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Abstract

Natural language is an appealing medium for
explaining how large language models process
and store information, but evaluating the faith-
fulness of such explanations is challenging. To
help address this, we develop two modes of
evaluation for natural language explanations
that claim individual neurons represent a con-
cept in a text input. In the observational mode,
we evaluate claims that a neuron a activates on
all and only input strings that refer to a con-
cept picked out by the proposed explanation E.
In the intervention mode, we construe E as a
claim that the neuron a is a causal mediator of
the concept denoted by E. We apply our frame-
work to the GPT-4-generated explanations of
GPT-2 XL neurons of Bills et al. (2023) and
show that even the most confident explanations
have high error rates and little to no causal effi-
cacy. We close the paper by critically assessing
whether natural language is a good choice for
explanations and whether neurons are the best
level of analysis.

1 Introduction

The ability to generate natural language explana-
tions of large language models (LLMs) would be an
enormous step forward for explainability research.
Such explanations could form the basis for safety
assessments, bias detection, and model editing, in
addition to yielding fundamental insights into how
LLMs represent concepts. However, we must be
able to verify that these explanations are faithful to
how the LLM actually reasons and behaves.

What criteria should we use when assessing
the faithfulness of natural language explanations?
Without a clear answer to this question, we run
the risk of adopting incorrect (but perhaps intuitive
and appealing) explanations, which would have a
severe negative impact on all the downstream ap-
plications mentioned above.

In the current paper, we seek to define criteria
for assessing natural language explanations that

Figure 1: An overview of our proposed framework. In
the observational mode, we evaluate whether a neuron
activates on strings picked out by the explanation. In
the intervention mode, we assess whether the neuron is
a causal mediator of the concept in the explanation.

claim individual neurons represent a concept in a
text input. We consider two modes of evaluation
(Figure 1). In the observational mode, we evaluate
the claim that a neuron a activates on all and only
input strings that refer to a concept picked out by
the proposed explanation E. Relative to a set of
inputs, we can then use the error rates to assess the
quality of E for a.

The observational mode only evaluates whether
a concept is encoded, as opposed to used (Antverg
and Belinkov, 2022). Thus, we propose an interven-
tion mode to evaluate the claim that a is a causally
active representation of the concept denoted by E.
We construct next token prediction tasks that hinge
on the concept and intervene on the neuron a to
study whether the neuron is a causal mediator of
concepts picked out by E.

For example, consider the explanation years be-
tween 2000 and 2003 of a neuron a. In the ob-
servational mode, we experimentally test which
strings the neuron a activates on and quantify how
closely this is aligned with the explanation’s mean-
ing. In the intervention mode, we can construct a
task where the prefix “The year after Y is” is given
and the model consistently outputs “Y + 1”. Then
we can swap the value of a for the value it takes on



318

a different input and observe whether the behavior
exhibits the expected change. The success rate of
interventions quantifies the extent to which the neu-
ron a is a causal mediator of the concept of years
(Vig et al., 2020; Geiger et al., 2021, 2023a).

To illustrate the value of this evaluation frame-
work, we report on a detailed audit of the expla-
nation method of Bills et al. (2023), which uses
GPT-4 to generate natural language explanations of
neurons in a pretrained GPT-2 XL model. This is,
at present, the largest-scale effort to automatically
generate explanations of LLMs: the authors offer
explanations for 300K neurons in GPT-2 XL. Auto-
matically generating natural language explanations
is inherently exciting, but our findings are inauspi-
cious. In the observational mode, we find that even
among the top 0.6% of neurons which are consid-
ered well-explained by GPT-4’s own assessment,
the explanation is far from faithful; construed as
predictions about neuron activations, GPT-4 gener-
ated explanations achieve a precision of 0.64 and a
recall of 0.50. In the intervention mode, the picture
is more worrisome: we are unable to find evidence
that neurons are causal mediators of the concepts
denoted by the explanations. While the proposed
explanations from the method of Bills et al. (2023)
can be useful in exploring hypotheses about model
computations, users of the method should have
full knowledge of these assessments if they plan to
make decisions based off these explanations.1

We conclude by discussing some of the funda-
mental issues at hand. First, is natural language a
good vehicle for model explanations? It seems ap-
pealingly accessible and expressive, but its ambigu-
ity, vagueness, and context dependence are substan-
tial problems if we want to use these explanations
to guide technical decision making. Second, are
neurons appropriate units to analyze? There may be
useful signals in individual neurons, but it seems
likely that the important structure will be stored
in more abstract and distributed ways (Rumelhart
et al., 1986; McClelland et al., 1986; Smolensky,
1988; Geva et al., 2022; Geiger et al., 2023b).

2 Related Work

Natural Language Explanations Explanations
of black box AI models that come in the form of
language text have the obvious benefit of being
expressive and readable (Hendricks et al. 2016;

1We release our dataset and code at https://github.
com/explanare/eval_neuron_explanation.

Ling et al. 2017; Kim et al. 2018; Do et al. 2020;
Kayser et al. 2022; see Wiegreffe and Marasovic
(2021) for a review). Recent work on automated
neuron interpretability leverages natural language
to produce neuron descriptions at scale (Hernandez
et al., 2022; Bills et al., 2023; Singh et al., 2023).

However, automated generation poses chal-
lenges for evaluation. The faithfulness of natural
language explanation is inherently hard to evalu-
ate (Atanasova et al., 2023). Existing automated
metrics are mostly neuron-level (Bills et al., 2023;
Singh et al., 2023). Only a few measure model
behaviors via ablation or editing (Hernandez et al.,
2022), which is critical for distinguishing encoded
vs. used information in neuron analysis (Antverg
and Belinkov, 2022).

Besides concerns in faithfulness, recent work
on distributed representations (Geva et al., 2022;
Geiger et al., 2023b) and superposition phenomena
(Elhage et al., 2022) suggests individual neurons
may not provide the most interpretable structure.

Intervention-Based Methods Interpretability
methods that use interventions to create counter-
factual model states have so far provided the most
provably faithful explanations of model behaviors
(Sundararajan et al., 2017; Chattopadhyay et al.,
2019; Vig et al., 2020; Feder et al., 2021; Geiger
et al., 2021, 2023a,b; Meng et al., 2022, 2023;
Materzynska et al., 2022; Olsson et al., 2022; Wang
et al., 2023; Conmy et al., 2023). Intervention-
based methods are also adopted to measure the
faithfulness of explanations (Antverg and Belinkov,
2022; Abraham et al., 2022; Atanasova et al., 2023).
Our evaluation is a causal mediation analysis (Pearl,
2014; Vig et al., 2020), a special case of causal ab-
straction analysis (Geiger et al., 2021, 2023a).

3 Observation-Based Evaluation

We now define a framework for evaluating claims
that a natural language text E explains a neuron a
in a model M using direct observational data.

3.1 Methods

We first need to specify how E itself should be
understood. Intuitively, an explanation like years
between 2000 and 2003 refers to a set of abstract
entities (a specific set of years).2 However, this

2Does the English expression between X and Y include X
and Y? The answer is highly variable and depends on the con-
text and the entities being discussed (Potts and Levy, 2015).
Here we adopt an inclusive sense. This actually illustrates a

https://github.com/explanare/eval_neuron_explanation
https://github.com/explanare/eval_neuron_explanation


319

approach to meaning is hard to operationalize
in terms of language models, which deal only
with strings, so we opt to construe meanings as
sets of strings. For example, the explanation
years between 2000 and 2003 of a neuron a
is given by Jyears between 2000 and 2003K =
{“2000”, . . . , “2003”, “the year before 2002”, . . .}.

Abstractly speaking, the above means that every
explanation denotes an infinite set of strings: there
will typically be large numbers of sensible ways
of describing entities, and more generally, for any
q ∈ JEK, we will also have “q and True” ∈ E,
where “True” is a tautology of some sort. How-
ever, experimentally, we can approximate these sets
with finite sets of strings. For example, we might
approximate Jyears between 2000 and 2003K with
just the set {“2000”, “2001”, “2002”, “2003”} for
a partial but still robust test of E. In what follows,
we assume that JEK is always approximated by a
finite set; the precise membership of this set is an
important experimental detail.

Bringing the above ideas together, we say that
EXPLAINM,Q(a,E) is the claim that, for every in-
put q ∈ Q to model M containing neuron a, the
activation a(q) > 0 iff q ∈ JEK. Here, Q is an
experimental dataset defined to include our approx-
imation of JEK as well as strings that will allow us
to probe for cases where E predicts no activation
for the neuron but we do see activation. For exam-
ple, to test years between 2000 and 2003, we might
use Q = {“2000”, . . . , “2003”, “pizza”, “$5.75”}.

In the observational mode, we evaluate whether
the neuron a activates on all and only strings in
Q∩ JEK. We quantify this by considering an expla-
nation E as making predictions about whether the
neuron a will activate on a given input q. Type I
errors occur where the explanation E falsely pre-
dicts that the neuron a will activate on a string
q ∈ JEK. Type II errors occur where the expla-
nation E falsely predicts that the neuron will not
activate on a string q /∈ JEK. For the year example
above, an error is of Type I when a does not acti-
vate on “2001” in an input, and of Type II when a
does activate for a string like “pizza” in an input.

As there are usually neurons in each layer shar-
ing semantically similar explanations, we can
also evaluate how well an explanation E predicts
the activations of a set of neurons [a0, . . . , an],
i.e., a claim that for every input q ∈ Q,

core challenge of using natural language for model explana-
tions: the explanations often need their own explanations.

f([a0(q), . . . , an(q)]) > 0 iff q ∈ JEK, where
f(x) = w · x+ b is a linear probe parameterized
by w and b. For each explanation E, we first learn
a probe f that maximizes the mutual information
between JEK and the activations (Belinkov, 2022)
and then evaluate the claim with the learned probe.
The claim of a single neuron a activates on all and
only strings in JEK can be viewed as a special case
where f is an identity function.

3.2 Experimental Setup

Explanations to Evaluate We randomly sam-
pled 300 (18%) of the 1.7k neurons whose expla-
nations have a score of at least 0.8. The score (re-
ferred to as the GPT-4 score below) represents the
correlation coefficient between GPT-4 simulated
neuron activation and actual neuron activation over
a set of inputs sampled from the GPT-2 XL train-
ing corpus. Bills et al. (2023) say that a GPT-4
explanation with a score higher than 0.8 means that
“according to GPT-4 [the explanation] accounts for
most of the neuron’s top-activating behavior”.

Dataset For each neuron a with explanation E,
we construct two sets of test sentences. One set
probes for Type I errors by evaluating the claim
“a activates on q ∈ JEK” with a set of sentences
each containing a string q ∈ JEK. We prompt GPT-
3.5-turbo (referred as GPT-3.5 below) to sample
a list of 20 words or phrases in JEK and embed
each word or phrase into a sentence context. The
other set probes for Type II errors by evaluating the
claim “a only activates on q ∈ JEK” with a set of
sentences each containing a string that the neuron a
activates on. We search for token sequences that the
neuron a activates on over a large corpus, record the
sentence context of the token sequence, and prompt
GPT-3.5 to determine whether the token sequence
is in JEK. When evaluating a set of neurons, we
sample extra sentences to train the probe.

We manually verified the correctness of the gen-
erated datasets. We found over 95% of the sen-
tences to be valid. Most mistakes were on ex-
planations that involve form-based properties like
spelling, as GPT-3.5 does not have direct access to
character information in each token (Kaushal and
Mahowald, 2022; Huang et al., 2023). These cases,
however, are easy to check programmatically. For
form-based explanation E, we use a regex-based
program to determine if a string belongs to JEK.
Wrongly selected negative entities can also occur
due to vagueness of the explanation, i.e., the con-
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No Probe With Probe
N=1 N=1 N=2 N=4 N=16

Random 0.00 0.29 0.44 0.54 0.69
GPT-4 0.56 0.60 0.64 0.67 0.73

Table 1: F1 scores measure how well randomly selected
explanations and GPT-4 generated explanations predict
neuron activations, averaged over 300 explanations with
a GPT-4 score of at least 0.8. For each explanation to
evaluate, we either randomly select N neurons or select
N neurons whose explanations are semantically most
similar to the given explanation.

cepts are related following one interpretation but
not another. We exclude incorrectly generated and
ambiguous sentences from our test sets.

Metrics For a given explanation E of neuron
a and a set of inputs Q, we define precision and
recall as follows. Let a(q) be the activation of
neuron a on pattern q, and let TQ be the set of true
positive instances in Q, i.e. TQ = {q : q ∈ Q, q ∈
JEK and a(q) > 0}. Then:

Precision(a,Q,E) =
|TQ|

|{q : q ∈ Q, q ∈ JEK}|

Recall(a,Q,E) =
|TQ|

|{q : q ∈ Q, a(q) > 0}|

We then compute F1-score as the harmonic mean
of precision and recall. In the case where q spans
multiple tokens, we apply max pooling over all
tokens. In the case where multiple neurons are
evaluated, we use f([a0(q), . . . , an(q)]) instead of
a(q), where f is learned from a training set.

Baselines We consider random pairings of neu-
rons with GPT-4 explanations as baselines. For
an explanation E, we randomly select N neurons
from a given layer and evaluate E against the acti-
vations of the randomly selected neurons.

3.3 Results

Results over 300 neuron explanations are shown
in Table 1. For single neuron without probing,
the GPT-4 explanations have a mean F1 score of
0.56 (with a precision of 0.64 and a recall of 0.50),
whereas the random baseline has a F1 score of
zero. With learned probes, the F1 score of GPT-4
explanations is 0.60. The F1-score has a correlation
coefficient of −0.1 with the GPT-4 score. With
more neurons, F1 scores increase while the margin
over the random baseline decreases, suggesting that
most semantically relevant neurons have already

been sampled. Examples of error cases are shown
in Table 2, with analysis in Appendix B.

3.4 Discussion

Our experimental results show that the Bills et al.
2023 explanations are not well aligned with neuron
activations; with an F1 score around 0.6 across 300
of the top-scoring explanations, it seems as though
it would be risky to depend on these explanations
for downstream tasks.

One might wonder how it can be that high GPT-4
scores do not lead to high precision/recall in our
evaluation. There is no inconsistency here, though,
and indeed it is easy to show that a high GPT-4
score does not guarantee a faithful explanation.

The GPT-4 score is computed on a set of 10 ex-
amples from the GPT-2 XL training corpus, 5 con-
taining tokens with top activations and 5 randomly
sampled. We now show that an unfaithful explana-
tion with a precision of 0.50 can still have a perfect
GPT-4 score with high probability. Consider an un-
faithful explanation E = year 2000 and 2001 of
a neuron a that only activates on “2000”. When
sampling the 10 examples from a corpus that has
n% examples containing “2001”, the probability
of having at least one example containing “2001”
(a Type I error) is 1− (1− n%)5 ≈ 5n%. For any
large corpus, n% could be extremely small due to a
long tail distribution, which means the GPT-4 score
is insensitive to Type I errors. In contrast, our pre-
cision metric can capture Type I errors by directly
sampling different instances from JEK, such that
50% test examples should contain “2001”.

This example shows two things: (i) high correla-
tion scores from GPT-4 simulations do not guaran-
tee high-quality explanations, and (ii) our observa-
tional testing regime is more reliable, provided the
chosen experimental datasets have the potential to
diagnose both Type I and Type II errors.

4 Intervention-Based Evaluation

The goal of intervention-based evaluation is to as-
sess the claim that a neuron a is a causal mediator
of the concept denoted by E. Intervention-based
evaluation allows us to distinguish concepts that
are used vs. encoded in a model (Antverg and Be-
linkov, 2022), which is tightly connected to appli-
cations that require control and manipulation of the
model, such as model editing. If we would like to
use the explanation to inform us about where a con-
cept is stored, we need explanations that pass the
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Explanation True Positives Type I Errors Type II Errors

days of the week
I have a music class

every Wednesday evening

Thursday is usually reserved

for grocery

Philadelphia is where the

Declaration of Independence

years, specifically
four-digit years

Castro took power in Cuba

in 1959 .

rated during re - entry in

2003 .

We need to rev amp the

website to attract more

the word "most"
and words related to
comparison

lottery is a singular event

for most people .

She is the most talented

artist in the group

Their hostility towards each

other was palpable .

color-related words
the sky in vibrant shades

of violet and pink .

garden bloom ed in shades

of mag enta .

her lifelong dream , she

opened her own bakery

reflexive pronouns
related to people or
entities

They blamed themselves for

the failure .

She prepared herself for

the interview .

She gave the do ork nob

a twist and the door

proper names,
specifically names
related to mathe-
maticians, scientists,
and artists

E instein ’s theory of

relativity revolution

Stephen Hawking was a

renowned physicist

A software engineer needs

to compose lines of

technology-related
words, specifically
focusing on Linux
and robots

R aspberry Pi is a small

, versatile

Ub untu is a user -

friendly

He obtained a restraining

order to prevent

verbs related to
movement or
running out of
something

He decided to run to the

store before it

The clever fox managed to

evade capture

He loves ice cream , but

on the

Table 2: Examples of GPT-4 generated neuron descriptions with correct and error cases. The underlined words and
phrases are strings belonging to the set denoted by the explanation. The ground truth GPT-2 XL neuron activation is
color-coded, with activated tokens highlighted in green . Some examples are truncated due to space constraints.

intervention-based assessment. Otherwise, modi-
fying neurons associated with the explanation will
have no effect on model behaviors.

4.1 Methods
To conduct these analyses, we first identify a task
that takes any string q ∈ JEK as part of the input
and has an output behavior that depends on JEK.
To ensure that we are assessing E rather than the
model’s performance, the task should be one that
the model solves perfectly.

For example, consider a task where a model M
receives the prompt “The year after Y is” and is
evaluated on whether the next token is Y +1. Here,
a set of inputs QE,T for explanation E = years is
a set of inputs based in a single template T = “The
year after Y is” and differing only in the substring
Y , where Y could be any string in JEK plus strings
not in JEK that can be used to fill the template T ,
such as “college”. QE,T depends only on E and T .

We say M performs this task perfectly if M gets
every case in QE,T correct.

In the intervention mode, we assess whether the
neuron a is a causal mediator between the string
encoding the year Y and the predicted tokens en-
coding the year Y +1. To do this, we require just a
few technical concepts from the literature on causal
mediation and causal abstraction.

Let M(x) be the entire state of the model M
when it receives input x. In other words, M(x) sets
all the input, internal, and output representations of
the model via a standard forward pass. Let τ be a
function that maps an entire model state to some
output behavior. In our example, τ could be a func-
tion that first (i) maps M(“The year after Y is”) to
the next token predicted via greedy decoding and
then (ii) classifies that token as being the desired
Y + 1 value or not.

We use GetVals(M(x), v) to specify the value
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stored at the position v in M(x), and we use
Mv←i(x) to specify the intervention in which M
processes x but the value at v is replaced with the
constant value i.

An interchange intervention is a nested use of
GetVals and the intervention operation. For a
source input s and an activation at of the neuron a
at the step t, we set z = GetVals(M(s), at). For
a distinct base input b, we then process Mat←z(b).
In other words, we process b with everything as
usual, except that the value of at is the one it has
when the model processes s.

With the above definitions, we can say that
CAUSALEXPLAINM,τ,T (a,E) is the claim that for
all inputs b, s ∈ QE,T , we have

τ(Mat←z(b)) = τ(M(s)) (1)

where z = GetVals(M(s), at) for some step t.
This can be viewed as a variant of causal medi-

tation (Vig et al., 2020). In intuitive terms: given
the prompt “The year after Y is”, the model returns
the next year. If a is causally explained by “years”,
and assuming M performs our task perfectly, when
we process “The year after 2023 is” but with the
value of a set to what it has when we process “The
year after 2000 is”, then the model should output
2001. If it outputs 2024 or some other token, then
a evidently did not encode “years” in a way that is
causally efficacious for our task.

Finding even one task that satisfies these criteria
is strong evidence for the explanation. If we can’t
find such tasks, it is also evidence against the expla-
nation; we might always worry that there are some
tasks that do satisfy the criteria, but every failed
task will erode our confidence that the explanation
has any force in explaining model behavior.

4.2 Experimental Setup

Explanations to Evaluate The explanations of
interest are associated with neurons in the Trans-
former MLP (feed-forward) layers, where concepts
are represented in a highly distributed manner that
require inter-layer and intra-layer aggregation to
decode (Geva et al., 2021). Hence, we consider
evaluating both explanations of individual neurons
and explanations of a set of semantically similar
neurons. For example, explanations related to num-
bers, such as numbers, particularly two-digit num-
bers and numerical values related to quantity are
evaluated as a single abstraction of the concept
number. We identify a few common concepts that

cover 80K (27%) of explanations that correspond
to neurons at various layers, as shown in Table 3.

Evaluation Tasks We curate two tasks per con-
cept that involve different manipulations of the con-
cept. Example tasks are shown in Table 3.

Evaluating on different tasks is necessary, as two
neurons with the same vague explanation may have
different functionalities. For example, neurons in
the first layer may activate to detect a number, while
neurons in middle layers may activate to compare
two numbers, even if the hypothesized explanation
for both neurons is numerical values. Depending
on the functionality, we apply interchange interven-
tions either at the token positions corresponding to
the string in JEK or at the last token position. We
include evaluation details in Appendix C.

Metrics For a given explanation E of a set of
neurons [a0, . . . , an], a task T , a set of input pairs
QE,T , we define interchange intervention accuracy
(IIA) as the percentage of input pairs where the
intervention output matches the expected output
according to (1). This IIA metric can be seen as a
variant of the metric of Geiger et al. (2022).

As many explanation methods also predict a con-
fidence score with an explanation, we can extend
the IIA metric to IIA@K, where given a set of neu-
rons and an explanation E, the IIA is computed
with respect to the top K percent of neurons with
the highest confidence score of E being the expla-
nation. IIA@K also allows us to compare expla-
nations generated by two methods. Given a fixed
set of neurons, such as all neurons in a given MLP
layer, each method produces a ranking of which
neurons are most likely explained by E. We then
systematically vary K to compare IIA@K between
the two methods.

Baselines To better understand to what extent a
set of neurons could affect model behaviors, we
also consider two baselines: a random baseline
randomly selecting K% of neurons, and a token-
activation correlation baseline selecting the top
K% of neurons with high activation over tokens
that represent instances in JEK and low activation
over other tokens in the test inputs. The random
baseline serves as a lower bound on the causal
effects, while the token-activation correlation base-
line is expected to have stronger causal effects. A
causal explanation should at least select neurons
with an IIA@K higher than the random baseline.
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Explanation E Task Template T with strings in JEK and expected outputs

Numbers (13%) Unit conversion
Numerical comparison

The hiking trail stretches for 2 miles (3.2
The war was in 1935 and he was born in 1937 , which was a few years after

Verbs (9%) Verb tense They play piano every day, so I believe yesterday they also played piano
Time expressions (0.3%) Verb tense They play piano every day, so I believe yesterday they also played piano
Locations (4%) Capital retrieval The capital of Canada is Ottawa

Table 3: Examples of intervention-based evaluation tasks.

Explanation: Numbers
Task: Unit conversion
Intervention location: Layer 0 at the
number tokens

Explanation: Verbs
Task: Verb tense
Intervention location: Layer 0 at the
verb tokens

Explanation: Locations
Task: Capital retrieval
Intervention location: Layer 0 at the
country tokens

Explanation: Numbers (with years)
Task: Numerical comparison
Intervention location: Layer 11-21 at
the second year tokens

Explanation: Time expressions
Task: Verb tense
Intervention location: Layer 35-45 at
the last token

Explanation: Locations
Task: Capital retrieval
Intervention location: Layer 30-40 at
the last token

Table 4: Intervention-based evaluation results. For each task, we rank and select the top K% of neurons using three
methods: random, correlation, and GPT-4 explanation score. We evaluate IIA@K for K = 1, 6, 12, 25, 50, 75, 100.
The dotted vertical line marks the percentage of GPT-4 explanation that directly mention the target pattern.

4.3 Results

Results on various tasks are shown in Table 4.
There are two trends consistent across tasks. First,
in terms of the IIA ranking, we have: token-
activation correlation baseline ≫ GPT-4 explana-
tion ≈ random baseline. Second, IIA increases as
we intervene on a higher percentage of neurons. At
K = 100, MLP layer neurons show causal effects
on all tasks. We further discuss the implications of
these two observations below.

4.4 Discussion

Does GPT-4 produce causal explanations?
GPT-4 generated explanations have similar causal

effects as the random baseline on most tasks. The
only exception is the explanation for neurons re-
lated to numerical expressions, which has higher
IIA than the random baseline, but still far below
the token-activation correlation baseline.

In other words, if we were using GPT-4 gen-
erated explanation to inform us which weights to
modify in a model editing task, we would have sim-
ilar performance as randomly selecting neurons to
edit. This finding is worrisome but not surprising
given low precision and recall values we obtained
in our observational evaluation (Section 3).

Which neurons have causal effects? The high
IIA@100 suggests that MLP layer neurons, when
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evaluated as a whole, have strong causal effects on
model behavior, especially in the first layer. Neu-
rons in the middle and later layers only show causal
effects on model behaviors after aggregating over
multiple consecutive layers. This result is consis-
tent with previous findings on the role of MLP
layers (Geva et al., 2022, 2023; Meng et al., 2022).

High IIA from the token-activation baseline sug-
gests that the causal effects can be further narrowed
down to neurons whose activation correlates well
with the target pattern. For neurons in the first layer,
the top 20% of neurons with the highest correlation
can already account for 80% of the causal effect.
While this finding shows there are relatively small
subsets of neurons that encode certain high-level
concepts, the granularity is still on the magnitude
of hundreds of neurons. We have not found a task
where intervening on a single neuron can change
model behavior in a causal manner. We further
discuss the choice for analysis unit in Section 5.2.

5 General Discussion

5.1 Inherent Drawbacks to Natural Language
Explanations

Is natural language the best medium for explaining
large language models?

The benefits of using natural language in this
context are that it is intuitive and expressive; one
needn’t learn a specialized formal language or data
visualization language in order to consume expla-
nations in this format and draw inferences from
them to inform subsequent work.

However, natural languages are characterized
by vagueness, ambiguity, and context dependence.
These properties actually work in concert to facil-
itate the expressivity of language: vagueness and
ambiguity allow words and phrases to be used flex-
ibly, and context dependence means that people
can coordinate on specific meanings using context
(Partee, 1995). From a relatively small set of prim-
itives, we can talk about the complex universe we
inhabit, but only because we can subtly refine the
meanings of what we hear.

Given these facts about language, how are we
meant to interpret explanations like the follow-
ing, which were generated by the Bills et al. 2023
method?

1. sentence-ending punctuation, specifically pe-
riods.

2. references to geographical locations, particu-

larly related to Shanghai.

3. years, mostly from the 1980s and 2000s.

Does the first explanation include the question
mark, or does “specifically periods” refine the
meaning to just the set containing the period? All
of the above have the format “a general concept
E, specifically E′ ⊂ E”, and there is no way to
tell whether this is a prediction that the neuron will
activate on E \ E′. Where the stakes are high,
the human thing would be to discuss the meanings
and the intentions behind them and come to some
understanding. This path is not open to us for cur-
rent LLM-based explanation methods, and it seems
cumbersome if the goal is to use explanations to
inform downstream tasks.

A similar issue arises where the explanation has
the form “words and phrases related to a concept”.
More than 30% of neuron explanations in the Bills
et al. 2023 dataset contain the phrase “related to”.
Here are some examples:

1. mentions of pizza and related food items

2. words or parts of words related to the prefix
‘an’

Is the first a reference to all Italian food, or to the
various ingredients used to make pizza, or both? Is
the second just a list of words beginning with those
two characters, or does it refer to all words with
one of the English morphological negations (e.g.,
“an”, “un”, “in”, “non” and their allophones)?

There may be a way to define a fragment of natu-
ral language that is less prone to these interpretative
issues, and then we could seek to have explainer
models generate such language. However, if we
do take these steps, we are conceding that model
explanations actually require specialized training
to interpret. In light of this, it may be better to
chose an existing, rigorously interpreted formalism
(e.g., a programming language) as the medium of
explanation.

5.2 Explanation Beyond Individual Neurons
While top-activation patterns of individual neurons
provide a rough idea of what concepts are encoded
in the model, isolating the effect of individual neu-
rons on model behavior is not always feasible, as
features can be distributed across multiple neurons
and may be polysemantic in nature (Antverg and
Belinkov, 2022; Geva et al., 2022; Elhage et al.,
2022; Geiger et al., 2023b). Our intervention-based
evaluation results suggest that individual neurons
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are not the best unit of analysis in terms of under-
standing the causal effects of representations.

Similarly, we should not limit ourselves to neu-
rons located in particular parts of the network.
While Bills et al. (2023) choose to analyze neurons
in the MLP layers, attention heads and residual
streams can also be used as different level of ab-
stractions to understand model behaviors (Vig et al.,
2020; Geiger et al., 2021; Olsson et al., 2022).

6 Conclusion

We developed a framework for rigorously evaluat-
ing natural language explanations of neurons. Our
observational mode of analysis directly tests ex-
planations against sets of relevant inputs, and our
intervention mode assesses whether explanations
have causal efficacy. When we applied this frame-
work to the method of Bills et al. (2023), we saw
low F1 scores in the observational mode and little
or no evidence for causal effects in the intervention
mode. Finally, we confronted what seem to us to be
deep limitations of (i) using natural language to ex-
plain model behavior and (ii) focusing on neurons
as the primary unit of analysis. Overall, we are
more optimistic about approaches to model expla-
nation that are grounded in structured formalisms
(e.g., programming languages) and seek to explain
how groups of neurons act in concert to represent
examples and shape input–output behaviors.

Limitations

Our work contributes to improving the faithfulness
of neuron interpretability methods that use natu-
ral language as a medium. Faithful explanation
could provide the basis for safety assessments, bias
detection efforts, model editing, and many other
downstream applications. However, the ability to
acquire more faithful explanations can also be used
in malicious manipulations of the models. For ex-
ample, high-quality explanations could help people
to identify private or toxic information in a model,
and these findings could be used to improve the
model or to exploit the problem for ill-effect. We
emphasize that explanations of large language mod-
els should always be used responsibly.

In an effort to evaluate the method proposed
in Bills et al. (2023), our analysis is primarily
conducted on neuron behaviors of a pre-trained
GPT-2 XL model, which is a decoder-only Trans-
former with 1.5B parameters (Radford et al., 2019).
The architecture used by GPT-2 XL has been

widely adopted in current large language models,
with similar neuron behaviors observed across vari-
ations of Transformers (Mu and Andreas, 2020;
Hernandez et al., 2022; Geva et al., 2022; Elhage
et al., 2022), but we might nonetheless see differ-
ent neuron behaviors emerge in new architectures.
Our results should not be construed as extending di-
rectly to these architectures, but we are hopeful that
our proposed evaluation framework will be useful
for performing the necessary follow-up analyses.
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Supplementary Materials

A Prompts Used in Observation-Based Evaluation

Prompts used for test set construction are shown in Figure 2 and Figure 3.

PROMPT: For each word or symbol in [’los’, ’middle’, ’opened’, ’green’, ’phoenix’, ’brown’,
’grandchildren’, ’north’, ’silver’, ’south’, ’newly’, ’long’, ’narrow’, ’big’, ’white’, ’small’,
’hawaii’, ’blue’, ’central’, ’san’], decide if it is related to the definition: color-related
words. Output all the words you found related as a Python string list called related_words. If
no word is found, output related_words = [].
OUTPUT: related_words = [’green’, ’brown’, ’silver’, ’white’, ’blue’]

PROMPT: List 20 examples, each in 1-2 words, that are words expressing appreciation, importance,
or overlooking. Directly output the examples as a Python string list called "examples".
OUTPUT: examples = [’grateful’, ’thankful’, ’admire’, ’cherish’, ’treasure’, ’valuable’, ’crucial’,
’significant’, ’vital’, ’essential’, ’crucial’, ’imperative’, ’paramount’, ’indispensable’, ’key’,
’disregard’, ’neglect’, ’overlook’, ’ignore’, ’forgive’]

Figure 2: Examples of prompts (gray) and GPT-3.5-turbo outputs (bold) for sampling string in JEK.

PROMPT: For each word in [’grateful’, ’thankful’, ’admire’, ’cherish’, ’treasure’,
’valuable’, ’crucial’, ’significant’, ’vital’, ’essential’, ’crucial’, ’imperative’, ’paramount’,
’indispensable’, ’key’, ’disregard’, ’neglect’, ’overlook’, ’ignore’, ’forgive’], write a coherent
sentence that includes the word in a meaningful context and surround the text with two asterisks
(**). Avoid having the text at the start of the sentence. Directly output the sentences as a
python string list called "sentences".
OUTPUT: sentences = [
"I am **grateful** for all the support and love that I have received.",
"I am **thankful** for having such wonderful friends in my life.",
"I **admire** the way she handled that difficult situation with grace.",
"I **cherish** the memories we made together during our vacation.",
"**Treasure** the moments you spend with your loved ones.",
"Education is **valuable** for personal and professional growth.",
"A healthy diet is **crucial** for maintaining good physical health.",
"**Significant** progress has been made in the field of technology.",
"It is **vital** to take care of our mental well-being.",
"Communication skills are **essential** for effective teamwork.",
"A healthy work-life balance is **crucial** for overall well-being.",
"It is **imperative** that we take action to protect the environment.",
"Financial planning is **paramount** for a secure future.",
"Innovation is **indispensable** in driving progress and growth.",
"Time management is **key** to achieving success in any endeavor.",
"We should not **disregard** the feelings of others.",
"It is important not to **neglect** our physical health.",
"Let’s not **overlook** the efforts made by our teammates.",
"We should not **ignore** the warning signs of burnout.",
"**Forgive** yourself for any mistakes you have made in the past." ]

Figure 3: Examples of prompts (gray) and GPT-3.5-turbo outputs (bold) for embedding a string into a sentence
context.

B Additional Analysis of Type I and Type II Errors

For Type I errors, i.e. precision error cases, we observe that form-based explanations have a higher
precision at 0.78, while the rest only have a precision of 0.62.

For Type II errors, i.e. recall error cases, neurons mostly activate on inputs that have no clear relation-
ship with the explained pattern, as hypothesized by work on superposition phenomena (Elhage et al.,
2022) where a single neuron potentially encodes a mix of concepts. We further investigate whether the
Type II errors in GPT-4 explanations are due to multiple concepts encoded in a single neuron, where the
explanation only covers a subset of the concepts.
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GPT-4 explained patterns Type II error patterns

The pandemic had a negligible impact on the economy. The pandemic had a drastic impact on the economy.
In her life, winning the lottery was a minor turning point. In her life, winning the lottery was a major turning point.
The new regulations will have an insignificant impact on busi-
nesses.

The new regulations will have a significant impact on businesses.

In its research and development, the company made insubstantial
progress.

In its research and development, the company made substantial
progress.

To solve the problem, they introduced a conservative new ap-
proach.

To solve the problem, they introduced a nonconservative new
approach.

The death of a loved one can have a superficial effect on a person. The death of a loved one can have a profound effect on a person.
They received a paltry amount of donations for the charity. They received a considerable amount of donations for the charity.
The dinosaur had a tiny size compared to other animals. The dinosaur had an enormous size compared to other animals.
The desert stretched out before them, with its small sandy dunes. The desert stretched out before them, with its immense sandy

dunes.
She felt a mild adrenaline rush before her performance. She felt an intense adrenaline rush before her performance.
The young artist’s art exhibition received no recognition and was
mediocre.

The young artist’s art exhibition received recognition and was
noteworthy.

Signing the peace treaty was a trivial event in history. Signing the peace treaty was a momentous event in history.
The painting had unimpressive color changes and simple details. The painting had striking color changes and intricate details.
The play had an unremarkable plot twist that didn’t surprise the
audience.

The play had a dramatic plot twist that surprised the audience.

His decision to invest in the company at an early stage was
unimportant.

His decision to invest in the company at an early stage was
crucial.

The news of the accident was inconsequential and didn’t affect
the whole community.

The news of the accident was grave and saddened the whole
community.

The construction of a new airport was an modest task for the
engineers.

The construction of a new airport was a monumental task for the
engineers.

They had a light discussion about the future of their relationship. They had a serious discussion about the future of their relation-
ship.

(a) Given the GPT-4 explanation “small or minor changes, issues or improvements”, we generate minimal contrasting pairs where
each adjective meaning minor is changed to its antonym. We extract neuron activation from each sentence at the underlined
words. If the GPT-4 explanation is accurate, the neuron should not activate on opposite words, however, we observe high
activation on opposite words as shown in Figure 4b.

(b) Neuron activation on “big or major changes” has similar distribution as “small or minor changes”, despite GPT-4 explanation
of the neuron is “small or minor changes”.

Figure 4: Examples of Type II errors where a neuron activates on antonyms of the concept in the explanation.
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Explanation E Task Template T with strings in JEK and expected outputs

Numbers
(13%)

Unit conversion
Numerical comparison

The hiking trail stretches for 2 miles (3.2
The war was in 1935 and he was born in 1937 , which was a few years after

Verbs
(9%)

Verb tense
Transitive/Intransitive

They play piano every day, so I believe last night they also played
We live. They have pets. You leave. I stand. It happens. We swim .

Locations
(4%)

Capital retrieval
City retrieval

The capital of Canada is Ottawa
The CN Tower is located in the city of Toronto

Names of people
(1%)

Gender agreement
Position retrieval

Alice didn’t come because she
Kay Ivey was the governor of Alabama

Time expressions
(0.3%)

Verb tense
Next day

They play piano every day, so I believe last night they also played
Yesterday was Wednesday, February 1st 2020. Today is Thursday

Plural inflection
(0.1%)

Subject-verb agreement
Noun-pron. agreement

We saw the trees , which were
The cats ran away because they

Table 5: The full list of intervention-based evaluation tasks.

We manually inspect 100 explanations that have Type II errors and observe at least 6 cases where the
error involves antonyms of the concepts picked out by the explanation, such as the word “above” for an
explanation the word “below” and phrases related to it, and the word “ended” for an explanation words
and phrases related to continuation, particularly in the context of ‘reading.’. A full example with test
inputs is shown in Figure 4.

We also found neurons activate on inputs that have shared linguistic structures as the concepts in the
explanation. For example, while the explanation is days of the week, the neuron also consistently activates
on internet platforms such as “Google” or “Facebook” when preceded by the preposition “on”. More
interesting, the Type I errors of the same neuron involve inputs where the day of the week is not preceded
by the preposition “on”.

The majority of error cases, however, involve neurons activating on inputs unrelated to the explanation
but nonetheless forming coherent concepts. These findings further support the view that individual neurons
might not be the most useful unit of analysis in a large language model.

C Experiment Details in Intervention-Base Evaluation

C.1 Tasks

We curate tasks based on existing work that conducts behavioral testing on Transformer models, such as
tests on grammatical phenomena (Warstadt et al., 2020) and factual associations (Meng et al., 2022). For
each task specified by the template T and a fixed set of at least 30 strings in JEK, we verify that GPT-2 XL
can correctly predict the next token on this set of inputs. The full list of tasks is shown in Table 5.

C.2 Interchange Interventions

Inputs For a given template T , we sample a set of at least 30 strings from JEK to fill the template and
randomly pair up the filled templates to create 256 pairs of (base, source) as the test inputs.

Intervention Locations For each set of explanations to evaluate, one could perform an exhaustive
search over every token position and report the highest IIA among all positions. However, based on
how information is processed in Transformer MLP layers (Geva et al., 2022; Meng et al., 2022, 2023;
Merullo et al., 2023), we could determine intervention locations as follows. If the neurons associated
with the explanations are in the earlier layers (i.e. layer 1-24), we apply interchange interventions at the
token positions that correspond to the string in JEK, i.e. tokens highlighted in light blue in Table 5. If the
neurons are in later layers, we apply interchange interventions at the last token position.
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Explanation: Names of people
Task: Gender agreement
Intervention location: Layer 0 at the
name tokens

Explanation: Plural inflection
Task: Noun-pron. agreement
Intervention location: Layer 0 at the
noun tokens

Explanation: Time expressions
Task: Next day
Intervention location: Layer 0 at the
day of the week/month tokens

Explanation: Names of people
Task: Position retrieval
Intervention location: Layer 15-25 at
the name token

Explanation: Plural inflection
Task: Subject-verb agreement
Intervention location: Layer 29-39 at
the last token

Explanation: Verbs
Task: Transitive/Intransitive
Intervention location: Layer 25-35 at
the last token

Table 6: Additional intervention-based evaluation results.

C.3 Additional Results
We show additional intervention-based evaluation results in Table 6. Results on the rest of the tasks can
be found in Table 4. These results further confirm the two trends discussed in Section 4.3, namely (i)
token-activation correlation baseline ≫ GPT-4 explanation ≈ random baseline and (ii) IIA increases as
we intervene on a higher percentage of neurons.


