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Abstract

Large language models (LLMs) have displayed
an impressive ability to harness natural lan-
guage to perform complex tasks. We explore
whether we can leverage this ability to find and
explain patterns in data. Specifically, given a
pre-trained LLM and data examples, we apply
interpretable autoprompting (iPrompt) to gener-
ate a natural language string explaining the data.
iPrompt iteratively generates explanations with
an LLM and reranks them based on their per-
formance when used as a prompt. Experiments
on a wide range of datasets, from synthetic
mathematics to natural language understand-
ing, show that iPrompt can yield meaningful
insights by accurately finding dataset explana-
tions that are human-interpretable. Moreover,
iPrompt is reasonably efficient, as it does not
require access to model gradients and works
with relatively small models (e.g. 6 billion
parameters rather than ≥100 billion). Finally,
experiments with scientific datasets show the
potential for iPrompt to aid in scientific discov-
ery. 1

1 Introduction

Large language models (LLMs) have attained an
extraordinary ability to harness natural language
for solving diverse problems (Devlin et al., 2018),
often without the need for finetuning (Brown
et al., 2020; Sanh et al., 2021). Moreover, LLMs
have demonstrated the capacity to excel at real-
world problems, such as mathematics (Lewkowycz
et al., 2022), scientific question answering (Sa-
dat and Caragea, 2022), predicting brain re-
sponses (Schrimpf et al., 2021), and classifying
proteins and chemical compounds (Taylor et al.,
2022).

In this work, we probe whether we can lever-
age the learned skills of an LLM to discover and
explain patterns in a dataset. To do so, we invert

1*Equal contribution. All code for using the methods and
data here is made available on Github.
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Input: 3 1 Output: 4
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Input: 5 9 Output: 14 LLM

Natural-language
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Add the inputs

Figure 1: We use interpretable autoprompting to explain
datasets, inverting the standard prediction problem to
instead find a natural language explanation of the data
using a fixed, pre-trained large language model.

the typical problem of fitting an LLM to data and
instead ask whether we can use a fixed LLM to pro-
duce a natural language string explaining dataset
patterns.

Our approach to this problem centers around
prompting. Prompting has emerged as an effective
method for adapting LLMs to new datasets (Liu
et al., 2021a); a prompt string is combined with
each example in a dataset before querying an LLM
for an answer. While prompts were initially con-
structed manually, recent work has shown success
in autoprompting, automatically finding a prompt
via optimization (Shin et al., 2020; Li and Liang,
2021; Deng et al., 2022; Zhou et al., 2022). Here,
we study interpretable autoprompting (iPrompt),
which aims to find a semantically meaningful nat-
ural language prompt that explains a key charac-
teristic of the data. For example, given a dataset
of examples of addition, e.g. 2 5 ⇒ 7 ... 3 1 ⇒
4, iPrompt yields the natural language explanation
Add the inputs (see Fig. 1). iPrompt works by us-
ing a pre-trained LLM to iteratively propose and
evaluate different candidate explanations.

For evaluation, we curate a diverse collection
of datasets written in natural language (Table 1)
and measure iPrompt’s ability to accurately explain
a ground-truth pattern. We find that iPrompt out-
performs baseline methods in accurately finding
a correct description; moreover, the generated de-
scriptions are interpretable, allowing human audit-
ing and enabling strong generalization when used
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as a prompt in a new setting (i.e. when used for a
different LLM). On real-world sentiment classifica-
tion datasets, Finally, we find that iPrompt is able
to extract information from real-world scientific
datasets.

2 Related work

Problems related to dataset explanation The
problem statement presented in this work closely
resembles the widely studied problems of sym-
bolic regression (Augusto and Barbosa, 2000;
Schmidt and Lipson, 2009), program synthe-
sis (Gulwani et al., 2017; Manna and Waldinger,
1980), text/table summarization (Kryściński et al.,
2019; Liu et al., 2018), and pattern discovery in
data-mining (Hand, 2007). iPrompt can be viewed
as an algorithm for symbolic regression, in which
the set of allowable symbols consists of seman-
tically meaningful natural language strings. One
recent work proposes the task of inferring prompts
that improve supervised prediction (Honovich et al.,
2022), which we generalize here to diverse use
cases for dataset explanation.

Prompting and autoprompting. With the ad-
vent of large-scale models, prompting (i.e. find-
ing the right prompt to use to query an LLM for
a given task) has exploded as an area of inquiry,
often yielding impressive improvements in perfor-
mance (Brown et al., 2020; Petroni et al., 2019;
Liu et al., 2021a) and spurring a line of work aim-
ing to make prompting easier (Strobelt et al., 2022;
Lu et al., 2022; Bach et al., 2022; Logan IV et al.,
2022). Recently, autoprompting (i.e. automatically
searching for a prompt or prompt-embedding via
optimization) has emerged (Li and Liang, 2021;
Liu et al., 2021b) to improve the process of prompt-
ing, with methods such as prefix-tuning (Li and
Liang, 2021), P-tuning (Liu et al., 2021b), prompt-
tuning with rules (Han et al., 2021), knowledge-
able prompt tuning (Hu et al., 2021) and many
more (Liu et al., 2021a). These strategies use gra-
dient descent to find a set of “adapter” parameters
that maximize model performance, but do not re-
quire that the new parameters map back to tokens
in discrete space, rendering them uninterpretable.

A few methods tackle the more difficult problem
of searching for prompts that can be expressed in
natural language tokens. RLPrompt (Deng et al.,
2022) searches for such a prompt using reinforce-
ment learning and one recent work (Honovich et al.,
2022) queries an LLM to produce a prompt. Auto-

Prompt (Shin et al., 2020) performs autoprompting
via input gradients (see Sec. 3). These methods
effectively alter a model’s predictions, but do not
constrain the discovered prompts to be semantically
meaningful, resulting in prompts that are difficult
to interpret (Webson and Pavlick, 2021). Another
related work directly finetunes an LLM to describe
the difference between two datasets (Zhong et al.,
2022). One recent work proposes a method for
interpretable autoprompting similar to the one here,
with a focus on improving prediction performance
rather than on explaining data patterns (Zhou et al.,
2022).

Alternative methods for neural-network inter-
pretation A popular method for interpreting neu-
ral networks is to inspect an LLM’s individual pre-
dictions via feature importances (Lundberg et al.,
2019; Ribeiro et al., 2016), feature-interaction im-
portances (Singh et al., 2019; Tsang et al., 2017),
extractive rationales (Zaidan and Eisner, 2008; Sha
et al., 2021), or natural language explanations for
individual predictions (Hendricks et al., 2016; Cam-
buru et al., 2018). These works can provide mean-
ingful insights for individual predictions, but it is
difficult to parse them into an understanding of an
entire dataset. Alternatively, one can investigate
whether an LLM’s learned representations via prob-
ing (Conneau et al., 2018; Liu and Avci, 2019) or by
directly analyzing a model’s internal weights and
activations (Wang et al., 2021; Olah et al., 2018;
Meng et al., 2022). However, these approaches
are limited in their ability to generate previously
unknown descriptions of data.

3 Methods: Defining the task and
approach

3.1 Task: Dataset Explanation

Given a dataset comprised of input-output string
pairs {(x1, y1), . . . , (xN , yN )}, the goal is to pro-
duce a “semantically meaningful” natural language
string that explains the relationship between x and
y. We require that a string consists of human-
understandable text rather than a sequence of incon-
gruous tokens. For example, in the dataset shown in
Fig. 1, given samples of data performing addition,
our task is to recover text synonymous to Add the
inputs. This dataset explanation can then be used
for various downstream tasks, such as prompting a
different LLM.
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Table 1: Dataset Explanation Tasks. Each collections
contains # different task. Roman numerals correspond
to the use cases in Fig. 1. For full details on each dataset,
see Appendix A.2.

Collection # Description

1) Synthetic math 10 Mathematical functions (i), (ii)
2) Allen NLI 10 Language tasks (i), (ii)
3) Instr. induction 20 Language tasks (i), (ii)
4) Sentiment 4 Sentiment classification (i), (ii)

5) Proteins/chemicals 3 Protein/chemical properties (iii)
6) Language fMRI 20 Excitation of fMRI voxel (iii),(iii)

Datasets Table 1 shows the collections of
datasets we study: (1) Synthetic math – datasets
that require inferring an underlying mathemati-
cal function based on numeric input and outputs;
(2) Allen NLI (ANLI) and (3) Instruction induc-
tion (Honovich et al., 2022) – diverse language
tasks (Wang et al., 2022) with easily verifiable
descriptions (e.g. Find a country’s capital). (4)
Sentiment – a collection of sentiment classification
datasets in different domains. For collections (1-3),
there is a ground-truth prompt available for eval-
uation. For example, when adding two numbers
(Fig. 1), the rule checks whether a description con-
tains any of the keywords add, sum, or +. We also
study scientific datasets on (5) proteins/chemicals,
and (6) fMRI with full details given in Sec. 6.

3.2 Approach: iPrompt
We now detail approaches for the general prob-
lem of autoprompting before covering interpretable
autoprompting. We specify autoprompting as a
discrete search problem. Given a dataset of n
input-output pairs {(x1, y1), ..., (xn, yn)} and a
pre-trained LLM f that returns the log-probability
of a given string, autoprompting finds a natural
language explanation ŝ maximizing:

ŝ = argmax
s∈S

n∑
i=1

f
(
render(s, xi, yi)

)
(1)

The render function is a problem-specific function
that renders a natural language string from the
prompt s and each example in the dataset (xi, yi).
We use S to indicate the set of fluent strings, under
some notion of syntactic fluency. This constraint
is used to ensure prompts are readable, and poten-
tially generalize to downstream LLMs. Solving
this search problem exactly is intractable.

A core assumption of this objective is that se-
mantically accurate prompts lead a model to assign
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Figure 2: Prompt-based reranking depends on model
size. Large models (GPT-J 6B and GPT-3) align
prompts correctly to tasks. The model is given the
prompt Return the of the inputs., where is filled
in with the shown prompt keyword before querying the
output given two inputs numbers in a string. Darker
indicates a higher accuracy, and high accuracy along the
diagonal indicates that the correct prompt induces the
highest accuracy.

higher probability to the correct output. To check
this assumption, we analyze four datasets from the
inverse synthetic math collection that share com-
mon structure for the inputs and prompts. Each
dataset admits a prompt of the form Return the
of the inputs., then is given two input numbers and
queried for the output.

Fig. 2 shows the accuracy of different models
at performing these tasks across different input
prompts.2 For small models, the prompts are un-
successful, but for large models (GPT-J 6B and
GPT-3), the model is accurate if and only if given
the correct prompt.3 This result suggests that, at
least for large models, the search for a prompt that
maximizes performance correlates well with the
underlying task. We will see in Fig. 4 that dataset
explanation depends on this ability.

Baseline: AutoPrompt AutoPrompt (Shin et al.,
2020) targets the objective posed in Eq. (1) us-
ing a gradient-based local search. AutoPrompt
searches for ŝ following the gradients of the ob-
jective Eq. (1) with respect to individual tokens in

2The accuracy is normalized for each task using softmax
in order to visualize the effect of differing prompts.

3For details on each model, see Table A4.
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Combine the numbers
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Combine the numbers

Sum in order

Combine the numbers

Combine the arguments

Sum all inputs

Sum the numbers

(ii) Reranking


Sum the numbers

(i) Proposal

In: 3 1 Out: 4


In: 4 7 Out: 11


In: 5 9 Out: 14


Prompt: Sum in order

Return the output

Compute the output

In: 5 5 Out: 10


In: 9 3 Out: 12


In: 1 8 Out: 9


Prompt:

Combine the numbers

Sum all inputs

Sum the numbers

Combine the arguments

Combine the numbers

(iii) Iterate with exploration

Figure 3: Overview of iPrompt. iPrompt first proposes
candidate prompts, then ranks them based on their per-
formance as a prompt, then truncates and regenerates
them. This entire process is repeated until performance
stops improving.

ŝ. It discretely changes individual words in ŝ and
then checks whether or not the newly updated ŝ
improves the objective score. The use of gradients
allows AutoPrompt to find an effective prompt ŝ,
but makes it difficult to find answers that satisfy
the fluency constraint S.

Baseline: Zero-shot suffix decoding LLMs
themselves can be directly used to predict
prompt strings. Following Honovich et al.,
we give the model a prompt string which
contains data examples (e.g. In: 2 5︸ ︷︷ ︸

xi

Out: 7.︸ ︷︷ ︸
yi

To compute the output from the input,︸ ︷︷ ︸
template

,) and

sample the output to recover a prompt ŝ using
nucleus sampling.4

Proposed method: interpretable autoprompt-
ing iPrompt (Fig. 3) is an iterative local search
algorithm that alternates between three steps: (i)
proposing candidate prompts, (ii) reranking candi-
date prompts, (iii) exploration.
(i) Proposal: Candidate prompts are generated by
extending the zero-shot LLM generation. Given
a data instance as a prefix, we sample a number
of candidate prompts. The maximum length of

4We also consider averaging the model’s output logits
across all examples in the dataset before decoding the out-
put, but find that it does not improve performance (see Ap-
pendix A.4).

each candidate is pre-specified and fixed. For ex-
ample, in the add-two-numbers task (Fig. 3), we
may generate four candidates: {Combine the num-
bers, Return the output, Sum in order, Compute the
output}.

(ii) Reranking: Given candidates, the objective
Eq. (1) is evaluated for each candidate prompt s.
The top few candidates which maximize the objec-
tive are kept, e.g. narrowing down the candidates
to {Combine the numbers, Sum in order}.

(iii) Iterate with exploration: Each of the top
candidates from reranking is truncated at a random
position. These truncated candidates are used as a
prefix when generating new candidate prompts via
suffix decoding. For example, we may randomly
select the start of the previous candidates and fill
in the endings: {Combine the , Sum } →
{Combine the numbers, Combine both arguments,
Sum the numbers, Sum all inputs}.

The algorithm is repeated until identifying a suit-
ably strong ŝ, e.g. Sum the numbers. Steps (i) and
(iii) ensure that prompts remain fluent, while step
(ii) improves the score of the prompts on the ob-
jective. Computationally, iPrompt only requires
running inference on the pre-trained LLM, yield-
ing a significantly lower memory requirement than
methods such as AutoPrompt which require access
to the LLM’s gradients.

4 Experimental Setup

We consider two sets of experiments. First in Sec. 5,
we explore iPrompt’s ability to rediscover a correct
and fluent prompt on the variety of simple instruc-
tion datasets (Table 1, top) with known answers.
Experiments test the ability of the model to recover
a known prompt while also remaining fluent in a
way that generalize to human readers and to other
language models. In Sec. 6 we apply iPrompt to
scientific datasets (Table 1, bottom).

Language Models For the main set of experi-
ments, we always generate prompts using GPT-J, a
6 billion parameter model (Wang and Komatsuzaki,
2021). We restrict prompts to {6,12} tokens for
sentiment classification and 6 tokens for the re-
maining data collections in Table 1. For generaliza-
tion experiments, alternative models are tested with
the generated prompts including OPT and GPT-
3 (Zhang et al., 2022; Brown et al., 2020). See
Appendix A.4 for a full discussion of experimental
details and Appendix A.3 for experiments on more
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Table 2: Performance for dataset explanation. Dataset
from Table 1 (1-3). Accuracy measured via (1) Human-
evaluation (H, normalized %), (2) Mean Reciprocal
Rank across the collection (M) and (3) 1-best correct-
ness (C, %). For all metrics, higher is better.

iPrompt AutoPrompt Suffix
H / M / C H / M / C H / M / C

Math 60 / 0.69 / 60 25 / 0.14 / 13 20 / 0.08 / 03
ANLI 56 / 0.41 / 37 21 / 0.07 / 07 25 / 0.06 / 01
Induction 42 / 0.35 / 28 21 / 0.09 / 08 23 / 0.04 / 01

models (e.g. Galactica (Taylor et al., 2022)) and
more datasets.

Evaluation metrics Our main evaluation mea-
sures each prompt’s closeness to groundtruth via
three metrics: (1) Correct – whether the gener-
ated explanation contains one of a set of problem-
specific keywords. (2) MRR – Mean reciprocal
rank measuring the rank of the first task-correct
prompt. Given a set of datasets D = {D1, ...,DN},
we compute: MRR = 1

|D|
∑|D|

i=1
1

ranki
, where ranki

is the one-indexed rank of the first correct expla-
nation. (3) Human – The human evaluation scores
between the top-generated explanation and a pre-
specified groundtruth explanation, when instructed
“You are given a groundtruth description along with
a generated one. On a scale of 1 (worst) to 5 (best),
how interpretable and accurate is the generated de-
scription?”5. The mean human evaluation score
(ranging from 1 to 5) is normalized.

As a secondary evaluation, we measure general-
ization ability when we evaluate explanations based
on accuracy as a prompt for other models. Accu-
racy is computed following (Brown et al., 2020;
Raffel et al., 2020): using exact matching with
beam search, a beam width of 4, and a length
penalty of α = 0.6.

5 Results and Analysis

5.1 Dataset explanation recovery

Table 2 compares prompting methods across three
diverse data collections. The Human evaluation
scores are much higher for iPrompt than the base-
lines, suggesting that it finds prompts which are
both accurate and human-interpretable. Similarly,
the MRR and Correct scores show that iPrompt con-
siderably improves in finding accurate explanations.
See all generated explanations in Appendix A.3.

5Human evaluation scores are averaged over 4 PhD stu-
dents in machine learning not affiliated with the study.
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Figure 4: Comparison of model accuracy with correct
prompt and iPrompt ability to find the correct prompt
across each individual task (single-task MRR). Prompt
recovery ability is dependent on the model’s ability to
perform the task.

Table 3: Generalization accuracy (zero-shot) with the
prompts generated with GPT-J as the LLM across dif-
ferent models.

Correct
Prompt iPrompt Auto

Prompt
No

prompt

GPT-J 6.7B* 54.0 51.5 41.6 16.3

M
at

h OPT 6.7B 12.7 19.3 18.9 8.4
GPT 20B 76.1 54.4 23.2 8.5
GPT-3 175B 76.0 62.1 40.8 28.4

GPT-J 6.7B* 9.0 4.7 1.9 2.0

A
N

L
I

OPT 6.7B 10.7 6.7 4.7 7.9
GPT 20B 31.0 14.2 5.6 4.0
GPT-3 175B 37.6 11.7 2.7 7.7

To assess the best-case absolute accuracy of the
approach, we note it is impossible for the approach
to recover the prompt if the underlying LLM can-
not solve the task. Fig. 4 plots the prompt recovery
performance (MRR) against the underlying LLM’s
accuracy (when using the groundtruth prompt) for
each dataset. When the model can solve the task,
iPrompt does well on recovery. However for many
tasks the model has low accuracy even with the cor-
rect prompt, putting a ceiling on the performance
of iPrompt.

5.2 Generalization accuracy of prompts

The generalization accuracy of generated prompts
across different LLMs can inform how well a
prompt captures an underlying pattern in the data.
Table 3 shows the generalization accuracy when
testing the prompts generated using GPT-J (Table 4)
on different LLMs. The prompts maintain effec-
tiveness across most models. For the Math datasets,
the iPrompt prompts elicit improvement over the
baselines and approach the accuracy of the cor-
rect prompt. For the ANLI datasets, all prompts
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induce poor performance. Notably, the gap be-
tween iPrompt and AutoPrompt is larger for larger
models (i.e. GPT 20B and GPT-3); this suggests
that, by generating fluent prompts, iPrompt gen-
erates more generalizable descriptions. Similarly,
iPrompt shows strong results on sentiment analy-
sis datasets across a variety of models including
GPT-3 (see Appendix A.1).

Table 4 shows the top-ranked explanation gener-
ated by each method for selected datasets. iPrompt
often finds an explanation that is indicative of the
underlying relationship, even if the phrasing is not
perfect. For example, for the add two numbers
dataset, it finds Create a function named ‘sum. The
prompts found by iPrompt also read as fairly fluent
strings compared to AutoPrompt, which produces
an incoherent set of tokens.

5.3 Model ablations

We run ablation experiments to analyze the three
steps of iPrompt: (1) Proposal, (2) Reranking, and
(3) Iteration. We use the Math and ANLI datasets
and run on a maximum of 5000 data points using 5
shots in context for prompt generation.

(1) Proposals are partially guided by examples.
During the proposal stage, iPrompt prefixes poten-
tial prompts with dataset examples. Table 5 con-
siders variants of this stage that remove input and
output examples during the proposal stage. Note
that the system still has access to the full examples
during the reranking stage. We find that the system
can achieve decent performance on Math simply by
iterating. However for ANLI, the model needs to
at least see the inputs/outputs during the proposal
in order to find accurate prompts.

(2) Reranking zero-shot recovers better
prompts. iPrompt uses zero-shot accuracy to rank
prompts. As we have examples of the task, we
could instead use in-context few-shot prompting
for ranking. Prior work suggests that prompt word-
ing is less influential as the number of in-context
examples increases (Webson and Pavlick, 2021).
Table 5 shows that using these examples in-context
for reranking does, in fact, considerably hamper
prompt recovery. We further find that the LLM
used for reranking is more important than the LLM
used for proposals (see Appendix Fig. A3).

(3) Iteration improves performance Finally, Ta-
ble 5 shows that without multiple iterations, perfor-
mance drops nearly to zero (Fig. A2 shows more
details on loss as a function of iterations).

6 Scientific investigations with iPrompt

We now investigate whether iPrompt can explain
patterns in scientific datasets. Specifically, we ana-
lyze the Galactica model (Taylor et al., 2022) with
6.7 billion parameters. We query whether it can de-
scribe differences in protein sequence before inves-
tigating a neuroscience problem; see Appendix A.5
for similar experiments in a chemical toxicity set-
ting.

Differentiating protein sequences We investi-
gate whether iPrompt can explain the differences
between two groups of proteins. We use protein
sequences and keywords from Swiss-Prot (Bairoch
and Boeckmann, 1991) (a high-quality subset of
Uniprot (Consortium, 2015)) to construct two
datasets: each dataset contains two groups of pro-
teins, which are differentiated based on their key-
words.6 The first dataset, which we call Cyto,
has proteins with either the keyword Cytoplasm
or Membrane. The second dataset, which we call
Binding, has proteins with either the keyword RNA-
binding or ATP-binding. Each group is randomly
downsampled to 100 proteins and iPrompt is run
with the same hyperparameters as when finding
chemical compounds.

We make this problem more challenging by feed-
ing the model the raw protein sequence (not the
protein name) which ranges from hundreds to thou-
sands of amino acids. Each input is presented with
the following text: Here is a protein sequence:\n
[Protein Sequence]\n Answer: followed by Yes for
a one group and No for the other. Table 6 shows re-
sults for identifying whether the elicited prompt
contains one of the relevant keywords for each
dataset (e.g. Cytoplasm). Despite the difficult in-
put format, the correct keywords are successfully
identified for both the Cyto and Binding datasets
better than for the Baseline (which again contains
empty inputs).

Scientific investigation into an fMRI natural lan-
guage dataset We now explore using iPrompt
in a simple neuroscience experiment. A central
challenge in neuroscience is understanding how
and where semantic concepts are represented in the
brain. A recent seminal study (Huth et al., 2016)
explores this question by investigating where dif-
ferent natural language categories are represented
in the human neocortex. Specifically, the authors

6We search for reasonably popular but non-cooccuring
keywords in the proteins; see details in Fig. A5
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Table 4: Examples of generated explanations by iPrompt and AutoPrompt. See all prompts in Appendix A.3.

Human-written prompt iPrompt AutoPrompt

M
at

h Return the sum of the inputs Create a function named ‘sum >:Returns Adding togetherFont accomplish
Return the square of the input Input number and return its square Cal impl qApplySquare fiat
Differentiate between prime/non-prime integers Are these pairs of integers prime ropheospels&& Norestricted

A
N

L
I

Differentiate vegetarian/non-vegetarian foods Are you a vegetarian? compliedthe whether methamphetamine provided comp
Differentiate the subject in a sentence based on
gender

Predict the gender (F = < endoftext > -> M Fundamental FG Fav

Return a synonym what is a synonym for Word termOn English meanings
Translate english to spanish please write English meaning in Spanish the ththebb volunt
Return a country’s capital city Which city is the capital and Ang Suppose AUTHthe beh Assassins

Table 5: Algorithmic ablations for each stage of iPrompt.
Gives prompt recovery (MRR) achieved by ablating
each stage. Averaged over 3 random seeds.

MRR
Math ANLI

iPrompt 0.557 0.278

(1) Proposal w/o inputs+outputs 0.400 0.015
w/o inputs 0.463 0.244
w/o outputs 0.539 0.255

(2) Reranking w/ in-context examples 0.071 0.152

(3) Iteration No iteration 0.075 0.050

Table 6: iPrompt performance at differentiating protein
sequences. For both the Cyto and Binding datasets, the
correct keywords are succesfully identified better than
for the Baseline. Results are averaged over 12 random
seeds; error bars are standard error of the mean.

iPrompt
(Cyto)

iPrompt
(Binding) Baseline

MRR 0.2 ± 0.08 0.08 ± 0.04 0.03 ± 0.01
Recall @ 5 0.25 ± 0.13 0.17 ± 0.11 0.05 ± 0.05
Recall @ 20 0.83 ± 0.11 0.33 ± 0.14 0.23 ± 0.09

collect functional MRI (fMRI) responses as human
subjects listen to hours of narrative stories. They
then build a predictive model of these responses
for each voxel (i.e. a small region in space) in the
brain, which takes as input the words contained in
the stories (and other features). To interpret these
individual voxel models, they cluster the words in
the narrative stories into 12 groups and manually
annotate them, resulting in 12 categories, such as
tactile, visual, and professional. Finally, they view
the spatial mapping of these 12 concepts (projected
onto low dimensions) across the brain using their
individual voxel models.

We revisit a small piece of this study’s analy-
sis through the lens of iPrompt. Specifically, we
ask whether iPrompt could generate plausible cat-

egories that are well-represented across the brain
but differ from the manually identified 12. We
fit a predictive model for each voxel, following
the pipeline of the original study (details in Ap-
pendix A.8). We then use the resulting models to
identify a list of the top-15 words which most ex-
cite each voxel. For example, the top-15 words that
excite the best-predicted voxel are: sheet, edges,
diameter, strips, cardboard, copper, steel, colored,
coloured, leaf, wire, cap, paper, shaped, tin. To
identify a plausible semantic category, we construct
a template string as follows: The following list of
words all belong to the same semantic category:

\n\n sheet, edges, ..., shaped, tin. We then use
iPrompt (again with a GPT-6B parameter model)
to generate a category by filling in the blank (re-
stricted to a single token). To make iPrompt more
effective, for each voxel we use iPrompt on a set
of examples consisting of 15 permutations of the
top-15 words, allowing finding patterns that are not
overly sensitive to the word-ordering.

Given the top categories for each voxel, we ana-
lyze the mapping of recurring categories across the
neocortex. We aggregate the top-15 inferred cate-
gories7 over the top-15 best-predicted voxels and
find that the most frequently inferred categories are:
material, color, surface, text, & fabric.
Interestingly, these are sensible quantities that dif-
ferent voxels could reasonably be selective for. We
spatially map each of these identified categories
(e.g. material) across the 10,000 best-predicted
voxels by using the LLM in a second way. For
each voxel, we condition the LLM (again GPT-6B)
on the top-15 words list, and evaluate the predicted
probability for each category, i.e. The following
list of words all belong to the same semantic cat-
egory: sheet, edges, ..., shaped, tin The semantic
category they all belong to, in one word, is . The

7We apply stemming and remove stopwords before choos-
ing the best categories.
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Color

Figure 5: Representations of the iPrompt-elicited con-
cepts material (blue) and color (red) across the sur-
face of the neocortex are spatially clustered and smooth.
Only the top 10,000 best-predicted voxels are shown, re-
maining voxels are shown in black. Only the right hemi-
sphere is shown (see both hemispheres, which show
consistent smoothness in Fig. A6).

higher this predicted probability, the more selective
we infer that a voxel is for the category. Fig. 5
shows these predicted probabilities for the top-two
inferred categories (material and color) across the
cortex of a human subject.

While there is no groundtruth for this seman-
tic map, one noteworthy feature of the resulting
map is that it is spatially smooth (quantitatively,
Fig. A8 shows that the variance of the map among
neighboring pixels is significantly lower than we
would expect by shuffling the map’s values). This
is non-trivial, as nowhere in the modeling process
was spatial information incorporated: each voxel
was modeled independently and the displayed pre-
diction was queried independently. We expect the
underlying map to be smooth, both due to local
connectivity in brain regions and also because the
BOLD signal measured by fMRI does not have
perfect spatial resolution. Thus, the fact that our
inferred map is smooth suggests that (i) something
about these categories is genuinely captured by
the representation in the human brain, and (ii) that
the iPrompt approach was able to reflect at least
some of it. Beyond the two categories shown, the
five categories generated by iPrompt exhibit spatial
smoothness across the neocortex (Fig. A8).

7 Conclusion and Discussion

iPrompt makes a meaningful step towards finding
natural language prompts that are both accurate and
human-interpretable. We show this method can
be used to recover dataset descriptions, produce
transferable prompts, and provide explanations for
experimental data. One future direction could elicit
targeted information from data via the use of a
template. For example, one may use iPrompt to ex-
tract feature importance by prepending the learned
prompt with the string “To get the answer from
the inputs, the most important inputs are ”. As
another example, in a scientific study such as the
fMRI study in Sec. 6, a scientist interested in a
particular topic (e.g. fear) may investigate that par-
ticular topic by making a more specific template
(e.g. How are these words related to the concept of

“fear”?).
While we focus on text, iPrompt could be ap-

plied generally settings where an LLM performs
well. For example, in computer vision, an inter-
pretable autoprompt may look like a mask of an
image, and in vision-language models, an inter-
pretable prompt may be a description of a vision
task, e.g. find the largest shape in this image.
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A Appendix

A.1 Sentiment classification results

For sentiment evaluation, we learn a prompt within the template Input: “${input}”{prompt}.8 We use
positive and negative as positive and negative labels and require the LLM to rank the two options. Human-
written prompts are adapted to this template from open-source prompts available through PromptSource
(Bach et al., 2022).

Table A1 shows results on the sentiment analysis datasets. As prompts for GPT-J, iPrompt outperforms
not only AutoPrompt, but also the manually-written prompt on all four datasets. Interestingly, the average
performance of human-written prompts on GPT-J is very low, unlike the prompts generated by iPrompt.
This indicates that models at 6B parameter scale may be brittle to the choice of prompt, even among a
set of reasonable options, and iPrompt (and to an extent, AutoPrompt) is able to discover how to phrase
prompts so that models of this scale can complete the task.

When sentiment prompt generalization is tested on GPT-3, we find that iPrompt prompts outper-
form human-written prompts on two of the four datasets. When tested on GPT-3, iPrompt prompt To
summarize this review! : outperforms all PromptSource IMDB prompts that use the same verbalizer
(positive/negative). When its prompts are tested on GPT-3, baseline AutoPrompt only slightly outperforms
testing with no prompt at all.

Table A2 shows the best prompt produced by each method for each sentiment dataset. iPrompt often
learns to recreate significant examples from the dataset, as a prompt. Fig. A1 shows loss across training
step for each method and dataset, across three random seeds. We see that AutoPrompt often finds a
prompt with slightly lower loss on the training data, although its prompts lead to worse generalization, as
reported in Table A1. Each training step represents a single word swap (in the case of AutoPrompt) or the
truncation and generation of a new prefix (in the case of iPrompt).

Different from the other experiments in this paper, for sentiment classification, we initialize AutoPrompt
with random tokens instead of all the, as we find AutoPrompt fails to find an effective solution for longer
prefix lengths when all tokens are initialized to the. To accommodate for a complex input-output
relationship, we test prompts of length 12 as well as length 6.

Accuracy is measured on the test set when available; otherwise, it is measured on a held-out 25% of the
train set.

Table A2: Best-of-three prompts generated by each method on sentiment classification datasets. (Human-written
prompts are best-of-eight and taken from PromptSource (Bach et al., 2022)).

Task Method Prompt

Financial phrasebank

AutoPrompt Fur resultolandgroundur augmented
Human-written prompt How does the author of the news headline feel?
iPrompt <input> neutral> The result was due to: "

IMDB

AutoPrompt uclear cend Koretravel NAACP curses SicAstings production received
Human-written prompt The movie review in negative/positive sentiment is:
iPrompt This movie needs to be put up on my profile as my

Rotten Tomatoes

AutoPrompt Whether{{ anotherath<|endoftext|> how
Human-written prompt What sentiment does the writer express for the movie?
iPrompt what words would you try to add to help you express that

SST-2

AutoPrompt BryceSpecificallyWASHINGTONRatedam
Human-written prompt What is the sentiment expressed in this text?
iPrompt It is clear from the sentence that all three actors have something

8In initial experiments, we find that performance drops significantly when learning a prompt that comes before the input.
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Table A1: Zero-shot accuracy on sentiment classification datasets: SST-2, Rotten Tomatoes, IMDB, and the
Financial Phrasebank (Socher et al., 2013; Malo et al., 2014; Pang and Lee, 2005). Generation with GPT-J 6B and
evaluation on both on the original GPT-J model and GPT-3 (text-davinci-002). Errors are standard errors of the
mean.

Human-
written iPrompt AutoPrompt No

prompt

G
PT

-J

FFB 27.0 ± 1.9 79.3 ± 2.1 74.0 ± 9.1 47.5
RT 58.9 ± 3.1 84.8 ± 0.9 73.0 ± 4.8 59.2
SST-2 58.4 ± 2.8 86.7 ± 1.0 76.7 ± 3.9 60.9
IMDB 66.0 ± 3.2 87.9 ± 1.4 86.7 ± 1.2 58.6

G
PT

-3

FFB 39.6 ± 1.6 57.2 ± 6.9 28.2 ± 3.1 39.1
RT 82.7 ± 3.3 77.4 ± 2.8 57.8 ± 3.5 54.8
SST-2 90.5 ± 3.9 82.4 ± 2.3 61.8 ± 7.0 58.4
IMDB 75.6 ± 3.3 86.6 ± 1.1 70.0 ± 6.5 66.2
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Figure A1: Loss plots for methods across sentiment analysis datasets, showing AutoPrompt and iPrompt across
three random seeds.
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A.2 Data/model details

Table A3: Details for each dataset. For details on Instruction induction, see (Honovich et al., 2022) and for details
on Distribution differences, see (Zhong et al., 2021).

Task name Samples Description Example

fibonacci_one 10 Given an input x, return the xth fibonacci number. Given the input x is 8, the output f(x) is 21.\n\n
double_one 10 Given an input x, return 2*x. Given the input x is 6, the output f(x) is 12.\n\n
exp_one 10 Exponentiate the input to get the output. Given the input x is 8, the output f(x) is 2980.96.\n\n
square_one 10 Square the input to get the output. Given the input x is 2, the output f(x) is 4.\n\n
first_two 100 Return the first of the inputs. Given the input numbers 7 and 8, the answer is 7.\n\n
add_two 100 Return the sum of the inputs. Given the input numbers 9 and 7, the answer is 16.\n\n
subtract_two 100 Return the difference of the inputs. Given the input numbers 5 and 4, the answer is 1.\n\n
divide_two 100 Return the quotient of the inputs. Given the input numbers 2 and 7, the answer is 2/7.\n\n
multiply_two 100 Return the product of the inputs. Given the input numbers 3 and 3, the answer is 9.\n\n
max_two 100 Return the maximum of the inputs. Given the input numbers 1 and 1, the answer is 1.\n\n
task1191_food_veg_nonveg 101 Return whether the input food dish is vegetarian (yes or

no).
Input: Haq Maas Answer: no\n

task1149_item_check_edible 119 Return whether the input item is edible (yes or no). Input: vase Answer: no\n
task1146_country_capital 231 In this task, you are given a country name and you need

to return the capital city of the given country
Input: Saint Pierre and Miquelon Answer: Saint-Pierre\n

task1147_country_currency 232 You are given a country name and you need to return the
currency of the given country.

Input: Senegal Answer: CFA Franc BCEAO\n

task1509_evalution_antonyms 551 In this task, you are given an adjective, and your job is to
generate its antonym. An antonym of a word is a word
opposite in meaning to it.

Input: paper Answer: scissor\n

task183_rhyme_generation 999 Given an input word generate a word that rhymes exactly
with the input word. If not rhyme is found return "No"

Input: think Answer: sync\n

task107_splash_question_to_sql 2031 In this task you are expected to write an SQL query that
will return the data asked for in the question. An SQL
query works by selecting data from a table where certain
conditions apply. A table contains columns where every
row in that table must have a value for each column. Every
table has a primary key that uniquely identifies each row,
usually an id. To choose which columns are returned you
specify that after the "SELECT" statement. Next, you use
a "FROM" statement to specify what tables you want to
select the data from. When you specify a table you can
rename it with the "AS" statement. You can reference
that table by whatever name follows the "AS" statement.
If you want to select data from multiple tables you need
to use the "JOIN" statement. This will join the tables
together by pairing a row in one table with every row in
the other table (Cartesian Product). To limit the number
of rows returned you should use the "ON" statement. This
will only return rows where the condition...

Input: What are the order ids and customer ids for or-
ders that have been Cancelled, sorted by their order dates?
Answer: SELECT order_id , customer_id FROM cus-
tomer_orders WHERE order_status_code = "Cancelled"
ORDER BY order_date\n

task088_identify_typo_verification 6499 The given sentence contains a typo which could be one
of the following four types: (1) swapped letters of a word
e.g. ’niec’ is a typo of the word ’nice’. (2) missing letter
in a word e.g. ’nic’ is a typo of the word ’nice’. (3) extra
letter in a word e.g. ’nicce’ is a typo of the word ’nice’.
(4) replaced letter in a word e.g ’nicr’ is a typo of the word
’nice’. You need to identify the typo in the given sentence.
To do this, answer with the word containing the typo.

Input: A laege display of apples, pears, and oranges An-
swer: laege\n

task1336_gender_classifier 6500 Return the gender of the person in the input sentence. Input: Justin made me feel discouraged. Answer: M\n
task092_check_prime_classification 6500 In this task, you need to output ’Yes’ if the given number is

a prime number otherwise output ’No’. A ’prime number’
is a a whole number above 1 that can not be made by
multiplying other whole numbers.

Input: 9319 Answer: Yes\n

Table A4: Models analyzed here.

Model name Huggingface identifier Citation

GPT-2 (1.5B) gpt2-xl (Radford et al., 2019)
OPT (2.7B) facebook/opt-2.7b (Zhang et al., 2022)
GPT-Neo (2.7B) EleutherAI/gpt-neo-2.7B (Black et al., 2021)
Flan-T5 (3B) google/flan-t5-xl (Chung et al., 2022)
GPT-J (6B) EleutherAI/gpt-j-6B (Wang and Komatsuzaki, 2021)
OPT (6.7B) facebook/opt-6.7b (Zhang et al., 2022)
Galactica (6.7B) facebook/galactica-6.7b (Taylor et al., 2022)
GPT-Neo (20B) EleutherAI/gpt-neox-20b (Black et al., 2022)
GPT-3 (175B) text-davinci-002 (OpenAI API) (Radford et al., 2021)
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A.3 iPrompt results extended

We consider discriminators of varying sizes, with GPT-J (6B) as a prompt generator. We also compare
generators of varying sizes with GPT-J (6B) as a prompt discriminator. Models considered are of
{125M, 1.3B, 2.7B, 6B} parameters from the GPT-Neo/GPT-J language model family. Results are
shown in Fig. A3. Performance varies smoothly across model sizes, with the highest performance when
using the largest model for both reranking and generation. Reranking appears slightly more important
than generation. When using a 1.3B parameter model for generation, MRR drops only slightly, from
0.418 to 0.399, while when using a 1.3B parameter model for reranking, MRR drops to 0.211. In general,
prompt recovery performance improves smoothly with reranking model size.

Fig. A2 plots the progress of iPrompt across iterations, comparing runs on Math datasets (blue) to runs
on ANLI datasets (gray). iPrompt appears to make most of its progress during the first 20% of training and
then continue to slowly decrease the average loss. Running for more iterations on additional datapoints
would likely increase performance.
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Figure A2: iPrompt performance across training, averaged across three random seeds and all tasks from Math
datasets (Blue) and ANLI (Gray).
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Figure A3: iPrompt performance across different size language models for the prompt proposal and reranking steps.
Values are mean reciprocal rank of first accepted prompt averaged across 20 tasks and 3 random seeds.
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Table A5: Performance of Galactica at prompt recovery, including DD datasets (Zhong et al., 2022, 2021).

iPrompt AutoPrompt Suffix

MRR

Math 0.2 0.09 0.025
ANLI 0.39 0.0025 0.085
Induction 0.14 0.098 0.056
DD 0.064 0.0082 0.066

Correct

Math 0.12 0.075 0
ANLI 0.34 0 0.025
Induction 0.071 0.087 0.02
DD 0.043 0 0.052

BLEU-Top Prompt

Math 0.0073 0 0
ANLI 0.01 0 0.00032
Induction 0.022 0 0.0027
DD 0 0 0.0015
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Table A6: Examples of top-generated prompts for each method: GPT-J main datasets.

autoprompt iprompt suff

active to passive (= 18 the the subst Choose a pronoun for each sentence Create a sentence or group of

add two >:Returns Adding togetherFont accomplish Create a function named `sum n>2 m1

antonyms the bectheBut But The noun to its opposite ( The code to ascend. You

cause and effect REG Kinect virginity developed mosquit The What would each sentence be if write programs that read through an

common concept ???????? parted configuredthe ???????? Find a noun that includes all which is a common word used

diff ""Fair 62 disgust 92 81 Find the difference between largest Write a program or function to

divide two soughtWomen surgicalthe Percentage treated "Divide each digit by write a program or function who

double one says transit Farethe doubles dollars Write a function called double_ Given two function pointer A and

exp one &&wl +# 123 270 Earthquake Input this into your calculator ( Type in number between 15 &

fibonacci one baptpi produce347).'' Implement a function to find Fib Given an integer n (1

first two Binding decode wr detect shortest numeric Find first digit of given number When was Python added to Ubuntu

first word letter Exception Ps< endoftext >the the Make a program that reads in nimshul, a

informal to formal CLASSIFIEDthe themselves strongly Plays Chamber These are questions on simple sentences Make the following sentences positive statements

larger animal ????????thethethethethe What is the most common animal dogAnswer to "What's

letters list fluidsthethethethethe Given the following list of tokens The computer will make this document

max two spendingthethethethethe Implement a version of max() Write code to find out given

multiply two ruits="# multipl integer multiplied False 'How do you multiply a write a program or function who

negation performs antiv Sizethe NULL NULL I found these four mistakes below Your friends think that you

num to verbal irritatedthedd respectfully Protectivethe Output each number below in the The program outputs the first input

orthography starts with nextbusiness wordevery morphpp Name of two homophones You will be given five words

rhymes Steal batter dating: unfold testosterone Find the missing word for all Input [create] What

second word letter i mascot okay kk Who gave the answer "o the United states government outlawed

sentence similarity value %%%% Math 3 (5 marks). The Read five sentences about your topic

sentiment positively optimistic&&&& negative I'm voting "negative" Melvins at CBGB

singular to plural Enhanced shorthand Lets pluralbetweenthe Given a noun and its plural 1. It may be

square one Cal impl qApplySquare fiat Input number and return its square Write a program or function to

subtract two ignorethethethethethe Write a function to find difference Given a non-negative integer

sum Photosthethethethethe Add two numbers together and then The program outputs, without any

synonyms Word termOn English meanings what is a synonym for Is there a cure for an

task088 identify typo verifi-
cation

thethethethethe This word scramble is to test You wake up in the morning

task092 check prime classifi-
cation

ropheospels&& Norestricted Are these pairs of integers prime Print the input numbers in order

task107 splash question to
sql

How Do You Connect SQL To To get into MySQL you first

task1146 country capital Ang Suppose AUTHthe beh Assassins Which city is the capital and France, England or the UK

task1147 country currency aaaathecurrency Nib Sc Ireland. Which currency is spoken "I am working on a

task1149 item check edible no the870830 yes coffee and beans are fruits. Which one of the following is

task1191 food veg nonveg compliedthe whether methamphetamine provided comp Are you a vegetarian? It could be any food,

task1336 peixian equity eval-
uation corpus gender classi-
fier

< endoftext > -> M Fundamental FG Fav Predict the gender (F = ??????,???,

task1509 evalution antonyms contrad orously inverted ironically trans find words with the opposite meaning Record your input and answer,

task183 rhyme generation quarterdream dug}. Thro rhy Mind vs Glee! There what do you love to eat

taxonomy animal programmingQ errorsBefore admitting mont What are the most common animals Each of these questions is a

translation en-de H prob Hyper Forthe You are a lawyer practicing in This is an example of input

translation en-es the ththebb volunt please write English meaning in Spanish Porque?

translation en-fr IRthe< endoftext >thethe the What is the French word for Your code needs to deal with

word in context ("nSame distinguishedthethe Same and Not-Same - What you will do is have
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Table A7: Examples of top-generated prompts for each method: GPT-J DD datasets (Zhong et al., 2022, 2021).

autoprompt iprompt suff

d3 0 line contains this string? No contains all 6 items, No

d3 1 Ghostbustersthe interrogation condition criminall sentence contains "yes" or string doesn't match any template

d3 10 preceded Roosevelt nonexistentuphem_-_ Tw message contains "no". No contains all of these words or

d3 11 caused senator prompt Recall interacted string contains "No" or was matched; output otherwise No

d3 12 begin:" r "},{" contradict tweet mentions yes is true or output false if

d3 13 },{" vote [*"]=> answer "no" (or contains all correct answers, No

d3 14 nonexistent undead questions Enhance mandated no string begins 'no' and string contains any non blank white

d3 15 rarely ----Question not},{" geometric string contains "no" or includes exactly two English words with

d3 16 \n pearthemar Display RUN text contains any "yes". text is true, otherwise write

d3 17 EMP Similarly\t=== charsthe is an answer ("no", contains all correct answers for this

d3 18 \n\n Verb horm suffix Eucl phrase starts with 'no', contains all correct answers else No

d3 19 \n."," Emacs strips colors strips word starts with 'yes', text contains any of these strings

d3 2 indirectly [[ pervasive?"Spoiler exhaustive ends with "yes". If sentence has an "O"

d3 20 \n\n dips Vote flower Ainthe ted sentence contains both "yes contains one of these words or

d3 21 \nthePubLeft Abstract ends with 'no'. No contains all correct answers, or

d3 22 Nov wholesno Eucl NO can output no/yes, data set contains results for output

d3 23 vantage immediately recogn example nails 309 no else output none? Input contains data describing or referring to

d3 24 noBER nonosRew [ datum defines finite number fields is in fact equal 2;

d3 25 withdrawalsnob inher nob Among contains both gene list data file has already started in state x

d3 26 Joined robberHigthe contradictionNarr line ends with a space, ted series matches any of these

d3 27 verseoleon:- inferred cannabinoids was positive answer and "No string of words, as shown

d3 28 \n repet999 REM=[nov refers exclusively (only literally or was a real question that could

d3 29 \n Pat uncertaintiesMerit oppos line begins with yes text meets any one or more

d3 3 \n\n887odynamHor mun\t ends with "yes" and statement reflects truth. Otherwise output

d3 30 detainees gap ${. hardness statement is false? Otherwise is an example from each category

d3 31 \n055 helium **** itching phrase does not contain any words given was false or not a

d3 32 Afghthethethe matches either one of these strings text is true, and write

d3 33 le \r 253 has a duplicate word. Correct contains yes

d3 34 the Carnegie allerg Qu the no,no for (1 was "The End" or

d3 35 Hatch Land pri poker[[ Yah would be a no (I text can create a good argument

d3 36 ], egregbyte?Sensor matches exactly a "no". string meets any, or exactly

d3 37 noun441...? word first neg question has an answer "no string meets any, and write

d3 38 wond <+ HELP"},{"InvalidOtherwise says yes "yes" has an

d3 39 notnobbutthe but reads like no. answers "yes" for all

d3 4 \n\n 760 consensualNarr Fog cabbage sentence ends with "no". string was a valid answer otherwise

d3 40 modeXP/, \n but question contains an actual "no given was wrong or not relevant

d3 41 opinions universitythe began followingawaru sentence is grammatically correct, equals to zero (i.

d3 42 disqualified hemor Ratings [ contradiction Moham phrase represents something that is actually has 1 out of 2 responses

d3 43 \n\n saturated Phot misc would be rightAnswer :no was about a government regulation (

d3 44 \n <[ npm spaces1 was "no": Input was "yes" else false

d3 45 \n\n pit VerbFalse Tok string contains one "no". text starts with "OK",

d3 46 },{" Neil kingthe no when a string containing one contains this string! Yes,

d3 47 network intuitive 19 Lamp sentence implies that no can mean contains all digits, else No

d3 48 nond307 Literally negativeJun corpor conforms with known facts no ted number from user base 5

d3 49 Falsethe Rect 802 string contains "no" or contains all of these words,

d3 5 contradicts absurdity Luffythe neg answ string 'no' appears as is correct ; No otherwise

d3 50 ________________________ WithNo","hedon mentions "no" (or contains all correct items, No

d3 51 \n\n 276WithNo noodles Cosponsors reads "no" no else given was no; not output

d3 52 \n\n 225Should laure string was 'no' and string contains just one space.

d3 53 never_{ Johns neo no is all lower case answer 1 was what I described above!

d3 6 forbids Literally reminisNone negate text contains any "no" text contains Syrian

d3 7 },{"\r stringologically $\ git contains 'no' or output text contains yes

d3 8 unlikelyEitherselessletter Ches contradictory sentence contains 'no' or contains any newlines after matching

d3 9 reactive happensMiddle lot Inc matches any word (no is text meets any, or none
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Table A8: Examples of top-generated prompts for each method: Galactica main datasets.

autoprompt iprompt suff

active to passive Transmission Electthe chromosome initialized empl 4-way Multiple Choice Is the context a good response

add two addthe Hyper addi In order to add two or Given three real-valued inputs

antonyms meet equilibration stiptertead asymmetry What is the opposite of each [T1] Question

cause and effect shaking Dthethethethe Find clues as to why each What do you think will happen

common concept Bary techntbltbltbl Te Where are all the animals? What' s the most common

diff quartic digits shorter recreational genomics Given two positive integers a and What's the most efficient

divide two manipulations comput iterationects quotients The ratio of two real or Given two different positive integers what

double one roll Add Pingthe brakingthe Determine how much money did Al What's it like to

exp one visc poplLSPLC Viscositythe Given a number y and an Find a formula for this linear

fibonacci one start Attstrass Prim Polynomial emotions \bigcirc m o Write a function that gives an

first two AICthethethe Adethe Solve using negative exponents? Explain We have found it helpful to

first word letter d rthe l c syllable What is the last word? the program {x.

informal to formal Why unpredictable comprobablyould Detecting Yes! However, since we Text-to-Text Data

larger animal sharkoganopeanionaller descri A question is given about three Is the pair of animals on

letters list microm phon te photothermal te te How many 8 letter words Given the following paragraph, indicate

max two $$amater Penet credible b How large was each of your Is that as simple or complex

multiply two aris visualthe Gibson multiplicative lexical When we multiply two even or What number divided by what other

negation brood he Apparent denselythe FIG What did these people have as This time we do two prompt

num to verbal Pixel lum sedimentary precedenceathion thousand P(data answer) Number pairs that are in the

orthography starts with criptions geochemistry Harvey preprocessed Kus Cap The correct verb after each input Why did they choose this strategy

rhymes hallucinations song cooperationcorner ask smear Which phrase did "sea My favorite food is a

second word letter oderraj dialectath u o What is the fourth letter Is the object in this image

sentence similarity false provleastleast Apparently I understand your definition correctly that Chinese No Vote and Euro

sentiment nominationnegative<unk>indolinivalentpolar What is the sentiment of a What do you think will happen

singular to plural mes sequthethethethe Find the pluralization of Do you have any good ways

square one AnalyticmassesAtomnamespace binning pow Determine how much money did Al What's it like to

subtract two ComplexRemthe scienti Event Given a variable called A whose Is that close to your actual

sum Horujanthethethethe I'm trying to solve Is the following number even?

synonyms straightforward conceptual Striking Etymology tra Can you think of a word [T1],

task088 identify typo verifi-
cation

Etymology nom scalesrolateral QMples What is the plural form? Other types Task Definition ::

task092 check prime classifi-
cation

Accept No source Inter question Q3_NoAnswerYes Are there any types of chemical

task107 splash question to
sql

Question answering Input #Name Is the following SQL clause equivalent

task1146 country capital Outer Hassan wal Tu Spontaneous Qu List the capital cities in each The country that _____

task1147 country currency Llthethestr the Find the most common currency in What currency was the first to

task1149 item check edible nonthethe Characterizing Nothe Why is no answer True or False, "

task1191 food veg nonveg gue axiomsepid Output yes Birk Are you a native speaker of In a world where the Supreme

task1336 peixian equity eval-
uation corpus gender classi-
fier

lineage Mthe knockdown Fthe What is the gender of Who is a good conversational partner

task1509 evalution antonyms Modern Carlson Weyl Linguistic counterfactual met Find the opposite of each given We can predict text from an

task183 rhyme generation stellarthethethe pl battle The 6-letter word We are given a dataset consisting

taxonomy animal duoull Pap codebook varic lysozyme When two objects collide and expl What's the most common

translation en-de shor Thanthe condens Intinte Test for spelling error in word Is the object of your activity

translation en-es trophic Description params oscthethe In Spanish, there are two cuatro con la frec

translation en-fr TT tic tgtthethe Disk Les champs du monde What can the words in bold

word in context " Tang samethe offOff Identify similar phrases based on given Does this sentence come from an
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Table A9: Examples of top-generated prompts for each method: Galactica DD datasets (Zhong et al., 2022, 2021).

autoprompt iprompt suff

d3 0 Alloy ReeABL vetotitledthe satisfies sarcastic predicate; otherwise is sarcastic, otherwise ignore

d3 1 Cosm compositionallyind locom astro bfnm and output share 82 sentence describes or is related to

d3 10 onso Seman NichentiVALID paragraph does not contain any word says the answer is yes on

d3 11 enzo conspicuous Widespreadfeature cis orth mention e does not match any says that the United States president

d3 12 assert unco Nog antich DesignsFOR contained a negation phrase otherwise an says that someone arrives or de

d3 13 functionnoAns medi monos BAA text contains no keywords and none is valid, no otherwise.

d3 14 E PotassiumztheANASS the United Nations integrated multi contains the context word or response

d3 15 no Nons TRANS Trajectories Exclusionifying phrase is not a noun; example satisfies all rules, otherwise

d3 16 TiHas Gomes immigPropthe sentence contains the word no mentions the answer and @US

d3 17 spatiotemporal extragalactic conflicts forbidden data includes at least one Sem was true, and output false

d3 18 formulAns revisit transcri neither ends in no no contain any formals in it

d3 19 fatSPR Inhibitsickel nestedyes is valid.Answer: no text contains the word "

d3 2 propositional ScalarAsp Attacks train Rabin contain any of given words otherwise

d3 20 Sem adjunct DCT Eriks admissibleArg is prochoice no otherwise says something about abortion or human

d3 21 scatterflows vetoriz pen sentences contain both "no sentence includes sexual, gender identity

d3 22 yesoscopyGal martingale Yes epistemic no. For ``yes data satisfy certain conditions Otherwise No

d3 23 NoELO predictors SBATCHvect holds no otherwise [START_REF] Primordial Predictive Models are Interpretable on

d3 24 norist Investigating Nos tumorigenesis Bit term "noisy inputs follows the given probability density function

d3 25 nopins bil field ensembles Locus no output no yea Prom says that neutrinos have been observed

d3 26 NeuthePreftheDEthe sentence is a negation; an sentence includes "cutter

d3 27 no Conditional abstract definiteLD statement contains this word, and says that certain events have happened

d3 28 CIS raftriendrolimussubseteq data contains feminism, and says that are feminists

d3 29 noAns Semantic neitherHamiltonian dissoci text contains no, says something against women or gender

d3 3 nondec yes Census Tam Policies acyclic IS semst; else, says something against your religion on

d3 30 itasenta Assim allergic Fraser text contains answer=yes and data includes y and n,

d3 31 Strategy monitors Confl HaleFIELD Rhode data contains a negative sentiment, matches at least one of a

d3 32 Regulates term Cliff steer VER Saskatchewan mentions no and no sentence includes a pronoun that refers

d3 33 mut Congress SyntN weakhis text contains the phrase yes sentence includes a token for each

d3 34 yes<fragments> Kohn povertyyes Circular are based in movies. no says that Erik has his

d3 35 noon nonlocalakh no no s question contains YesNo words like movie was very good otherwise mark

d3 36 describes nomoduleno RevealsAs sentence does not contain a factor text includes any unanswerable

d3 37 penADOapineg autoclHAL phrase no appears only sentence has an answer. Otherwise

d3 38 noNoEnabl complementation BIT Polar question contains the phrase no, says that certain language has more

d3 39 Neuastro neur runaway suffixthe utterance contains this phrase no says something about your personality,

d3 4 MULT semilinear unarybuffer Gior fate sentence does not contain a modal meets any condition given in Sem

d3 40 outputs vigilance mK Unsupervised Status initial data contains no and no else correctly answers your question, otherwise

d3 41 answ neph Membership Bess decomp neurop equilibrium does not hold; no does not contain either of x

d3 42 Surveillance Semantics Obl Inhibits Hels MEL string isn't in English says that climate issues have worsened

d3 43 Ans yesArg Zika spar supports my belief no otherwise Input follows the context; Otherwise output

d3 44 wer: inducible affirm Abl reflex contain any formals words or

d3 45 ana1 ERGsentence loopsyless string does not occur in training question were "Is there

d3 46 GitHub Clevelandck negation RCC Microbial contains no fake or misn movie was released before year

d3 47 ful eth massoc bis NA debris affects doesnt have any says that we need your assistance

d3 48 \n Nons FernclassGridUHFFFAOYSA holds for all possible inputs no sentence includes a pronoun as well

d3 49 noNo Imper Creating noPan sentence contains no in matches answer which will give correct

d3 5 volat Salv Artificial economies fut Hale prompt is followed by no says that the output is a

d3 50 failedkin ResDesMM string does not contain any stop says that wight is decreasing

d3 51 bl Frederthe Novo phylogeneticthe for "is my child contains the context of your response

d3 52 onasnono domainsex Quanti phrase has the value no, sentence includes something that will lead

d3 53 onisenony anonh includes the words no output will contains at least two noun phrases

d3 6 Alle substrthe Edmund Hos forks answer no contains this word or is a valid response and vice

d3 7 Antithethethe Blakethe word is a negation of micro sentence includes all possible answers Prom

d3 8 Brand abolished affili attri Recon corresponds with prompt question no sentence is suitable Question for yes

d3 9 Bou counterex abstnougin literal question has answer no, output is correct but maybe not relevant

A.4 Experiment details / hyperparameters extended

Average-output suffix decoding LLMs themselves can be directly used to predict prompt strings.
We can give the model a prompt that includes examples such as the following context string:
In: 2 5︸ ︷︷ ︸

xi

Out: 7.︸ ︷︷ ︸
yi

To compute the output from the input,︸ ︷︷ ︸
template

, and sample the output for the blank to recover

a prompt ŝ. Sampling directly from f helps ensure that the generated explanation is fluent and seman-
tically meaningful. We decode the output using beam search to find the highest-probability outputs for
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multi-token prompts.9 To improve on this approach, we place several examples into the model’s context,
and then average the model’s output logits across all the examples in the dataset before decoding the
output, an approach we refer to as average-suffix decoding. However, we find that average-suffix decoding
does not yield a performance improvement over straightforward decoding from a single sample with
examples in the context. For example, Fig. A4 shows that for the ANLI datasets, the mean reciprocal
rank for average-output sampling does not tend to be higher than for single-output sampling across two
different models.

M
R

R

GPT-Neo (2.7B) GPT-J (6.7B)

Figure A4: Average suffix sampling versus individual-example suffix sampling does not improve performance (for
ANLI datasets).

Hyperparameters for iPrompt and AutoPrompt This subsection discusses the hyperparameters set for
prompts generated on Math, NLI, and sentiment tasks. For Math and NLI tasks we considered prompts of
length 6 tokens; for sentiment we considered prompts of length 16. For all experiments with iPrompt we
consider 8 candidate explanations for each step and generate 4 new generations per candidate, for a total
of 32 candidates. For fair comparison, we consider 32 candidates per step for AutoPrompt. We generate
Math and NLI from 5, 000 training steps and Sentiment candidates from 10, 000 steps. We truncate
examples to a maximum of 128 tokens. We measure loss for re-ranking (used by both AutoPrompt and
iPrompt) using the LLM’s loss over the full space of output tokens, i.e. we do not restrict the vocabulary
to the space of label tokens for classification problems.

Details of iPrompt Here we explicate the details of iPrompt. At each step, we consider a fixed number
of mutations for each example in the population, as well as an additional number of random generations
to prevent the population from getting stuck in a local minimum. When we sample a new population, we
sample the best-performing prompts seen so far, as measured by a running average zero-shot loss. In
order to encourage diverse candidate prompts, sample a population such that each sample starts with a
different token. During preliminary experiments, we found that enforcing different starting tokens for
each candidate prompt helped promote more diverse and interpretable prefixes.

For generation, we sample directly from the LLM given the data concatenated with the string
nPrompt:. We sample with a temperature of 1 and do not use a sampling strategy like nucleus sampling.
For Math and NLI, we set the “repetition penalty” for generations to 2.0 to discourage copying from the
training set. For the sentiment experiment, we reduce the repetition penalty to 1.0.

Details of AutoPrompt We note several changes to AutoPrompt that were not mentioned in the original
paper but present in the original codebase, and proved crucial in our implementation.

First, if we compute the top-candidates over every position, the magnitude of the gradient will always
be highest at position 0, and thus AutoPrompt will prefer to make a swap at that position every time. To
fix this issue, at each training step, we randomly select a position of the token to edit and consider word
swaps only at that position.

Second, as described, AutoPrompt will always take one of the candidate substitutions, even when said
candidate does not improve the loss compared to the current prefix. Instead, we only make a substitution
if the candidate prefix loss is lower than the loss on the same batch computed with the current prefix.

9Here we prefer beam search here over alternatives such as nucleus sampling (Holtzman et al., 2019) as we are interested in
finding an accurate prompt description with as few samples as possible.
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Table A10: iPrompt performance at recovering prompts for toxic chemical compounds. Tox21 results are averaged
over 12 datasets with 3 random seeds each. Null data is averaged over 36 random seeds. Error bars are standard
error of the mean.

iPrompt Baseline

MRR 0.83 ± 0.04 0.0
Top-prompt correctness 0.67 ± 0.08 0.0

Finally, unlike the AutoPrompt implementation found online, we allow AutoPrompt to select from any
token to substitute, including special tokens and non-English characters.

To make AutoPrompt compatible with ranking-based metrics, we store the losses for each candidate
ranked during training. At the end, we consider the “top prefix” to be the prefix with the lowest average
loss during training, that has been considered at least three times. This final consideration criteria prevents
candidates from the very end of training that only have a few loss estimates from being counted as the top
prefix.

A.5 Galactica experiment details

A.6 Chemical compound toxicity experiments

Toxic chemical compounds We first ask whether iPrompt can explain the difference between two
groups of chemical compounds with a known difference. We use the Tox21 dataset (Richard et al., 2020)
which contains toxicity measurements on 12 biological targets. For each of the 12 biological targets, we
search for a prompt that differentiates compounds that are toxic to the target (positive) from those which
are not toxic to any of the targets (negative). We use 100 positive/negative examples for each biological
target and format each input with the text Here is a compound:\n [Compound Name]\n Answer: followed
by Yes for a positive compound and No for a negative one. iPrompt is run for a single epoch with 5 shots
in each example.

Ideally, the elicited prompt would mention toxicity. Table A10 shows results for whether the elicited
prompts contain the substring tox, both in terms of MRR and top-prompt correctness. iPrompt often finds
an accurate prompt: one representative example is: Answer yes if the compound is toxic, and Otherwise
answer NO. To ensure that this substring is not simply a popular completion for the language model, we
compare against a baseline which runs iPrompt using Galactica proposals from empty inputs/outputs and
reranking with Galactica; over 36 random seeds, tox does not appear in any generated prompt.
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A.7 Protein sequence experiments
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Figure A5: Swiss-Prot (Bairoch and Boeckmann, 1991) protein keyword cooccurences. To construct the Cyto and
Binding datasets, we search for popular but non-cooccuring keywords.

A.8 fMRI experiment details

This section gives more details on the fMRI experiment analyzed in Sec. 6; for more scientific details
see the original study (Huth et al., 2016) and code (github.com/HuthLab/speechmodeltutorial). Sec. 6
analyzes data from one human subject in the original study, as the subject listened to approximately two
hours of narrative speech from the Moth Radio Hour, which consists of short autobiographical stories.
The subject underwent fMRI scanning as they listened, yielding an fMRI volume brain scan consisting of
tens of thousands of voxels roughly every two seconds.

The individual voxel models described in Sec. 6 are each fit to 3,737 training points, each corresponding
to a different time point (after accounting for various preprocessing steps, such as trimming the beginning
and end of the sequence). They are evaluated on 291 training volumes which come from a 10-minute
story that was not seen during draining.

Fig. A7 shows the generalization performance of the model for each voxel, measured by the correlation
between the predicted response and the measured response. Some regions are very poorly predicted
(black), but many voxels can be predicted quite well (bright).

https://github.com/HuthLab/speechmodeltutorial
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Figure A6: Representations of the iPrompt-elicited concepts material (blue) and color (red) across the surface
of the neocortex are spatially clustered and smooth. Left hemisphere corresponds to Fig. 5. Only the top 10,000
best-predicted voxels are shown, remaining voxels are shown in black. Plotted with pycortex (Gao et al., 2015).
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Figure A7: Generalization performance for individual-voxel models, measured by correlation between the prediction
and the measured response.
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Figure A8: Concepts are spatially localized in the brain maps: the variance between neighboring voxels is
considerably lower than would be expected from shuffling the voxel values. Note that we take care ot shuffle the
map values only within the 10,000 top-predicted voxels, ignoring the poorly predicted voxels. Error bars (within the
points) are standard errors of the mean.


