 -02 -02 -01 -0.1 -0.1 +0.5 -3.6
Conditional random fields 02 -03 +02 -03 +0.0 -12 +1.I +0.1 +0.1 -0.2 +0.0 +0.0 +0.0 -1.5 +0.2 +0.0 +0.0 +09 -39
+ constraint decoding 02 -02 +0.2 -03 +0.1 -14 +1.2 +0.1 +04 -0.1 +0.1 +02 +40.0 -1.5 +0.2 -0.1 +0.0 +0.8 -3.9

Table 5: Ablation experiments evaluated on the development sets (CoNLL score in %) using the mT5-large model
with context size 2560. We report the average of best 5 out of 7 runs, using for every corpus the single epoch

achieving the highest average 5-run score.

5.2 Mention Decoding Algorithms

The effects of the mention decoding algorithm and
label smoothing are elaborated in Table 5. First,
label smoothing has very little effect on the results.

When predicting mentions via depth-
independent tags, the maximum possible
number of opened multi-word mentions (depth)
must be specified. The effect of using depths 1,
2, 3, and 10 is presented in Table 5.A. While the
maximum depth in the training data is 12, the
performance of using depth 10 and 3 is virtually
unchanged; only depth 2 and depth 1 deteriorate
performance. If the speed of the decoding is an
issue, using depth 3 provides the fastest decoder
without decreasing performance.

The difference between using depth-independent
and depth-dependent tags during constrained
decoding is quantified in Table 5.B — depth-
independent tags provide a minor improvement of
0.3 percent points. When greedy decoding is used
instead of constrained decoding, the performance
drops by one percent point.

Using conditional random fields for mention de-
coding provides marginally worse performance
compared to using constrained decoding with
depth-independent tags. Furthermore, explicitly
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disallowing invalid transitions (by assigning them
transition weight —oo in the transition weight ma-
trix manually) has virtually no effect, demonstrat-
ing that the CRF decoder has learned the transition
weights successfully.

5.3 The Effect Of Multilingual Data

In Table 6, we analyze the effect of using various
combinations of corpora during training.

Compared to using all corpora for single-model
training, relying solely on the training data of a
given corpus deteriorates the performance dramat-
ically by 3.7 percent points on average. The de-
crease is smallest for the largest corpora (Czech
and Polish ones).

Concatenating all corpora of a given language
(and both ParCorFull corpora that are translations
of each other; we utilized uniform mix ratios) gen-
erally improves the performance compared to using
the individual corpora, but does not reach the per-
formance of using all corpora together.

5.4 Zero-shot Multilingual Evaluation

When training without the corpus ids, the model is
able to perform prediction on unknown languages.
Leveraging this observation, we perform zero-shot



Configuration Avg ca s cs de de en en es fr hu hu no no pl ru tr
pcedt pdt parc pots gum parc korko szege bookm nynor

Single Multilingual Model 748 81.6 803 79.0 69.7 754 768 66.0 828 70.3 69.5 698 779 815 817 771 752 572

Per-Corpus Models -37 -14 -05 -04 -77 -33 -16 -76 -15 -20 -9.1 -1.0 -30 -23 -29 -10 -2.0 -158

Joint Czech Model -0.1 -03

Joint German Model -48 -39

Joint English Model -1.9 -45

Joint Parcorfull Model -4.4 =25

Joint Hungarian Model -59 -1.1

Joint Norwegian Model -1.3 -1.8

Zero-Shot Multilingual Models —13.2 -4.8 -24.2 -16.0 -13.7 -10.6 —-144 -13.8 -1.9 -54 -15.1 -15.0 -234 -143 -18.0 —-17.5 —15.5

-0.8

Table 6: Ablation experiments evaluated on the development sets (CoNLL score in %) using the mT5-large model
with context size 2560. We report the average of best 5 out of 7 runs, using for every corpus the single epoch

achieving the highest average 5-run score.

. cs cs de de en en hu hu no no
Configuration Avg ca pcedt pdt parc pots gum parc es fr korko szege 1t bookm nynor pl ru tr
MixX RATIO WEIGHTS OF INDIVIDUAL CORPORA IN PERCENTS
Logarithmic 81 100 9.4 1.0 3.2 6.6 1.0 8.3 7.4 2.6 5.8 3.4 7.2 6.9 86 6.2 4.2
Uniform 59 5.9 59 59 59 59 59 59 5.9 59 5.9 59 5.9 59 5.9 59 59
Square Root 84 140 117 1.4 24 56 1.4 8.8 6.9 2.0 4.6 2.5 6.5 6.0 9.5 5.1 3.1
Linear 87 244 170 0.2 0.7 39 0.2 9.6 5.9 0.5 2.6 0.8 5.3 4.5 113 3.2 1.2
A) AVERAGE OF 5 RUNS USING FOR EVERY CORPUS THE SINGLE EPOCH ACHIEVING THE HIGHEST AVERAGE 5-RUN SCORE
Logarithmic 748 816 803 790 697 754 768 660 828 703 695 697 779 815 817 77.1 752 572
w/ocorpusid -0.2 +0.2 -0.1 +0.1 -04 +0.1 -03 -02 +00 +00 -02 -03 +05 +0.2 -04 +0.2 +02 -24
Uniform -03 -01 -12 -09 +1.7 +00 -08 -42 -03 +0.1 +0.2 -04 +1.0 +00 -0.1 +0.0 -02 -0.1
w/o corpusid -04 -04 -07 -06 +23 +03 -08 +15 -0.1 -04 -13 -05 -07 -04 -13 -05 -02 =30
Square Root +0.0 +02 +0.5 +04 -02 409 -06 -21 -01 +0.1 -07 -0.I +08 +0.I -02 +0.2 +09 -0.7
w/ocorpusid +0.2 +0.1 +04 +03 +2.7 -09 -03 +I1.1 +0.1 +00 -04 -02 +0.1 +0.1 -0.1 +0.1 +0.5 -0.7
Linear +0.4 +0.1 +0.8 +0.7 +06 -0.1 -02 +48 +03 +04 -09 -04 +0.6 -03 +0.1 +02 +1.1 -03
w/ocorpusid +0.0 +0.0 +0.7 +06 -20 -14 -08 +40 +03 -01 -04 -09 +04 +0.1 -0.1 +02 +0.7 -0.8
B) AVERAGE OF 5 RUNS USING FOR EVERY RUN THE SINGLE EPOCH ACHIEVING THE HIGHEST SCORE ACROSS ALL CORPORA
Logarithmic 748 817 799 786 715 762 766 679 828 704 683 694 780 814 815 769 746 555
w/ocorpusid -0.2 +0.0 +0.1 +02 -19 -03 -03 -09 -02 -04 +00 -02 -02 +0.1 -02 +03 +1.0 -03
Uniform -06 -04 -1.1 -09 +0.1 -10 -08 -67 -04 -02 +1.0 +0.1 -02 -0.1 +0.2 -0.1 +0.5 +0.0
w/ocorpusid -0.6 -0.7 -06 -05 +10 -16 -05 -06 -0.1 -06 +03 -05 -09 -01 -13 =05 +0.8 -3.0
Square Root -02 -0.1 +0.8 +0.7 -25 -02 -01 -42 -0.1 +40.0 +09 -04 +02 +03 +0.0 +04 +15 +04
w/ocorpusid +0.1 -0.2 +0.6 +0.6 +13 -2.1 -02 -07 +02 +0.1 +0.0 -04 -0.1 +02 +0.1 +0.1 +12 +1.1
Linear +0.3 +02 +1.1 +1.1 -07 -19 -02 +38 +05 -0.1 -07 -0.I +03 -04 +03 +0.1 +1.6 +0.0
w/ocorpusid +0.1 +0.0 +1.0 +1.0 -21 -25 -02 +13 +02 -0.1 +04 -05 +0.5 +04 +03 +04 +1.0 +0.8

Table 7: Ablation experiments evaluated on the development sets (CoNLL score in %) using the mT5-large model
with context size 2560. We report the average of best 5 out of 7 runs.

evaluation by training multilingual models on cor-
pora from all but one language and then evaluating
the performance on the omitted-language corpora.
The results are displayed on the last line of Table 6.

Overall, the results are significantly worse by
13.2 percent points. However, such performance
is most likely better than the performance of the
baseline system of Prazdk et al. (2021), which has
17.9 less percent points on the test set than CorPipe.

Turkish demonstrates the smallest decrease in
the zero-shot evaluation, even when it uses an al-
phabet with several unique characters. On the other
hand, the small decrease in the performance of
Catalan, Spanish, and French can be explained by
similarities among these languages.

5.5 Mix Ratios of the Multilingual Data

Next, we compare the effect of various mix ratios
during all-corpora training.
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We consider logarithmic, uniform, square root,
and linear mix ratios described in Section 3.3.
First, their values normalized to percentages are
presented in the first part of Table 7.

We then evaluate the effect of using a specific
mix ratio and either utilizing or omitting the corpus
ids during training in Table 7.A. In accordance with
findings in Straka and Strakové (2022), the corpus
ids have no deterministic effect, and the mix ra-
tios influence the system performance surprisingly
little (with uniform being the worst, logarithmic
and square root very similar and better, and linear
the best). When considering the largest corpora
(especially Czech, Polish, and Spanish), their per-
formance improves with increasing mix ratios, pre-
sumably because of underfitting with small mix ra-
tios; however, the effect on other corpora is mixed.

The evaluation methodology allows each corpus
to use a checkpoint from a different epoch of the



. cs cs de de en en hu hu no no

Configuration Avg a pcedt pdt parc pots gum parc es fr korko szege 1t bookm nynor Pl ru tr
A) ENSEMBLES FOR THE MT5-LARGE MODEL FOR VARIOUS CONTEXT SIZES

Average of 5 runs, 512 728 78.1 781 769 707 754 756 674 803 686 706 673 774 77.8 787 758 7T1.1 48.6
Ensemble of 5 runs, 512 +1.0 +0.8 +0.8 +0.7 +3.1 +1.3 +05 -04 +0.8 +0.6 +1.2 +0.7 +1.6 +09 +09 +1.0 +1.5 +038
Average of 5 runs, 768 +1.2 +25 +12 +15 -0.7 +0.0 409 -14 +15 +1.3 -0.6 +2.1 +04 +27 +22 +04 +2.7 +33
Average of 5 runs, 2560 +2.0 +3.5 +22 +2.1 -1.0 +0.0 +1.2 -14 425 +1.7 -1.1 425 +05 +3.7 +3.0 +1.3 +4.1 +8.6
Ensemble of 5 runs, 2560 +3.3 +4.3 +3.0 +3.0 +23 +13 +13 -08 +3.6 +25 +1.1 435 +1.8 +4.6 +3.5 +23 +6.3 +11.5
B) ENSEMBLES FOR THE MT5-XL MODEL FOR VARIOUS CONTEXT SIZES

Average of 5 runs, 512 733 775 784 772 739 76.1 754 729 80.1 684 703 672 772 777 783 76.1 713 476
Ensemble of 5 runs, 512 +0.8 +1.1 +0.9 +0.8 -23 +0.2 +08 +1.9 +1.1 +1.1 +09 +1.8 +1.6 +I1.1 +08 +1.0 +1.3 +0.3
Average of 5 runs, 768 +1.1 422 +13 +1.7 -44 +0.1 +1.3 409 +1.7 +15 -1.3 +19 +1.5 +26 +22 +05 +2.6 +24
Average of 5 runs, 2560  +1.9 434 +2.6 +2.6 44 +0.1 +1.7 +1.0 +28 +2.0 -1.5 +22 +12 437 +3.6 +14 453 457
Ensemble of 5 runs, 2560 +3.5 +4.9 +3.6 +3.7 +24 +0.2 +23 +1.1 +3.6 +33 +13 +4.0 +3.0 +4.1 +5.0 +25 +7.1 +7.6

Table 8: Ablation experiments evaluated on the development sets (CoNLL score in %).

We report the aver-

age/ensemble of best 5 out of 7 runs, using for every corpus the single epoch achieving the highest average score.

training. Therefore, it could be possible that differ-
ent mixing ratios influence the best epochs of in-
dividual corpora and that with some mixing ratios,
the best epochs are more homogeneous. On that
account, Table 7.B performs the evaluation differ-
ently — for each of the 5 runs, we choose the epoch
with the best overall performance on all corpora,
and employ the checkpoint from this epoch for all
corpora; different runs can utilize different epochs.
Nevertheless, the results are very much similar.

5.6 Ensembling

The effect of ensembling the 5 runs (instead of aver-
aging them) is captured in Table 8. For the context
size 512, the ensemble delivers an additional 1 per-
cent point with the mT5-large pretrained model and
0.8 percent points with the mT5-x1 model. For the
context size 2560, the improvement is even slightly
larger, 1.3 and 1.6 percent points for the mT5-large
and mT5-xI models, respectively.

6 Conclusions

We presented the winning entry to the CRAC 2023
Shared Task on Multilingual Coreference Resolu-
tion (Zabokrtsk)’/ et al., 2023). The system is an im-
proved version of our earlier multilingual corefer-
ence pipeline CorPipe (Straka and Strakova, 2022),
and it surpasses other participants by a large margin
of 4.5 percent points. When ensembling is not de-
sired, we also offer a single multilingual checkpoint
for all 17 corpora surpassing other submissions by
2.6 percent points. The source code is available at
https://github.com/ufal/crac2023-corpipe.
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Limitations

The presented system has demonstrated its perfor-
mance only on a limited set of 12 languages, and
heavily depends on a large pretrained model, tran-
sitively receiving its limitations and biases.
Furthermore, the practical applicability on plain
text inputs depends also on empty node prediction,
whose performance has not yet been evaluated.
Training with the mT5-large pretrained model
requires a 40GB GPU, which we consider afford-
able; however, training with the mT5-xI pretrained
model needs nearly four times as much GPU mem-

ory.
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