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Abstract

Though discourse parsing can help multiple
NLP fields, there has been no wide language
model search done on implicit discourse re-
lation classification. This hinders researchers
from fully utilizing public-available models in
discourse analysis. This work is a straightfor-
ward, fine-tuned discourse performance com-
parison of seven pre-trained language mod-
els. We use PDTB-3, a popular discourse re-
lation annotated dataset. Through our model
search, we raise SOTA to 0.671 ACC and ob-
tain novel observations. Some are contrary to
what has been reported before (Shi and Dem-
berg, 2019b), that sentence-level pre-training
objectives (NSP, SBO, SOP) generally fail to
produce the best performing model for implicit
discourse relation classification. Counterintu-
itively, similar-sized PLMs with MLM and full
attention led to better performance.

1 Introduction

An utterance has multiple dimensions of meaning.
Discourse relation classification identifies one such
dimension: the coherence relation between clauses
or sentences arising from low-level textual cues
(Zhao and Webber, 2022; Webber et al., 2019).
This makes the task important to several NLP fields,
including multi-party dialogue analysis (Li et al.,
2022), social media postings analysis (Siskou et al.,
2022), and student literary writing analysis (Fiacco
et al., 2022). A discourse relation is often marked
with explicit connectives such as but, because, and.
Consider the following example:

Although Philip Morris typically tries
to defend the rights of smokers, ["this
has nothing to do with cigarettes, nor
will it ever," the spokesman says]Arg1.
[But]Conn [some anti-smoking activists
disagree]Arg2, expressing anger... →
Comparison.Contrast

The explicit connective, Conn (But), is informa-
tive. Hence, it is fairly easy to know that the two
arguments, Arg1 and Arg2, are compared, likely
in a contrasting relationship rather than similarity.
This task is often referred to as explicit discourse
relation classification. Pitler and Nenkova (2009)
achieves a 94.15% accuracy (4-way) with Naive
Bayes.

Implicit discourse relation classification, on the
other hand, aims to classify discourse relationships
in cases without an explicit connective. It has re-
ceived constant attention (Li et al., 2022) since the
release of Penn Discourse Tree Bank 2.0 (PDTB-2)
(Prasad et al., 2008). Consider the following:

["Last year we probably bought one
out of every three new deals,]Arg1,"
he says. "[This year, at best, it’s
in one in every five or six.]Arg2" →
Comparison.Contrast

Without an explicit connective, Conn, discourse
relation classification only relies on low-level se-
mantic cues from the arguments, Arg1 and Arg2.
Such "implicit" discourse relation classification is
very challenging as it requires a language model
to conceptualize the unstated goal the speaker is
trying to achieve, not only the literal content (Shi
and Demberg, 2019b; Sileo et al., 2019).

With XLNetlarge (Yang et al., 2019) achieving
∼60% accuracy (Kim et al., 2020), pre-trained lan-
guage models showed promising improvements
from the past studies: Maximum-Entropy Learn-
ing (∼40% F1) (Lin et al., 2014), Adversarial Net-
work (∼46% ACC) (Qin et al., 2017), Seq2Seq +
Memory Network (∼48% ACC) (Shi and Demberg,
2019a). Implicit discourse relation classification
gives relatively small textual information for a lan-
guage model to infer from. Thus, pre-training large
text helps establish typical relations within/across
clauses and sentences (Shi and Demberg, 2019b).
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Configurations ALBERTlarge BARTlarge BigBird-R. DeBERTalarge Longformerlarge RoBERTalarge SpanBERTlarge

Release 2019 2020 2020 2020 2020 2019 2020
Parameters 17M 406M - 350M 435M 340M 340M
Hidden 1024 1024 - 1024 1024 1024 1024
Layers 24 (Enc) 24 (Enc+Dec)∗ - 24 (Enc) 24 (Enc) 24 (Enc) 24 (Enc)
Attention Heads 16 16 - 16 16 16 16
Self-Attention Full Full Block-Sparse Full∗∗ Global+Window Full Full
Max Seq. Length 512 512 4096 512 4096 512 512
Pre-train Obj. MLM & SOP TI & SS - MLM MLM MLM MLM & SBO

Table 1: Tested language models and their varying configurations. ∗: BART follows the original encoder-decoder
architecture, 12 layers allocated for each. ∗∗: DeBERTa uses disentangled attention. MLM: masked language
modelling. SOP: sentence order prediction. SBO: span boundary objective. TI: text infilling. SS: sentence shuffling.

Pre-trained language models, like BERT (De-
vlin et al., 2018), follow transformer-type (Vaswani
et al., 2017) architecture and have only been re-
cently introduced into implicit discourse relation
classification (Kishimoto et al., 2020). To the best
of our knowledge, BERT and XLNet are the only
pre-trained language models (fine-tuned and) eval-
uated for implicit discourse relation classification
on PDTB-3 (Kim et al., 2020). However, language
models vary in architecture, training objective, data,
etc.

Instead of performing a focused study on a single
model, we fine-tune seven state-of-the-art (SOTA)
language models (§2). Our wider approach brings
weaknesses (§5) (as we ignore some model-specific
characteristics), but it allows the bird’s-eye view
of several downstream performances in PDTB-3
(§3) (Webber et al., 2019) and raises SOTA (∼67%
ACC) on Kim et al. (2020)’s evaluation protocol.
By contrasting performances, we show that certain
language model characteristics can benefit implicit
discourse relation classification.

Additionally, we take the best-performing lan-
guage model and check if the "full-sentence(s)"
setup gives better performance (§3.4). As we elab-
orate further in the following sections, our sanity
checks on PDTB-3 hint that some argument an-
notations are questionable in terms of consistency
and coverage. Hence, implicit discourse relation
classification accuracy might improve by simply
training the language model with a full sentence(s)
instead of human-annotated argument spans (Arg1
and Arg2). We evaluate this idea toward the end.

2 Background

The pre-train and fine-tune paradigm have been
led by the remarkable downstream task perfor-
mances of pre-trained language models (Kalyan
et al., 2021; Devlin et al., 2018). For several NLP
tasks, a pre-trained language model could have

likely done a fine job at learning syntax, seman-
tics, and world knowledge – given enough data and
model size (Wang et al., 2019).

A pre-trained language model’s competence in
discourse was questionable until Shi and Demberg
(2019b) proposed that BERT’s pre-training objec-
tive can benefit implicit discourse relation classifi-
cation. However, Iter et al. (2020) hints that BERT
is not the language model best suited to the task.

Implicit discourse relation classification is an ac-
tive area of research (Kurfalı, 2022; Zhao and Web-
ber, 2022; Kurfalı and Östling, 2021b; Knaebel,
2021; Munir et al., 2021; Kurfalı and Östling,
2021a; Kishimoto et al., 2020; Bourgonje and
Stede, 2019; Shi and Demberg, 2019b; Bai and
Zhao, 2018; Dai and Huang, 2018; Rutherford
et al., 2017). However, there has been no wide-
range model study on implicit discourse relation
classification, limiting a researcher’s scope of
model choice. This issue is further complicated
by the fact that discourse task performances do not
always correlate with popular semantics-based nat-
ural language understanding (NLU) scores, such
as GLUE (Sileo et al., 2019). Thus, it is difficult
to predict which language model can perform well
without a dedicated empirical exploration.

With the a version update to Penn Discourse
Tree Bank (PDTB-3) (Webber et al., 2019) and the
correspondingly updated evaluation method (Kim
et al., 2020), we fine-tune seven language models
to implicit discourse relation classification.

The chosen language models are: RoBERTalarge
(Liu et al., 2019), ALBERTlarge (Lan et al., 2019),
BigBird-RoBERTalarge (Zaheer et al., 2020),
BARTlarge (Lewis et al., 2020), Longformerlarge
(Beltagy et al., 2020), SpanBERTlarge (Joshi et al.,
2020), DeBERTalarge (He et al., 2020a). These
models are selected with diversity in mind, espe-
cially in terms of input sequence length, attention
type, and pre-train objectives. These models fol-
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ALBERTlarge BARTlarge BigBird-R. DeBERTalarge Longformerlarge RoBERTalarge SpanBERTlarge

Hyperparameters

Learning Rate 5e-6 5e-6 5e-6 2e-6 5e-6 2e-6 5e-6

a: Argument Spans

Accuracy 0.565 0.657 0.649 0.671 0.668 0.670 0.627
Variance 2.53e-4 2.15e-4 4.02e-4 2.70e-4 2.15e-4 3.32e-4 1.78e-4

b: Full Sentence(s)

Accuracy 0.534 0.629 0.620 0.634 0.627 0.617 0.598
Variance 2.27e-4 4.28e-4 2.79e-4 3.75e-4 4.18e-4 3.62e-4 2.84e-4

Table 2: Language model performances (test set) on Level-2 14-way implicit discourse relation classification.

low the popular transformer architecture (Vaswani
et al., 2017), and we will not review each model in
detail. A brief comparison is shown in Table 1.

3 Experiments

3.1 Data Preparation

We obtained the official PDTB-3 data from the Lin-
guistic Data Consortium1. PDTB-3 is a large-scale
resource of annotated discourse relations and their
arguments over the 1 million words Wall Street
Journal Corpus (Marcus et al., 1993). From a pub-
lic repository2, we retrieved the corresponding eval-
uation script (Kim et al., 2020). We describe some
characteristics of the evaluation protocol below.

Cross-validation is used on the section level to
preserve paragraph and document structures. Cross-
validation likely solves label sparsity issue (Shi and
Demberg, 2017). The 25 sections of PDTB-3 are
divided into 12 folds with 2 development, 2 test,
and 21 training sections in each fold. The sliding
window of two sections is used, creating 12 folds.

Label set is composed of 14 senses on L2 dis-
course relations (see Appendix B). Only the senses
with ≥100 instances are used. This is to produce
results that are in align with Kim et al. (2020). This
alignment is crucial as we directly compared our
results against fine-tuend BERT from Kim et al.
(2020), which is trained with next sentence predic-
tion (NSP) objective. Multiply-annotated labels
become separate training instances.

3.2 Fine-Tuning

To ensure reproducibility, we only take pre-trained
language models from the now ubiquitous Hugging-
face (Wolf et al., 2019) transformers library.
Fine-tuning was done with PyTorch (Paszke et al.,
2019) and our scripts are publicly available.

1www.ldc.upenn.edu
2github.com/najoungkim/pdtb3

During fine-tuning, each training instance is a
concatenation of two arguments (= sequence of to-
kens in Arg1 and Arg2). BERT-type models carry
special tokens ([CLS], [SEP], [EOS]) for segmen-
tation: [CLS], Arg11 ... Arg1N , [SEP], Arg21 ...
Arg2M , [EOS]. Depending on the model, these spe-
cial tokens are modified or completely removed.

As for hyperparameter searches, we mostly fo-
cus on the learning rate. We use the popular
AdamW optimizer with a linear scheduler (no
warm-up steps). As for the learning rate, we start
from 2e-5, a value commonly used for text clas-
sification since Sun et al. (2019). We test lower
learning rates of 2e-6 and 5e-6; we find that 5e-6
(which is slightly lower than what is usually used
in sequence classification) performs best for almost
all models. The batch size is 8 and the max input
length is set at 256.

Lastly, for each experiment step (i.e. BART on
fold 1), we train for 10 epochs with an early stop.
The training stops if the current epoch’s valida-
tion loss (see development set §3.1) did not de-
crease from the previous epoch. Model training
time, GPU, language model repository address, and
other details on hyperparameters are in Appendix
C.

3.3 Evaluation and Observations

In Table 2-a, we report the mean test set accuracy of
12 folds along with variance. This is in alignment
with what was recommended by Kim et al. (2020).
Development set performances are given in Table 3
to facilitate reproducibility. For multiply-annotated
labels (also discussed in §3.1), the model only has
to get one label correct. We reach some surprising
observations, which we share below.

1) Sentence-level pre-train objectives are not
necessary to create best-performing models.
This is contrary to Shi and Demberg (2019b),
which proposed that NSP helps implicit discourse
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ALBERTlarge BARTlarge BigBird-R. DeBERTalarge Longformerlarge RoBERTalarge SpanBERTlarge

a: Argument Spans

Accuracy 0.566 0.663 0.653 0.673 0.669 0.670 0.629
Variance 2.94e-4 1.33e-4 1.62e-4 2.47e-4 1.68e-4 1.01e-4 2.03e-4

b: Full Sentence(s)

Accuracy 0.567 0.660 0.645 0.656 0.661 0.652 0.639
Variance 3.92e-4 4.59e-4 3.50e-4 1.85e-4 2.56e-4 4.10e-4 3.45e-4

Table 3: Language model performances (dev set) on Level-2 14-way implicit discourse relation classification.

relation classification after conducting an ablation
study on BERT. Their finding was intuitive as well
because implicit discourse relation classification
aims to find the relationship between two argument
spans.

But in a more general scope, the necessity of
NSP has been questioned multiple times (Yang
et al., 2019; Lample and Conneau, 2019). In other
words, NSP – or any other sentence-level pre-train
objective for that matter – could have been only
helpful in some specific ablation study of BERT-
type models but not in other cases (Liu et al., 2019).
We obtain supporting results in Table 2-a, where
language models with sentence-level objectives per-
formed worse than MLM-only models given simi-
lar model sizes (ALBERT is an exception).

2) Long-document modifications (mostly done
by altering attention schemes of an existing
model) decrease the original model performance.
At first, we postulated that long-document models
could lead to performance increases because they
can learn long-span discourse relations during pre-
training. But using sparse or block attention mech-
anisms eventually led to a performance decrease.

The decrease is clearly demonstrated by BigBird-
RoBERTalarge and Longformerlarge. Both models
start from the existing RoBERTalarge checkpoint
and modify it to process longer sequences. Such
modifications achieved performance increases in
other NLP tasks like question-answering, corefer-
ence resolution, and some cases of sequence clas-
sification. But implicit discourse relation classifi-
cation, which requires the model’s understanding
of dense discourse relations hidden within a few
tokens, long-document modification is a drawback.

3) The simplest combination of MLM and full
attention is best suited for implicit discourse re-
lation classification. We are making this argument
within the scope of what we have tested. We be-
lieve that MLM and full attention (e.g., RoBERTa,
DeBERTa) work best because the model has to
make inferences based on a relatively small num-
ber of tokens. Hence, trivial textual cues should

not be risked being overlooked. MLM, with full at-
tention, forces every token to attend to every other
and learn the token-specific relations, likely to lose
the least textual cues and nuances.

3.4 Train Full Sentence or Argument Span?
Following the aforementioned observations, we
postulated that fine-tuning language models using
full sentence(s) could further improve classifica-
tion accuracy. By full sentence(s), we refer to the
sentence(s) (usually up to two) that the annotated
argument spans appeared. We had two reasons for
our postulation: 1. textual cues that hint at under-
lying discourse relation could be spread through-
out the sentence(s), 2. argument span annotation
is sometimes inconsistent, especially at punctua-
tion marks, unnecessarily confusing the language
model. Implicit discourse relation classification
has rarely been tested using the full sentence.

We built an argument matcher to find the source
sentence of each annotated argument span. For
inter-sentential relations, we only considered ar-
gument spans that came from two adjacent source
sentences. We share the test set results in Table 2-b.
The results bring us to our fourth observation.

4) As input, concatenating argument spans
generally perform better than full sentence(s).
Opposed to our postulation, using full sentence(s)
as input decreased performance on the test set.
Though we see mixed results on the development
set in Table 3, training full sentences as input gen-
erally decrease performance. But when it comes
to implicit discourse sense classification from the
raw text (that means in practical, end-to-end ap-
plications), the benefits of using argument spans
must be weighed against the low accuracies (50%
∼ 60%) of the available argument extractors.

4 Conclusion

Researchers often build or modify a neural network
to improve task performance. While such effort is
essential, this paper shows that SOTA can also be
raised through extensive search and application of
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existing resources. Through a side-by-side compar-
ison of seven PLMs, we also make handy obser-
vations on pre-training objectives, long-document
modifications, and full-sentence setups. Though
some might consider these phenomena rather ex-
pected, nothing is scientifically conclusive until an
analysis is performed at an adequate scale. We
hope that our report helps researchers working to-
wards discourse understanding, and we continue to
discuss the missing details in the appendices.
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A “Full sentence(s)” Experiment

A.1 What Makes the Experiment Important?
This section is a continuation of §3.4. Here, we
discuss implicit discourse relation classification
from raw sentence(s), which we believe is the best
practical example of real-world applications of the
related fields. Such an end-to-end concept has
been popularized through CoNLL-2016 (Xue et al.,
2016) and CoNLL-2015 (Xue et al., 2015), and
most systems develop a separate argument span
identification model. Then, the identified argument
spans would be fed to the discourse relation classi-
fication model for sense prediction (refer to exam-
ples given in §1) (He et al., 2020b).

Such a double-step process makes sense. Indeed,
feeding the exact argument spans (that only contain
the tokens that imply a certain discourse sense) will
increase sense prediction performance.

But the problem arises because identifying argu-
ment spans from raw sentence(s) is a low accuracy
operation (Knaebel, 2021). A wrong span identi-
fication eventually leads to error propagation, pro-
viding a discourse relation classification model that
lacks textual information. We give a theoretical
error propagation example and conduct a simple
experiment to prove our point.

A.2 Theoretical Example of Error
Propagation

—–
1. A set of two raw sentences is given.

"Last year we probably bought one out of ev-
ery three new deals," he says. "This year, at
best, it’s in one in every five or six."

—–
2. Where correct argument spans are as below.

["Last year we probably bought one out of ev-
ery three new deals,]Arg1" he says. "[This
year, at best, it’s in one in every five or
six.]Arg2"

—–
3. But an argument span identification model
often makes wrong predictions (best system (?)
at CoNLL-2016 scores 52.02 F1, for exact span
match).

["Last year we probably bought one]Arg1 out
of every three new deals," he says. "This year,
at best, [it’s in one in every five or six.]Arg2"

—–
4. Now, compare the amount of textual information
passed over to the implicit discourse relation classi-
fication model, under three setups. Note that setup
1 cannot be used in real-world settings because it
requires PDTB-3’s gold annotations.

Setup 1) PDTB-3 (with gold annotations)

Last year we probably bought one out of every
three new deals This year, at best, it’s in one
in every five or six.

Setup 2) A low accuracy argument span model

Last year we probably bought one it’s in one
in every five or six.

22



Fine-tuned PLM
Argument Span

ACC F1

BERTlarge 0.912 0.742

Table 4: BERT’s performance (12-folds test set) on
PDTB-3’s argument spans.

Setup 3) Full sentence(s)

"Last year we probably bought one out of ev-
ery three new deals," he says. "This year, at
best, it’s in one in every five or six."

A.3 Experiment on Error Propagation

Though not all tokens are valuable under a full sen-
tence(s) setup, we can notice that it is a foolproof
way to input all meaningful tokens. Table 4 re-
ports the classification performance of BERTlarge,
which was trained to identify argument spans us-
ing PDTB-3. Our argument span scoring scheme
approximately matches CoNLL-16’s partial scor-
ing scheme, essentially a relaxed version of conlle-
val. That means we consider a prediction correct if
more than 70% of argument span tokens are identi-
fied. For implicit discourse relation classification,
a sense prediction is correct if it matches any of the
multiply-annotated senses.

BERT’s 0.912 ACC score implies that the model
could correctly identify at least 70% of the gold
argument span tokens more than 9 out of 10 times.
Nonetheless, error propagation detrimentally af-
fected implicit discourse relation classification per-
formance in Table 5. This empirically proves our
ideas in Appendix A.1.

Fine-tuned PLM
Implicit Sense

ACC F1

DeBERTalarge 0.670 0.671
with error propagation 0.476 0.491
full sentence(s) 0.634 0.637

Table 5: DeBERTa performances (12-fold test set) on
PDTB-3’s Level-2 14-way implicit discourse relation
classification, but under three different pipeline setups.

B 14-way Label Set

C More on Fine-tuning Set Up

We ran all our experiments on a single NVIDIA
Tesla V100 GPU. Model train time and repositories
are listed below. Training times below suppose no

Label Counts

Comparison.Concession 1494
Comparison.Contrast 983
Contingency.Cause 5785
Contingency.Cause+Belief 202
Contingency.Condition 199
Contingency.Purpose 1373
Expansion.Conjunction 4386
Expansion.Equivalence 336
Expansion.Instantiation 1533
Expansion.Level-of-detail 3361
Expansion.Manner 739
Expansion.Substitution 450
Temporal.Asynchronous 1289
Temporal.Synchronous 539

Table 6: Counts of 14-way implicit discourse senses.

early stop. The performances reported in Table 2
are obtained with early stop.
ALBERTlarge

- huggingface.co/albert-large-v1
- ∼2.4 days, for 12 folds × 10 epochs

BARTlarge

- huggingface.co/facebook/bart-large
- ∼3.6 days, for 12 folds × 10 epochs

BigBird-RoBERTalarge
- huggingface.co/google/bigbird-roberta-large
- ∼3.2 days, for 12 folds × 10 epochs

DeBERTalarge
- huggingface.co/microsoft/deberta-large
- ∼4.6 days, for 12 folds × 10 epochs

Longformerlarge
- huggingface.co/allenai/longformer-large-4096
- ∼11 days, for 12 folds × 10 epochs

RoBERTalarge
- huggingface.co/roberta-large
- ∼2.9 days, for 12 folds × 10 epochs

SpanBERTlarge

- .../SpanBERT/spanbert-large-cased
- ∼2.9 days, for 12 folds × 10 epochs
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