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Abstract

Scientific publications follow conventionalized
rhetorical structures. Classifying the Argu-
mentative Zone (AZ), e.g., identifying whether
a sentence states a MOTIVATION, a RESULT
or BACKGROUND information, has been pro-
posed to improve processing of scholarly doc-
uments. In this work, we adapt and extend
this idea to the domain of materials science re-
search. We present and release a new dataset of
50 manually annotated research articles. The
dataset spans seven sub-topics and is annotated
with a materials-science focused multi-label
annotation scheme for AZ. We detail corpus
statistics and demonstrate high inter-annotator
agreement. Our computational experiments
show that using domain-specific pre-trained
transformer-based text encoders is key to high
classification performance. We also find that
AZ categories from existing datasets in other
domains are transferable to varying degrees.

1 Introduction

In academic writing, it is custom to adhere to a
rhetorical argumentation structure to convince read-
ers of the relevance of the work to the field (Swales,
1990). For example, authors typically first indi-
cate a gap in prior work before stating the goal of
their own research. Argumentative Zoning (AZ) is
a natural language processing (NLP) task in which
sentences are classified according to their argumen-
tative roles with varying granularity (Teufel et al.,
1999, 2009). AZ information can then be used
for summarization (Teufel and Moens, 2002; El-
Ebshihy et al., 2020), improved citation indexing
(Teufel, 2006), or writing assistance (Feltrim et al.,
2006).

Manually annotated AZ datasets (Teufel et al.,
1999; Fisas et al., 2016; Soldatova and Liakata,
2007) only exist for few domains and employ dif-
fering annotation schemes. The resulting models
are not directly applicable to our domain of in-
terest, materials science research, which presents

Label Count Label Count

MOTIVATION 363 EXPLANATION 603
BACKGROUND 3155 RESULTS 2953
- PRIORWORK 1824 CONCLUSION 680
EXPERIMENT 2579 HEADING 702
- PREP. 962 CAPTION 485
- CHARACT. 1347 METADATA 210

Table 1: MuLMS-AZ label counts (multi-label).

a challenging domain for current NLP methods
(e.g., Mysore et al., 2019; Friedrich et al., 2020;
O’Gorman et al., 2021). In this paper, we present
MuLMS-AZ, the first dataset annotated for AZ in
this domain. Working together with domain ex-
perts, we derive a hierarchical multi-label annota-
tion scheme (see Table 1). Our scheme includes
domain-specific labels such as descriptions of the
materials’ PREPARATION and CHARACTERIZA-
TION, which are crucial distinctions also for NLP
applications from the domain experts’ view.

This resource paper makes the following con-
tributions:

• We present a dataset of 50 scientific articles
(more than 10,000 sentences) in the domain of
materials science manually annotated by domain
experts with a hierarchical fine-grained annota-
tion scheme for AZ with high agreement. The
corpus will be publicly released.1

• We apply several neural models to our dataset
that will serve as strong baselines for future work
using our new benchmark. We find (a) that using
domain-specific pre-trained transformers is key
to a successful model, (b) that multi-task learning
with existing AZ datasets leads to small benefits,
and (c) that the effectiveness of transfer learning
of materials science AZ labels from other corpora
differs by label.

1https://github.com/boschresearch/mulms-az-codi2023
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2 Related Work

In this section, we describe related work on AZ.
AZ Datasets. Table 2 shows the statistics of

several related datasets. Three larger-scale datasets
manually annotated with AZ information are the
AZ-CL corpus (Teufel et al., 1999; Teufel and
Moens, 1999), consisting of computational linguis-
tics papers, the Dr. Inventor Multi-Layer Scien-
tific Corpus (DRI, Fisas et al., 2016, 2015), featur-
ing computer graphics papers, and, closest to our
domain, the ART corpus (Soldatova and Liakata,
2007), covering topics in physical chemistry and
biochemistry. Appendix E explains these datasets
in more detail. Teufel et al. (2009) also apply and
adapt the annotation scheme of the AZ-CL corpus
to the chemistry domain. Accuosto et al. (2021)
label sentences with argumentation-related cate-
gories (e.g., proposal, means, observation). Mak-
ing use of sentence-wise author-provided keywords,
a dataset of about 388k abstracts with silver stan-
dard rhetorical role annotations has been derived
from PubMed/MEDLINE (de Moura and Feltrim,
2018).

Modeling. AZ has been modeled as a sentence
classification task using maximum entropy models
(Teufel and Kan, 2009), SVMs, and CRFs (Guo
et al., 2011) leveraging a variety of word, grammat-
ical, heuristic, and discourse features (Guo et al.,
2013). Ensemble-based classifiers have also been
shown to be effective (Badie et al., 2018; Asadi
et al., 2019). LSTM-based models relying on
word embeddings have been applied to AZ and
to the fundamentally very similar task of assigning
zones to sentences in job ads (Liu, 2017; de Moura
and Feltrim, 2018; Gnehm and Clematide, 2020).
BERT-style (Devlin et al., 2019) models work well
for AZ (Mo et al., 2020; Brack et al., 2022). Multi-
task training has been found to be beneficial for
these models both in-domain (Lauscher et al., 2018)
as well as cross-domain (Brack et al., 2021).

Datasets in the Materials Science Domain.
Several datasets targeting the domain of materi-
als science research have recently been released.
Mysore et al. (2019) annotate paragraphs describ-
ing synthesis procedures with graph structures cap-
turing relations and typed arguments. Friedrich
et al. (2020) mark similar graph structures corre-
sponding to experiment information in 45 open-
access publications. Several works and datasets
address named entity recognition in the domain
(Yamaguchi et al., 2020; O’Gorman et al., 2021).

AZ-CL ART DRI MuLMS-AZ

# docs 80 225 40 50
# sents 12818 34995 10784 10186
# labels 7 11 10 12

Table 2: Manually annotated AZ corpora.

3 Data Sources and Annotated Corpus

In this section, we present our new dataset.
Source of Texts and Preprocessing. We select

50 scientific articles licensed under CC-BY from
seven sub-areas of materials science: electrolysis,
graphene, polymer electrolyte fuel cell (PEMFC),
solid oxide fuel cell (SOFC), polymers, semicon-
ductors, and steel. The four SOFC papers were se-
lected from the SOFC-Exp corpus (Friedrich et al.,
2020). 11 papers were selected from the OA-STM
corpus2 and classified into the above subject areas
by a domain expert. The majority of the papers
were found via PubMed3 and DOAJ4 using queries
prepared by a domain expert. For the OA-STM
data, we use the sentence segmentation provided
with the corpus, which has been created using GE-
NIA tools (Tsuruoka and Tsujii, 2005). For the
remaining texts, we rely on the sentence segmen-
tation provided by INCEpTION v21.0 (Klie et al.,
2018) with some manual fixes.

Annotation Scheme. AZs are functional sen-
tence types, i.e., they capture the rhetorical func-
tion of a sentence. Together with several domain
experts, we design a hierarchical scheme tailored
to the materials science domain as shown in Ta-
ble 3. In addition, we provide ABSTRACT, HEAD-
ING, METADATA, CAPTION, FIGURE/TABLE an-
notations for structural information. We assume a
multi-label setting in which annotators may assign
any number of labels to a sentence. Our detailed
guidelines are available with our dataset.

Corpus Statistics. Documents are rather long
(on average 203.7 sentences per document with a
standard deviation of ±73.2). There is a tendency
towards long sentences (28.7 tokens per sentence
on average), but with high variation of ±17.9 due
to, e.g., short headings. Table 1 shows how often
each AZ label occurs. When ignoring tags for struc-
tural information 8133 sentences have exactly one
AZ label (or the AZ label and its supertype), 1056
sentences have two labels, and 11 sentences have 3

2https://github.com/elsevierlabs/OA-STM-Corpus
3https://pubmed.ncbi.nlm.nih.gov/
4https://doaj.org/

2

https://github.com/elsevierlabs/OA-STM-Corpus
https://pubmed.ncbi.nlm.nih.gov/
https://doaj.org/


Label Description Example

MOTIVATION aims/motivation of the study In this study, we perform a systematic analysis of ...
BACKGROUND textbook-like technical background The method is based on the Kelvin equation.
- PRIORWORK specific prior work relevant to current study Irmawati et al. has concluded that ...
EXPERIMENT description of the experiment We evaluate PtCo nanoparticle catalyst ...
- PREPARATION steps describing the preparation of samples The mixture was subjected to stirring for 60 minutes.
- CHARACT. characterizations and characterization Ni foam surface coverage of the WO3 thin film and its

techniques of the involved materials homogeneity were analyzed by energy–dispersive X-ray
spectroscopy (EDS).

EXPLANATION statements (hypotheses or assumptions) In our calculation, all Pt loadings were considered
relevant to results or experimental settings to be electrochemically active.

RESULTS details on experimental results The hydrogen adsorption/desorption peak is at about 0.2V.
CONCLUSION conclusions and take-aways This result indicated that ...

Table 3: Content-based MuLMS-AZ Argumentative Zoning sentence labels.

labels. Labels are similarly distributed across data
splits (see Appendix D).

Inter-Annotator Agreement. Our entire dataset
has been annotated by a single annotator, a gradu-
ate student of materials science, who was also in-
volved in the design of the annotation scheme. We
compare the annotations of this main annotator to
those of another annotator who holds a Master’s de-
gree in materials science and a PhD in engineering.
The agreement study is performed on 5 documents
(357 sentences). Due to the multi-label scenario,
following Krippendorff (1980) we measure κ (Co-
hen, 1960) for each label separately, comparing
whether each annotator used a particular label on
an instance or not (see Table 4). Our annotators
achieve “substantial” agreement (Landis and Koch,
1977) on most labels, “perfect” agreement on iden-
tifying HEADINGs (see also Appendix D). Lower,
though still “moderate”, agreement on MOTIVA-
TION, EXPLANATION and CONCLUSION can in
part be explained by their lower frequency which
makes it generally harder to obtain high κ-values.
Intuitively, they also have a more difficult nature
compared to the other tags, e.g., we observe dis-
agreements regarding what constitutes a MOTIVA-
TION or an EXPLANATION versus what is purely
reporting BACKGROUND. The full confusion ma-
trix and a discussion of agreement on subtags are
given in Appendix D; a discussion of multi-label
examples can be found in Appendix F.

Our scores are in the same ballpark as those
reported by Teufel et al. (1999) on a similar annota-
tion task. For their 7-way task, they report κ scores
around 0.71-0.75, with differences between cate-
gories in one-vs-all measurements ranging from
about 0.49 to 0.78. In sum, we conclude that agree-
ment on AZ is satisfactory in our dataset.

AZ Label κ AZ Label κ

HEADING 0.89 METADATA 0.76
MOTIVATION 0.44 BACKGROUND 0.75
CONCLUSION 0.55 EXPERIMENT 0.78
EXPLANATION 0.39 RESULTS 0.70

Table 4: IAA for AZ on 357 sentences.

4 Modeling

We model AZ as a multi-label classification prob-
lem, using BERT (Devlin et al., 2019) as the un-
derlying text encoder. We also test domain-specific
pre-trained variants of BERT. SciBERT (Beltagy
et al., 2019) has been pre-trained on articles in
the scientific domain. MatSciBERT (Gupta et al.,
2022) is a version of SciBERT further pre-trained
on materials science articles. We use the CLS em-
bedding as input to a linear layer, transform logits
using a sigmoid function and choose labels if their
respective score exceeds 0.5. For multi-task experi-
ments with other datasets, we use a single shared
language model and one linear output layer per
dataset. For hyperparameters, see Appendix A.

As shown in Table 1, the dataset suffers from
strong class imbalance. Classifiers tend to under-
perform on minority labels (Johnson and Khosh-
goftaar, 2019). To address this problem, we apply
the multi-label random oversampling (ML-ROS,
Charte et al., 2015) algorithm during training. The
main idea behind ML-ROS is to dynamically du-
plicate instances of minority classes while taking
the multi-label nature of the problem into account.
In a nutshell, the algorithm performs several over-
sampling iterations, keeping track of the imbalance
ratios associated with each label and choosing in-
stances that carry minority labels until a predefined
number of additional samples have been chosen.
Details are given in Appendix B.
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Method LM mic.-F1 mac.-F1

No Oversampling BERT 72.6±1.0 65.5±0.7

MatSciBERT 76.3±0.7 70.1±0.7

SciBERT 76.2±0.9 70.2±0.6

ML-ROS SciBERT 76.7±0.7 70.6±0.9

+ MultiTask ART SciBERT 75.0±0.9 68.9±1.1

+ MultiTask AZ-CL SciBERT 77.2±0.3 71.1±0.5

human agreement* 78.7 74.9

Table 5: AZ classification results on MuLMS-AZ test
set. *Not directly comparable: computed on documents
from agreement study (see Appendix D).

5 Experimental Results

We here detail our experimental results.
Settings. We split our corpus into train, dev, and

test sets of 36, 7, and 7 documents. For all experi-
ments and for hyperparameter tuning, we always
train five models. The training data is split into
five folds. Similar to cross-validation, we train on
four folds and use the fifth fold for model selection
(cf. van der Goot, 2021), repeating this process five
times (also for hyperparameter tuning). The dev
set is only used for tuning, and we report scores for
the five models on test. In this setting, deviations
are naturally higher than when reporting results
for the same training data. For hyperparameters
and implementation details, see Appendix A. To
evaluate our experiments, we use hierarchical preci-
sion, recall, and F1 (Silla and Freitas, 2011). These
scores operate on the sets of labels per instance,
always including the respective supertypes of gold
or predicted labels.

Results. Table 5 shows the performance of our
neural models on MuLMS-AZ. Overall, the cate-
gories can be learned well, approaching our esti-
mate of human agreement. SciBERT clearly out-
performs BERT, i.e., using domain-specific embed-
dings is a clear advantage. However, MatSciBERT
does not add upon SciBERT. We hence conduct
the remaining experiments using SciBERT. Using
ML-ROS results in minor increases for most labels
(see also Appendix G). When multi-task learning
with the AZ-CL dataset (using 40% of its samples),
further increases are observed. It is worth noting
that multi-task training with ART does not result
in increases although the chemistry domain should
be much closer to our domain. This might indicate
that despite the domain discrepancy, AZ annota-
tions in AZ-CL are more compatible with ours.

As a first step to explaining what part of rhetori-

Training data PM Label P R

PM, AZ-CL, ART, DRI OBJECTIVE 36.1 28.3
PM, AZ-CL, ART, DRI BACKGROUND 84.2 40.0
PM, ART, DRI METHOD 58.1 74.7
PM, ART, DRI RESULT 82.4 30.9
PM, ART, DRI CONCLUSION 43.5 29.9
MuLMS-AZ OBJECTIVE 56.8 54.3
MuLMS-AZ BACKGROUND 82.1 78.8
MuLMS-AZ METHOD 79.9 78.2
MuLMS-AZ RESULT 82.1 83.2
MuLMS-AZ CONCLUSION 43.5* 29.9*

Table 6: Results for transfer learning experiment. Preci-
sion and recall on MuLMS-AZ test set. *not a typo.

cal information can be induced based only on data
from other corpora, we perform a transfer learning
experiment. We carefully manually map the AZ la-
bels of the various datasets (see Appendix E) to the
coarse-grained categories used by PubMed (PM).
Using these mapped labels, we train binary classi-
fiers that aim to detect the presence of a particular
PM label. As training data, we use ART, DRI, and
a selection of documents from the PM dataset by
de Moura and Feltrim (2018) that were published
in materials science journals (see Appendix C). We
add AZ-CL to the training data only if an unam-
biguous mapping of its categories to the PM label
in question is possible. Here, we use the dev set of
MuLMS-AZ for model selection and hyperparame-
ter tuning. Results for running the resulting classi-
fiers on MuLMS-AZ are reported in Table 6. For
BACKGROUND and RESULTS, we observe a high
precision, which indicates that similar rhetorical
elements may be used. OBJECTIVE and METHOD

seem to differ most across datasets as they are likely
very domain- and problem-specific. When train-
ing with mapped labels on the entire MuLMS-AZ,
we observe much higher recall scores across all
label groups, again indicating the usefulness of our
in-domain training data.

6 Conclusion and Outlook

We have presented a new AZ corpus in the field
of materials science annotated by domain experts
with high agreement. Our experimental results
demonstrate that strong classifiers can be learned
on the data and that AZ labels can be transferred
from related datasets only to a limited extent.

Our new dataset opens up new research opportu-
nities on cross-domain AZ, class imbalance scenar-
ios, and integrating AZ information in information
extraction tasks in materials science.
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Limitations

This resource paper describes the dataset in detail,
providing strong baselines and first initial cross-
domain experiments. It does not aim to provide
an extensive set of experiments on cross-domain
argumentative zoning yet.

The entire dataset is only singly-annotated. The
agreement study was performed on complete docu-
ments and hence has only limited data for several
labels. Due to the limited funding of the project,
we could double-annotate the entire dataset.

Finally, we only test one model class (BERT-
based transformers). A potential next step is to
test a bigger variety of models and embeddings.
Because AZ labels are interdependent within a doc-
ument, especially document-level models or CRF-
based models are promising methods to try. We
have also tested only one method (multi-label ran-
dom oversampling) to deal with the strong class
imbalance in the dataset. We have not yet tested
further such methods (Henning et al., 2023) or data
augmentation methods.

Ethical Considerations

We took care of potential license issue of the data
underlying our dataset by exclusively selecting
open-access articles published under CC BY.

The main annotator was paid above the mini-
mum wage of our country in the context of a full-
time internship. The annotator was aware of the
goal of the study and consents to the public release
of the data. The remaining domain experts partici-
pated on a voluntary basis due to their interest in
the topic.
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Appendix

A Hyperparameters

We implement all our models using PyTorch. We
use AdamW (Loshchilov and Hutter, 2019) as the
optimizer for all our models and set the batch size
to 16/32 depending on what works best and GPU
restrictions. The learning rate stays constant after
a linear warmup phase. We set a dropout rate to
0.1 for the linear layer that takes the contextualized
embeddings that are produced by BERT as input.
Early stopping is applied if the micro-F1 score has
not improved for more than 3 epochs. Binary cross
entropy is the loss function for the MuLMS-AZ out-
put layer, whereas cross entropy is the loss function
used for optimizing the multi-task output heads cor-
responding to the other AZ datasets. Table 7 lists
the various learning rates found during grid search.
We tested different learning rates between 1e-4 and
1e-7. A refinement of the grid was done after an ini-
tial search, which almost always leads to a second
search area within the range of 1e-6 to 9e-6. When
using ML-ROS, we oversample by 20%. Training
was performed on a single Nvidia A100 GPU or
alternatively V100 GPU.

Method LM Learning Rate

No Oversampling BERT 3e-6
MatSciBERT 8e-6
SciBERT 3e-6

ML-ROS SciBERT 2e-6
+ MT (+PM) SciBERT 7e-6
+ MT (+ART) SciBERT 2e-6
+ MT (+AZ-CL) SciBERT 2e-6
+ MT (+DRI) SciBERT 1e-6
+ MT (+ART+AZ+DRI) SciBERT 8e-6
Data Augm. (+PM) SciBERT 8e-6

Table 7: Learning rates of the different model reported
in Table 12

B Multi-Label Random Oversampling
(ML-ROS) Algorithm

Figure 1 details our adaption of the multi-label ran-
dom oversampling (ML-ROS) algorithm originally
proposed by Charte et al. (2015). In the initializa-
tion (lines 3-7), for each label, all the instances that
carry a particular label are collected in what Charte
et al. call a bag. The main part of the algorithm
(lines 10-24) does the following: For each label y,
the Imbalance Ratio per label (IRLbl), which is
the ratio between the count of the most frequent

label and the count of y, is calculated:

IRLbl(y) =
maxy′∈L

∑|D|
i=1 h(y

′, Yi)∑|D|
i=1 h(y, Yi)

D is the dataset, L is the label set, Yi is the set
of labels assigned to the i-th sample and h is an
indicator function evaluating if y ∈ Yi. Hence,
the larger the value, the less frequently y occurs
compared to the most frequent label.

The per-label values are then used to determine
the mean imbalance ratio (MeanIR):

MeanIR =
1

|L|
∑

y′∈L
IRLbl(y′)

For each of the labels with an imbalance ratio
exceeding the current MeanIR, a random instance
of this label is duplicated.

The main part is repeated until the pre-specified
size of the oversampled dataset is reached. Our
implementation differs from Charte et al. in that
we update meanIR in each iteration step and also
oversample labels originally not being a minority
label when their IRLbl exceeds MeanIR at the
beginning of an iteration step.

C List of Materials Science Journals

We used the list of materials-science related jour-
nals collected on Wikipedia to filter for abstracts in
the PubMed Medline corpus published in journals.5

D Further Corpus Statistics for
MuLMS-AZ

Table 8 gives the counts of sentences carrying a par-
ticular AZ label. Distributions are similar across
data splits. Table 8 also lists counts for ABSTRACT,
which we decide to exclude from our modeling
experiments because including it resulted in per-
formance decreases due to confusion with other
labels. Locating the abstract in a document can
usually be solved in rule-based ways as abstracts of
publications are commonly available in a machine-
readable format.

During annotation, we introduced two subtypes
of EXPLANATION, HYPOTHESIS and ASSUMP-
TION, distinguishing between scientific hypotheses
and assumptions made by the author in cases where
often choices are possible. As the overall counts

5https://en.wikipedia.org/w/index.php?title=List_of_materials_
science_journals&oldid=1078212543
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1 I n p u t s : < D a t a s e t > D, < P e r c e n t a g e > P
2 O u t p u t s : Oversampled d a t a s e t
3 samplesToDuplicate <−− |D|/100 ∗ P # P % s i z e i n c r e m e n t
4 L <−− l a b e l s I n D a t a s e t (D ) # Obta in t h e f u l l s e t o f l a b e l s
5 f o r each label in L do # Bags o f samples f o r each l a b e l
6 Baglabel <−− g e t S a m p l e s P e r L a b e l ( label )
7 end f o r
8

9 whi le samplesToDuplicate > 0 do # Loop d u p l i c a t i n g i n s t a n c e s
10 MeanIR <−− c a l c u l a t e M e a n I R (D,L )
11 # Gather m i n o r i t y bags ( bag : a l l i n s t a n c e s o f a g i v e n l a b e l )
12 minBags = [ ]
13 f o r each label in L do
14 IRLbllabel <−− c a l c u l a t e I R p e r L a b e l (D, label )
15 i f IRLbllabel > MeanIR t h e n
16 minBags += Baglabel
17 end i f
18 end f o r
19 # D u p l i c a t e a random sample from each m i n o r i t y bag
20 f o r each minBagi in minBags do
21 x <−− random (1, |minBagi| )
22 d u p l i c a t e S a m p l e (minBagi, x )
23 −− samplesToDuplicate
24 end f o r
25 end whi le

Figure 1: Pseudocode for adapted (dynamic) ML-ROS algorithm.

and agreement were low, we decided to only use
the supertype EXPLANATION in all experiments.

Figure 2a shows the label coincidence matrix
between the two annotators in the inter-annotator
agreement study, i.e., how often each pair of labels
co-occurred on an instance. For all labels except
MOTIVATION, the majority of coincidences occur
on the diagonal. RESULTS is the label most mixed
up with others, possibly because these sentences
often are long and also contain interpretative infor-
mation of the other rhetorical types.

Figure 2a breaks this information down the level
including subtypes. CHARACTERIZATION and
PREPARATION are rarely confused by the domain
experts. Similarly, BACKGROUND and PRIOR-
WORK are reliably distinguished.

Agreement on sub-labels. Our agreement study
contained only 12 CAPTION instances. Data
inspection showed that the additional (not the
main) annotator neglected to use this tag where
appropriate, using only content-related tags on
these instances. There were also not enough
instances of the subtypes PREPARATION and
EXPERIMENT_CHARACTERIZATION to measure
agreement. On identifying the subtype BACK-
GROUND_PRIORWORK, annotators achieve a κ
of 0.8, with (minor) disagreements mainly with
regard to using BACKGROUND or its subtype.

Label total train dev test

MOTIVATION 363 273 44 46
BACKGROUND 3155 2423 440 292
-PRIORWORK 1824 1387 265 172
EXPERIMENT 2579 1896 394 289
-CHARACTERIZATION 1347 982 200 165
-PREPARATION 962 705 146 111
EXPLANATION 603 430 91 82
RESULTS 2953 2146 440 367
CONCLUSION 680 507 106 67

ABSTRACT 269 190 28 51
CAPTION 485 309 91 85
HEADING 702 536 96 70
METADATA 210 142 40 28

Table 8: Label counts on the complete dataset and
on data split subsets. Multi-label counts: Number of
sentences in which the label is present. Due to multi-
labeling, the sum of these columns exceeds the total
amount of sentences. For hierarchical labels, the super-
label count includes all sub-label counts.

Agreement on HEADING. As it should be
straightforward to identify headings, we looked
at the 6 cases that one annotator labeled as HEAD-
ING but not the other. We found 4 cases to result
from broken formatting. One METADATA sentence
was wrongly labeled HEADING, and the remain-
ing HEADING sentence was missed by the other
annotator.
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Figure 2: Coincidence matrices of inter-annotator agreement study for AZ labels on 357 sentences.

Precision Recall F1 support

micro avg. 77.3 80.0 78.7
macro avg. 75.0 76.1 74.9

HEADING 100.0 81.2 89.7 32
METADATA 75.0 81.8 78.3 11
MOTIVATION 50.0 44.4 47.1 18
BACKGROUND 77.0 89.5 82.8 105
-PRIORWORK 77.9 90.9 83.9 66
EXPERIMENT 80.0 84.5 82.2 71
-PREPARATION 92.6 73.5 82.0 34
CHARACTERIZATION 61.7 78.4 69.0 37
RESULTS 85.7 70.2 77.2 94
CONCLUSION 50.0 66.7 57.1 18

Table 9: Human agreement computed in terms of hierar-
chical precision, recall, and F1.

Human “upper bound”. In order to provide a
rough estimate of how humans would perform on
the classification task, we use the data from the
agreement study to compute hierarchical precision,
recall, and F1 scores. Due to insufficient data for
the remaining labels, we only compute the scores
over the following labels: HEADING, METADATA,
MOTIVATION, BACKGROUND, PRIORWORK, EX-
PERIMENT, PREPARATION, CHARACTERIZATION,
RESULTS, and CONCLUSION. Table 9 reports de-
tailed scores per label. Scores have been computed
using scikit-learn6.

6https://scikit-learn.org/stable

E Description and Comparison of AZ
Datasets.

In this section, we provide a detailed description
and comparison of existing AZ datasets. The vari-
ous corpora try to capture very similar information.
However, each corpus defines its set of labels in a
slightly different way. Table 10 lists the various la-
bels used in the datasets and groups labels used for
the same or very similar purpose. Table 11 shows
the label distributions of the corpora.

AZ-CL corpus. The Argumentative Zoning (AZ,
Teufel et al., 1999; Teufel and Moens, 1999) cor-
pus7 consists of 80 manually annotated open-access
computational linguistics research articles. Sen-
tences are marked according to their argumentative
zone or rhetorical function as one of the following
classes: AIM, BACKGROUND, BASIS, CONTRAST,
OTHER, OWN or TEXT. Inter-annotator agreement
is reported as substantial (κ = 0.71). The distribu-
tion of classes is quite skewed towards OTHER and
OWN.

ART corpus. The ART corpus8 (Soldatova and
Liakata, 2007) covers topics in physical chem-
istry and biochemistry. Articles are annotated
according to the CISP/CoreSC annotation scheme
(Liakata and Soldatova, 2008). Sentences are

7https://github.com/WING-NUS/RAZ
8https://www.aber.ac.uk/en/cs/research/cb/projects/art/art-corpus/
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PubMed AZ-CL ART DRI MuLMS-AZ Description

OBJECTIVE AIM HYPOTHESIS CHALLENGE MOTIVATION A sentence describing the research
MOTIVATION target, goal, aim or the motivation
GOAL for the research.

BACKGROUND BACKGROUND BACKGROUND BACKGROUND BACKGROUND A statement concerning the knowledge
CONTRAST PRIORWORK domain or previous related work.
BASIS

METHOD OWN OBJECT, APPROACH EXPERIMENT A sentence describing the research
METHOD PREPARATION procedure, models used, or observations
MODEL CHARACTERIZ. made during the research.
EXPERIMENT EXPLANATION
OBSERVATION

RESULT OWN RESULT OUTCOME RESULTS A sentence describing the study findings,
EXPLANATION effects, consequences, and/or analysis of

the results.

CONCLUSION OWN CONCLUSION OUTCOME CONCLUSION A statement concerning the support or
FUTUREWORK rejection of the hypothesis or suggestions

of future research.

– TEXT – SENTENCE – Example sentences, broken sentences, etc.
OTHER UNSPECIFIED

Table 10: AZ Corpus Zones Mapping and Descriptions. Compare to Table 3.

labeled with one of the categories HYPOTHE-
SIS, MOTIVATION, GOAL OF INVESTIGATION,
BACKGROUND, OBJECT OF INVESTIGATION, RE-
SEARCH METHOD, MODEL, EXPERIMENT, OB-
SERVATION, RESULT or CONCLUSION. The anno-
tation scheme also defines subcategories for some
of these. The corpus has been annotated by domain
experts. In a preliminary study, κ was measured as
0.55, however, for the final corpus, only the anno-
tators that had the highest average agreement were
selected. Hence, the agreement in the final corpus
is expected to be higher.

DRI corpus. The Dr. Inventor Multi-Layer Sci-
entific Corpus9 (DRI, Fisas et al., 2016, 2015),
contains 40 scientific articles taken from the do-
main of computer graphics. Each of the 10,784
sentences was annotated with one of the rhetori-
cal categories: CHALLENGE, BACKGROUND, AP-
PROACH, OUTCOME or FUTUREWORK. They have
also included two other categories SENTENCE for
sentences that are characterized by segmentation
or character encoding errors and UNSPECIFIED for
sentences where identification is not possible. Also
to note was the possibility to annotate a combi-
nation of two different categories as seen in the
example of: OUTCOME_CONTRIBUTION, CHAL-
LENGE_GOAL and CHALLENGE_HYPOTHESIS.
Manual annotation reaches a κ value of 0.66.

9http://sempub.taln.upf.edu/dricorpus

PubMed corpus. The PubMed corpus10

(de Moura and Feltrim, 2018) contains abstracts of
papers in the biomedical domain extracted from
PUBMED/MEDLINE. The collected abstracts
were written in English and annotated with
predefined section names by their authors; based
on the mapping provided by the U.S. National
Library of Medicine (NLM), the section names
were collapsed into five rhetorical roles: BACK-
GROUND, OBJECTIVE, METHODS, RESULTS,
and CONCLUSIONS. The abstracts that did not
contain the five mentioned rhetorical roles were
removed from the dataset with the resulting corpus
containing close to 5 million sentences. The
dataset is not particularly challenging: a simple
CRF model achieves an F-score of 93.75, an
LSTM-based model achieves 94.77 according to
de Moura and Feltrim (2018).

F Examples

In this section, we present and discuss several ex-
amples from our dataset.

F.1 Example Sentences

• MOTIVATION: Therefore, it is highly desir-
able to develop an innovative technology to
raise the mass activity of Ir-based OER cata-
lysts to the targeted level.

10https://github.com/dead/rhetorical-structure-pubmed-abstracts
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Dataset Label Count

AZ-CL OWN 8624
OTHER 2019
BACKGROUND 789
CONTRAST 600
AIM 313
BASIS 246
TEXT 227

ART RESULT 7373
BACKGROUND 6657
OBSERVATION 4659
METHOD 3751
MODEL 3456
CONCLUSION 3083
EXPERIMENT 2841
OBJECT 1190
HYPOTHESIS 656
GOAL 548
MOTIVATION 466

DRI APPROACH 5038
BACKGROUND 1760
SENTENCE 1247
OUTCOME 1175
UNSPECIFIED 759
CHALLENGE 351
OUTCOME_CONTRIBUTION 219
FUTUREWORK 136
CHALLENGE_HYPOTHESIS 7

MatSci PubMed RESULTS 1282
OBJECTIVE 1264
METHODS 1198
CONCLUSION 380
BACKGROUND 60

Table 11: Label counts for the different AZ corpora.

• BACKGROUND: For photocatalytic water
splitting using photoelectrochemical cells
(PECs), the charge carriers are created from
the photovoltaic effect close to the catalytic
site.

• PRIORWORK: Proton exchange membrane
(PEM) electrolysis, which occurs in acidic
electrolytes (pH 0–7), has better efficiency
and enhanced ramping capability over other
types of electrolysis [7].

• EXPERIMENT: In order to find an optimum ef-
ficiency of the PV–electrolysis, different com-
binations of the electrolyzer with A-CIGS-
based thin film solar cell modules with dif-
ferent band gaps of the cell were examined.

• PREPARATION: Pre-sputtering was per-
formed for 5 min in argon plasma in order
to remove surface impurities.

• CHARACTERIZATION: The current density-
potential (j–V) characteristics of the A-CIGS

cells were recorded under simulated AM 1.5G
sunlight in a set-up with a halogen lamp
(ELH).

• EXPLANATION: A possible explanation for
the superior ECSA-specific activity in the 3D
WP-structured catalysts is efficient removal of
oxygen bubbles from the catalyst layer.

• RESULTS: The load curves were similar for
the electrolyzers with different WO3 thin films
and the lowest potential needed for 10 mA
cm-2 in the overall reaction was 1.77 V.

• CONCLUSION: The Cu-N- rGO demonstrated
superior catalytic activity to the counterpart
N-rGO, and enhanced durability compared to
commercial Pt/C.

Structural tags are used, for example, in the fol-
lowing cases.

• HEADING: 4. Discussion and concluding re-
marks

• METADATA: This research was funded by
Hubei Superior and Distinctive Discipline
Group of “Mechatronics and Automobiles”
(No.XKQ2019009).

• CAPTION: Figure 8. Enlarged view of the
shaded portion of Figure 7.

F.2 Multi-Label Examples
In contrast to earlier works on AZ, our approach to
labeling AZ in materials science publications uses
a multi-label approach. In this section, we discuss
some multi-label examples.

• BACKGROUND, PRIORWORK, RESULTS:
This indicates that the HER follows a rate-
determining Volmer or Heyrovsky step for dif-
ferent sputtering conditions without any order
[40,41]. In this example, a result obtained
in the current paper confirms a result known
from prior work.

• EXPERIMENT, CHARACTERIZATION, RE-
SULTS, EXPLANATION: Attributing this en-
thalpy release exclusively to the removal
of grain boundaries in stage B, a specific
grain boundary energy(2)γ=Hρ3dini-1-dfin-
1=0.85±0.08Jm-2is estimated using the ini-
tial and final crystallite diameters of stage B,
as given above (dini=222nm, dfin=764nm),
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as well as the Cu bulk value of 8.92gcm-3
for the mass density ρ. The first subordinate
clause of this sentence (Attributing ... stage
B) is an EXPLANATION. The remainder of the
sentence states a CHARACTERIZATION.

• BACKGROUND, PRIORWORK, RESULTS,
CONCLUSION: Furthermore, the fatigue life
decreased approximately by more than 12%
when the pre-corroded time was doubled,
and the fatigue life decreased approximately
by more than 11% when the applied stress
level was doubled, indicating that both pre-
corroded time and applied stress level can sig-
nificantly affect the fatigue life of specimens,
which shows a good agreement with the pre-
vious works [37,38]. This example illustrates
a case where our simplification of labeling
entire sentences comes to its limits: The first
part of the sentence (Furthermore ... was dou-
bled) reports RESULTS while the second part
draws a CONCLUSION drawing connections
to specific PRIORWORK.

G Detailed Results

In this section, we provide detailed results for the
experiments presented in the main part of the paper.

Table 13 (no oversampling and ML-ROS) and
Table 14 (multi-task AZ-CL) show the results in
terms of precision, recall and (hierarchical) F1 for
each label individually. We report the results on
both dev and test of the specific model that per-
formed best on dev compared to all other models.

First, we compare the difference between no
oversampling at all and when using ML-ROS. As
shown in Table 1, MOTIVATION, METADATA, and
CAPTION are the least frequent labels in our dataset.
Except for METADATA on the test set, there is al-
ways an increase in terms of F1-score when apply-
ing ML-ROS on minority labels during training.
The biggest increase of 5.8 happened for MOTIVA-
TION on the test set. Furthermore, there is also an
improvement of 1.2 points on dev and 2.5 points on
test in terms of F1-score for EXPLANATION, which
is fourth in the list of rarest AZ labels.

During our experimentation, we observed that
ML-ROS tends to be especially helpful for models
that show strong performance on majority labels,
but not on minority labels. Other models with dif-
ferent hyperparameters achieve even better scores
on minority labels without oversampling; however,
they tend to have worse overall performance.

Method LM mic.-F1 mac.-F1

No Oversampling BERT 72.6±1.0 65.5±0.7

MatSciBERT 76.3±0.7 70.1±0.7

SciBERT 76.2±0.9 70.2±0.6

ML-ROS SciBERT 76.7±0.7 70.6±0.9

+ MT (+PM) SciBERT 76.5±0.4 69.5±0.5

+ MT (+ART) SciBERT 75.0±0.9 68.9±1.1

+ MT (+AZ-CL) SciBERT 77.2±0.3 71.1±0.5

+ MT (+DRI) SciBERT 76.6±0.3 70.5±0.4

+ MT (+ART+AZ+DRI) SciBERT 76.4±0.6 70.2±0.5

Data Augm. (+PM) SciBERT 77.1±0.8 70.8±1.3

human agreement* 78.7 74.9

Table 12: Results on MuLMS-AZ test set, hierarchical
micro/macro F1: MT=Multi-Task models, *not directly
comparable.

Next, we describe the effects of multi-task
training with the AZ-CL dataset. We also apply
ML-ROS to MuLMS-AZ in our multi-task exper-
iments. Both micro-F1 and macro-F1 increase
by 0.5 points in terms of micro- and macro-F1
when using multi-tasking instead of ML-ROS only.
Most of the per-label F1-scores increased when us-
ing multi-tasking, interestingly with notable differ-
ences for CHARACTERIZATION (4.8) and META-
DATA (5.6). We conclude that multi-tasking with
AZ-CL helps supporting common majority labels
even though the domain of this dataset is clearly
different from ours.

In contrast, multi-task learning with the other
datasets consistently resulted in decreases of per-
formance. The chemistry domain is intuitively clos-
est to that of materials science, hence, we would
have expected ART to be a good additional dataset
in multi-task learning. Brack et al. (2022) provide
some insights into cross-domain learning of AZ
categories using datasets from biomedicine, chem-
istry, and computer graphics. Our MuLMS-AZ,
alongside AZ-CL, opens up new research opportu-
nities.

In addition, we perform a data augmentation
experiment using AZ data from scientific abstracts
of the PubMed Medline corpus11, filtering for ab-
stracts that were published in journals related to the
materials science domain (see Appendix C). We
map the four PubMed AZ labels BACKGROUND,
OBJECTIVE, RESULTS, and CONCLUSIONS to our
four AZ labels BACKGROUND, MOTIVATION, RE-
SULTS and CONCLUSION. Augmenting with data
from the PubMed Medline dataset also helps to

11https://www.nlm.nih.gov/databases/download/pubmed_medline.
html
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achieve better performance. However, the micro-
F1 score is 0.1 lower and the macro-F1 score is
0.3 lower compared to the MT (+AZ-CL) model.
On the other hand, training is much more time-
efficient since a low augmentation percentage of
10% is sufficient to get good results.
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Label dev test

P R H. F1 P R H. F1 Count
SciBERT, no oversampling
MOTIVATION 65.5 46.8 54.4 68.5 36.5 47.6 363
BACKGROUND 89.2 80.0 84.3 85.0 76.6 80.6 3155
-PRIORWORK 97.0 84.5 90.3 92.9 67.9 78.4 1824
EXPERIMENT 82.1 85.8 83.9 80.6 82.6 81.6 2579
-CHARACTERIZATION 72.0 68.9 70.3 75.8 67.3 71.1 962
-PREPARATION 65.2 65.1 65.0 78.6 69.7 73.7 1347
EXPLANATION 46.3 33.0 38.4 55.0 35.9 43.4 603
RESULTS 75.0 84.6 79.5 79.9 85.9 82.8 2953
CONCLUSION 56.7 55.3 56.0 42.4 43.0 42.6 680

CAPTION 92.4 75.2 82.9 80.9 68.9 74.4 485
HEADING 84.8 97.9 90.9 87.4 96.6 91.7 702
METADATA 93.1 68.0 78.6 78.6 72.9 75.2 210

Average 76.6 70.4 72.9 75.5 67.0 70.2

SciBERT, ML-ROS
MOTIVATION 56.3 55.9 55.9 72.9 43.0 53.4 363
BACKGROUND 82.2 84.8 83.5 79.7 84.2 81.9 3155
-PRIORWORK 96.0 84.5 89.9 90.5 71.3 79.7 1824
EXPERIMENT 85.1 83.2 84.1 81.1 81.7 81.4 2579
-CHARACTERIZATION 73.3 67.3 70.1 73.2 67.5 70.2 962
-PREPARATION 69.4 63.4 66.3 73.8 69.5 71.5 1347
EXPLANATION 45.7 35.2 39.6 53.4 40.2 45.9 603
RESULTS 77.6 83.4 80.4 83.6 83.8 83.7 2953
CONCLUSION 60.6 44.5 51.3 46.8 35.2 40.1 680

CAPTION 91.7 79.6 85.2 77.9 73.6 75.7 485
HEADING 85.4 97.5 91.1 90.6 96.3 93.4 702
METADATA 89.3 70.5 78.8 61.9 80.0 69.8 210

Average 76.1 70.8 73.0 73.8 68.9 70.6

Table 13: Per label scores on dev and test of MuLMS-AZ in terms of precision, recall, and hierarchical F1. Bold:
best result for label. P, R, and F1 scores are averages over the P, R, F1 scores of 5 folds each.

Label dev test

P R H. F1 P R H. F1

MOTIVATION 62.7 54.1 58.0 71.2 43.9 54.3
BACKGROUND 85.6 82.1 83.8 80.9 81.6 81.2
-PRIORWORK 95.4 84.2 89.4 93.7 68.8 79.3
EXPERIMENT 83.6 82.8 83.2 83.1 83.0 83.0
-CHARACTERIZATION 73.7 65.9 69.3 77.4 73.0 75.0
-PREPARATION 69.4 55.6 61.7 79.4 67.2 72.8
EXPLANATION 42.6 35.8 38.8 51.2 35.9 41.7
RESULTS 76.6 84.4 80.3 81.5 85.1 83.2
CONCLUSION 61.8 49.6 55.0 41.0 32.8 36.4

CAPTION 90.5 77.6 83.5 79.2 76.2 77.7
HEADING 84.7 97.7 90.7 88.9 97.4 92.9
METADATA 84.3 72.0 77.6 70.6 81.4 75.4

Table 14: Per label scores on dev and test in terms of precision, recall, and hierarchical F1 using multi-task learning
with the AZ-CL dataset, SciBERT, ML-ROS.
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