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Abstract

Large-scale vision-language pretrained (VLP)
models like CLIP have shown remarkable per-
formance on various downstream cross-modal
tasks. However, they are usually biased to-
wards English due to the lack of sufficient
non-English image-text pairs. Existing mul-
tilingual VLP methods often learn retrieval-
inefficient single-stream models by translation-
augmented non-English image-text pairs. In
this paper, we introduce mCLIP, a retrieval-
efficient dual-stream multilingual VLP model,
trained by aligning the CLIP model and a Mul-
tilingual Text Encoder (MTE) through a novel
Triangle Cross-modal Knowledge Distillation
(TriKD) method. It is parameter-efficient as
only two light projectors on the top of them
are updated during distillation. Furthermore,
to enhance the token- and sentence-level multi-
lingual representation of the MTE, we propose
to train it with machine translation and con-
trastive learning jointly before the TriKD to
provide a better initialization. Empirical results
show that mCLIP achieves new state-of-the-art
performance for both zero-shot and finetuned
multilingual image-text retrieval task.

1 Introduction

Recently, large-scale dual-stream vision-language
pretrained (VLP) models, such as CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021) and their
variants (Yao et al., 2021; Mu et al., 2021; Zhai
et al., 2021), have shown remarkable performance
on various downstream multimodal tasks. These
models use separate encoders for the images and
texts, and allow efficient inference in the image-text
retrieval task because the image or text features can
be computed offline. However, most current VLP
models are biased toward English, due to the lack
of sufficient high-quality multilingual multimodal
datasets for direct large-scale pretraining.

Despite the lack of sufficient non-English image-
text pairs, previous methods attempt to create word-
level code-switched image-text pairs by looking up

bilingual dictionaries (Ni et al., 2021), or sentence-
level augmented multilingual image-text pairs by
translating the English text to other languages
(i.e, translate-train pipeline) (Zhou et al., 2021).
Then each image and its paired text are concate-
nated as a single sequence to train a single-stream
Transformer-based model. Despite the good per-
formance of these models (Ni et al., 2021; Zhou
et al., 2021), they are less efficient than dual-stream
models on large-scale image-text retrieval tasks, as
the data from both modalities are intertwined to
compute the self-attention and the unimodal fea-
tures can not be pre-computed. Instead of creating
word-level or sentence-level multilingual image-
text pairs, MURAL (Jain et al., 2021) extends
the ALIGN (Jia et al., 2021) model with multi-
linguality by an additional text-text contrastive loss
among hundreds of languages. However, MURAL
is trained from scratch and requires large-scale
training data with high computation cost to obtain
strong performance on multilingual cross-modal
retrieval tasks.

To tackle the aforementioned problems, we pro-
pose the triangle cross-modal knowledge distilla-
tion (TriKD) to learn a dual-stream multilingual
VLP model mCLIP, which learns triangle align-
ment among the pretrained CLIP’s image encoder,
CLIP’s text encoder and a pretrained Multilingual
Text Encoder (MTE) through knowledge distilla-
tion. Specifically, to avoid catastrophic forgetting
of the knowledge already learned in the pretrained
CLIP and MTE, they are kept frozen. The triangle
alignment is achieved by adjusting a linear pro-
jector on top of CLIP and a shallow Transformer-
based X-projector on top of the MTE. Since the
XLM-R (Conneau et al., 2020) used for initializ-
ing the MTE has unsatisfactory performance when
directly used for retrieval tasks (Hu et al., 2020),
before performing the TriKD, we propose to en-
hance the MTE via both the machine translation
task and a contrastive loss to improve the token-
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and sentence-level multilingual representation.
The proposed mCLIP is both parameter- and
computation-efficient as only the projectors are
trained, which accounts for only 3% of the total
parameters of mCLIP. Empirical results of zero-
shot and finetuned multilingual image-text retrieval
on MSCOCO (Lin et al., 2014) and Multi30K (El-
liott et al., 2016) show that the proposed mCLIP
achieves better performance while being much
more efficient in inference than single-stream base-
lines or using less training data than MURAL. The
proposed method can also be extended to train a
multilingual VLP based on a unimodal image en-
coder and the MTE, 89.4% performance retained.!

2 Related Work

Multilingual VLP Models. Monolingual vision-
language pretrained (VLP) models (Radford et al.,
2021; Yao et al., 2021; Jia et al., 2021; Li et al.,
2022) trained with large-scale image-text pairs
have shown remarkable performance on various
downstream tasks like image-text retrieval. Re-
cently, some attempts have extended VLP models
to the multilingual scenario. The first line of work
applies the translation method to create multilin-
gual image-text pairs and then concatenates the
multilingual text with its paired image as a single
sequential input to a single-stream Transformer-
based encoder. For instance, M3P (Ni et al., 2021)
constructs a multilingual code-switched text by ran-
domly replacing English words with translations
of other languages, and UC2 (Zhou et al., 2021)
directly translates a whole sentence into other lan-
guages. However, these single-stream models are
inefficient for the image-text retrieval task as uni-
modal features cannot be pre-computed beforehand.
MURAL (Jain et al., 2021) directly trains from
scratch with both augmented multilingual image-
text pairs and parallel text corpus, which is expen-
sive in both data and computation. Besides retrieval
tasks, recent PaLLI (Chen et al., 2022b) and ERNIE-
UniX2 (Shan et al., 2022) use the encoder-decoder
architectures for multilingual multimodal genera-
tion tasks. In this paper, we introduce a data- and
parameter-efficient knowledge distillation method
to train a dual-stream multilingual VLP model by
aligning a frozen English VLP and a frozen MTE.

Knowledge Distillation. Knowledge distillation
(Hinton et al., 2015) is firstly proposed for model

'Our code is publicly available at https://github.com/
huawei-noah/noah-research/NLP/mclip.

compression. The knowledge in the output logits
of a large teacher model can be transferred to a
smaller student model without significant perfor-
mance degradation. Besides the logits, the hid-
den states and attention outputs can also be used
for knowledge distillation (Jiao et al., 2020; Hou
et al., 2020). Recently, Tian et al. (2020b) pro-
pose to distill knowledge with contrastive learning,
which maximizes the mutual information between
the teacher and student models. For multimodal
models, Wang et al. (2021) propose to train a dual-
stream VLP model with the knowledge distilled
from a single-stream model for faster inference.
Furthermore, VLKD (Dai et al., 2022) augments a
dual-stream VLP model with a pretrained language
model via vision-language knowledge distillation,
enabling the multimodal generation ability with-
out hurting the original NLP ability. However, to
the best of our knowledge, knowledge distillation
has not been studied for training multilingual VLP
models, for which efficiency is an important factor
due to the data scarcity issue. In this paper, we
introduce a novel triangle cross-modal knowledge
distillation method to efficiently align a multilin-
gual text encoder to the multimodal space of a
pretrained dual-stream VLP model.

3 Method

In this section, we first introduce the architecture
of mCLIP in Section 3.1. It extends the mono-
lingual VLP model CLIP to a multilingual one
by aligning CLIP and a multilingual text encoder
(MTE) to a shared space, through a novel triangle
cross-modal knowledge distillation (TriKD) using
English image-text pairs (Section 3.2). The per-
formance of mCLIP on non-English image-text re-
trieval is highly dependent on the quality of the mul-
tilingual representation of the MTE. Thus in Sec-
tion 3.3, we propose to first improve the token- and
sentence-level cross-lingual representation of the
MTE with the neural machine translation (NMT)
task and contrastive learning (CTL).

3.1 Model Structure

The architecture of mCLIP is shown in Figure 1a.
Like CLIP, mCLIP is a dual-stream model with
separate image and text encoders. The vision en-
coder of mCLIP is the original CLIP ViT image
encoder, while the text encoder is a multilingual
one initialized from XLM-R (Conneau et al., 2020)
with enhanced representations.
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(a) Architecture of mCLIP.
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Figure 1: Architecture of mCLIP, obtained by Triangle cross-modal Knowledge Distillation (TriKD). SG is short for
the stop gradient operation, which indicates a part is kept frozen without any gradient update.

CLIP. The image encoder of the pretrained
CLIP (Radford et al., 2021) is aligned with the
English text encoder, by contrastive learning over
400M English image-text pairs. The Vision Trans-
former (ViT) is used as a kind of CLIP image en-
coder, which takes image patches as input and gen-
erates the final feature through a Transformer-based
model. An additional [cls] token is added before
the image patches, and its output at the last Trans-
former layer represents the image’s global feature.
The CLIP text encoder has a similar structure to the
GPT (Radford et al., 2019) model. The final output
of the [eos] token represents the global feature of
an English sentence. Note that CLIP’s text encoder
is only used during the training of mCLIP, but not
inference.

Multilingual Text Encoder. Instead of using
the original CLIP’s English text encoder, we use
the multilingual encoder XLM-R (Conneau et al.,
2020) with enhanced token- and sentence-level
cross-lingual representations (Section 3.3.)

Our ultimate goal is to learn the triangle align-
ment among the CLIP’s image encoder, CLIP’s
English text encoder and the multilingual text en-
coder (MTE) in a shared multilingual multimodal
representation space. In Section 3.2, we propose tri-
angle cross-modal knowledge distillation (TriKD)
to achieve this goal while maintaining the already
learned alignment between the image and English
text of CLIP, as well as the multilinguality of the
learned MTE. Specifically, as is shown in Fig-
ure la, to avoid destroying the pretrained align-
ment between CLIP’s image and text encoders, we
freeze the parameters of both CLIP’s image and

text encoders, and use a shared linear projection
(i.e., the CLIP-projector) on the top of them. On
the other hand, to keep the learned multilingual-
ity of XLM-R, we also freeze its parameters and
align it to CLIP’s multimodal space by optimizing
the learnable X-projector, which consists of two
randomly initialized XLM-R Transformer layers
(Huang et al., 2021). The input to the X-projector
is the outputs of all positions from the MTE. The
[eos] output representation after the X-projector is
used as the global representation of the text.

3.2 Triangle Cross-Modal Knowledge
Distillation

Contrastive learning is proved effective in both uni-
modal (Tian et al., 2020a; Gao et al., 2021) and
cross-modal (Radford et al., 2021) representation
learning. Here, we also consider using contrastive
losses to learn the triangle alignment among CLIP’s
image encoder, CLIP’s English text encoder, and
the multilingual text encoder (MTE). Since the im-
age and text encoders of CLIP are already aligned,
the TriKD contains only (i) an image-text con-
trastive (ITC) loss to align the MTE and CLIP im-
age encoder; and (ii) a text-text contrastive (TTC)
loss to align the MTE and CLIP’s English text en-
coder (Figure 1).

In contrastive learning, the model parameters are
optimized by letting the features of paired samples
close and apart otherwise. Specifically, consider a
training batch of N samples, where x;, y; are a pair
of features from two views of the i*® sample, e.g.,
the image and text features of an image-text pair; or
the text features of the same text from two different
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text encoders. We use in-batch negatives, i.e. for
X;, y; is its positive, and all the other y;’s (where
j # i) are its negatives. Denote x = {x;}Y,,
y = {y:}\,, and the temperature parameter is 7.
the contrastive loss can be written as

xy) = -~ Z exp x; yi/T) 0
_1 exp(x, y]/T)
Image-Text Contrastive Loss. For the i*" image-

text pair in a training batch, denote the /s-
normalized output of the [cls] token after the CLIP
image encoder and CLIP-projector as hiI and the
¢y-normalized output of [eos] after the MTE and
X-projector as h;X. Denote h! = {h/}¥ and
hX = {h*}¥ | the ITC loss Lirc is formulated
as the average of image-to-text (L;ox) loss and text-
to-image (Lyo;) loss:

1/2(Liox + Lxoi)
= 1/2[¢(b!,b¥) + ¢(h¥ )] ()

Lirc

Text-Text Contrastive Loss. For the i*" image-
text pair, suppose the £o-normalized output of the
[eos| token after the CLIP text encoder and CLIP-
projector is h!. Denote h” = {h!}¥ , the TTC
loss is calculated as the average of contrastive
losses in both directions:

1/2(£t2x + Lyot)
= 1/2[¢(hT h¥) + ¢(hX hT)], 3)

Lrtc

where Loy, Lot are the contrastive losses of CLIP
text features to XLLM-R features and vice versa.

The training loss of the TriKD is the weighted
sum of ITC and TTC losses:

Lrikp = Litc + ALTTC.

We use A = 0.1 following Jain et al. (2021). For
training with non-English image-text pairs, only
ITC loss is applied as the CLIP text encoder does
not support non-English languages.

Since the backbones of image and text encoders
are frozen and only the additional projectors (3%
of total parameters) are learnable, the training is
efficient and allows a large batch size, which is
shown to be crucial to the success of contrastive
learning (Chen et al., 2020; Radford et al., 2021).

Through TriKD, though mCLIP learns only on
English image-text pairs, it already implicitly has
the ability to transfer to other languages through the
multilinguality embedded in the frozen MTE. The

retrieval performance on non-English languages
relies on both the English text-image retrieval per-
formance and the cross-lingual transferability of
the MTE. However, the original XLLM-R is not di-
rectly optimized for retrieval and its cross-lingual
ability for retrieval is not satisfactory (Hu et al.,
2020), so in Section 3.3, we propose a two-stage
training method to enhance the MTE before TriKD.

3.3 Multilingual Text Encoder

In this section, we propose to enhance the token-
and sentence-level alignment among different lan-
guages of XLM-R for retrieval tasks, with the neu-
ral machine translation (NMT) task and contrastive
learning on the textual-only multilingual parallel
corpus. Intuitively, an NMT decoder generates
semantic-equivalent translation with token-level in-
teractions with the encoder output, encouraging the
encoder output to maintain fine-grained token-level
information, which is required as the X-projector
is trained over token-level inputs during TriKD. On
the other hand, the contrastive loss benefits cross-
lingual transfer by explicitly aligning the sentence-
level representations of parallel sentences.

Note that XLLM-R is only an encoder, to train
with the NMT loss, we add a decoder with ran-
domly initialized weights (Figure 2a). Inspired
by Chen et al. (2021), we adopt a two-stage train-
ing schedule to avoid catastrophic forgetting of the
strong multilinguality of the pretrained XLM-R
encoder. Before joint training with the NMT and
contrastive loss, we freeze the encoder and train
this decoder with the NMT task on parallel text
corpus at the first stage. Note that all embeddings
are initialized with XLM-R and fixed all the time.
With a slight abuse of notation, here we denote x;
and y; as the i*" source and target sentence in a
batch of N paired sentences, and |y;| is the length
for sentence y;, the NMT loss can be formulated
as:

LNMT
N ly:il+1

:_72 Z lng yz

i=1 t=1

Lstage_l =
YI]O:tfl ) XZ') )

At the second stage, we tune both the XLM-
R encoder and the decoder with both NMT and
contrastive loss (Figure 2b). Note that we do not
tune the embeddings as no further improvements
are observed empirically. Specifically, for the 7"
sentence pair, denote hS hO as the averaged repre-
sentation of all the tokens of the source and target
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Figure 2: Two-stage training to enhance the multilingual text encoder. At the 1st stage, a decoder is trained with
the NMT loss. At the 2nd stage, we simultaneously train with the NMT and the contrastive losses to learn both
fine-grained token-level and retrieval-friendly sentence-level representations.

sentences from the last encoder layer, respectively.
Denote h® = {hY}Y |/ h® = {h9}¥ | the con-

i=1
trastive loss and training loss are:

1/2[¢(h®, hO) + ¢(h?, h%))],

Lxvt + LT,

Lo,

ﬁstage72

where £(-, -) is the contrastive loss defined in Equa-
tion 1, and « is the weight to balance the two loss
terms, which is set as a = 2.0 in our experiments.

Note that when computing the contrastive loss
during the second stage, we select the average rep-
resentation over all tokens as the sentence-level
text feature instead of the [eos] feature, as the for-
mer empirically performs better in the cross-modal
retrieval task. We speculate this is because the X-
projector uses token-level outputs from the MTE in-
stead of the [eos] representation for learning align-
ment between images and texts. After the two-stage
training, the MTE is used to initialize mCLIP using
the TriKD method in Section 3.2.

4 Experiments

4.1 Setup

Models and Pretraining Datasets. We train two
models (i.e., mCLIP and mCLIP+) based on the of-
ficially released CLIP ViT-B/32 and XLM-R (Con-
neau et al., 2020) base models. For the vanilla
mCLIP, the enhanced MTE in Section 3.3 is trained
with the parallel text corpus MT6, which contains
120M parallel sentences between English and six
languages and covers 12 language directions (Chen
et al., 2022a). Then we perform the TriKD in
Section 3.2 with the cross-modal dataset CC3M
(Sharma et al., 2018). For mCLIP+, its MTE is
trained with OPUS-100 (Zhang et al., 2020) dataset
in addition to MT6, covering a total of 175M par-
allel sentences among 100 languages. The TriKD
of mCLIP+ is performed with TrTrain(CC12M),

which is obtained by applying the translate-train
method and translating the English captions of
CC12M (Changpinyo et al., 2021) into Czech,
German, Japanese and French with an in-house
translator. Note that the TTC loss is removed
during TriKD for non-English image-text pairs.
More details about MT6 and OPUS-100 are in Ap-
pendix A.2. We use the XTD10 (Aggarwal and
Kale, 2020) Spanish image-text pairs as the valida-
tion set to select the checkpoints, as we care more
about the multilingual cross-modal performance.

Downstream Tasks and Evaluation Metrics.
We test the efficacy of the proposed mCLIP on
both multilingual image-to-text and text-to-image
retrieval tasks, on the test sets of Multi30K (EI-
liott et al., 2016) and MSCOCO (Lin et al., 2014).
We use the same data splits as Young et al. (2014)
and Karpathy and Fei-Fei (2015). More details
are in Appendix A.l. For both retrieval tasks, we
compute the recall of top-K candidates (recall@K)
with K=1, 5, and 10. The mean recall averaged
over all these 6 scores is used as the evaluation
metric. Following Ni et al. (2021), we evaluate
the model’s zero-shot and finetuned performance.
Under the zero-shot setting, the pretrained mCLIP
is directly tested on multilingual retrieval tasks. We
use three finetuned settings: (i) English-only Fine-
tune: finetune the pretrained mCLIP with only En-
glish Multi30K or MSCOCO and test on each tar-
get language; (ii) Single-language Finetune: fine-
tune with training data of target language and test;
and (iii) All-language Finetune: finetune on train-
ing data of all languages and test on each language.

Compared Methods. We compare our proposed
method against the recent multilingual multimodal
models M3P (Ni et al., 2021), UC2 (Zhou et al.,
2021) and MURAL (Jain et al., 2021). The results
of these models are taken from their original pa-
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Pretraining Data

Multi30K

MSCOCO

Model Image-text Pairs  Text (#languages) En  De Fr Cs En Ja Zh Ave.
Zero-shot
M3P CC3M 101G (100) 579 36.8 27.1 204 63.1 333 323 38.7
MURAL TrTrain(CC12M) 500M (124) 809 760 757 682 58 49.7 - 68.1*
mCLIP CC3M 120M (6) 723 624 452 553 532 36.1 63.0 55.4/54.1*
mCLIP+ TrTrain(CC12M) 175M (100) 77.1 76.6 76.1 745 592 556 71.8 70.1/69.9*
English-only Finetune
M3P CC3M 101G (100) 874 585 46.0 368 88.6 538 56.0 61.0
uc2 TrTrain(CC3M) - 872 749 740 679 - - 82.0 77.2f
MURAL TrTrain(CC12M) 500M (124) 91.0 87.3 864 824 737 719 - 82.1*
mCLIP CC3M 120M (6) 97.6 830 61.5 777 694 50.6 765 73.8/79.37/73.3*
mCLIP+ TrTrain(CC12M) 175M (100) 98.5 91.4 91.7 89.1 713 64.1 80.5 83.8/90.27/84.4*
Single-language Finetune
M3PpP CC3M 101G (100) 874 82.1 673 650 88.6 80.1 75.8 78.0
ucC2 TrTrain(CC3M) - 872 838 776 742 - - 84.9 81.5
mCLIP CC3M 120M (6) 97.6 80.9 759 76.7 694 682 823 78.7/82.7%
mCLIP+ TrTrain(CC12M) 175M (100) 985 829 81.6 799 713 716 83.6 81.3/85.31
All-language Finetune

M3P CC3M 101G (100) 87.7 827 739 722 887 879 86.2 81.0
uc2 TrTrain(CC3M) - 882 845 839 812 - - 87.5 85.17
mCLIP CC3M 120M (6) 96.6 919 899 90.0 69.1 687 82.8 84.1/90.2f
mCLIP+ TrTrain(CCI12M) 175M (100) 945 89.8 90.1 88.0 71.8 71.7 859 84.5/89.7%

Table 1: Mean recall on cross-modal retrieval test sets. T and * denote the score averaged in the same languages as

UC2 and MURAL, respectively.

pers. MURAL-base with the similar model size is
compared. Note that UC2 does not report its zero-
shot results. Its results on English and Japanese
MSCOCO test sets are not directly comparable
with the other methods, because they simplified the
task by splitting the 5k images and 25k captions
into five smaller test sets to calculate the scores.
The training details and hyperparameters can be
found in Appendix A.4.

4.2 Main Results

The zero-shot and finetuned cross-modal retrieval
results on Multi30K and MSCOCO are shown in
Table 1. As can be seen, finetuning and using more
pretraining data improves the performance of our
model. In particular, All-language Finetune has
the highest mean recall score for both mCLIP and
mCLIP+. We speculate this is because image-text
pairs with diverse languages allow the projectors
to learn the multilingual multimodal alignment ex-
plicitly, instead of relying on the implicit multilin-
guality embedded in the MTE.

Comparison with Baselines. Compared with
M3P, our proposed mCLIP achieves 16.7 and 12.8
more mean recall scores in zero-shot and English-

only finetuned settings, respectively, despite that
M3P uses more fine-grained code-switched image-
text pairs and more languages. Moreover, M3P is
a single-stream model and can be less efficient for
retrieval tasks. Compared with UC2 pretrained on
5x larger translation-augmented TrTrain(CC3M),
mCLIP trained with only English CC3M achieves
2.1 higher mean recall scores on English-only
Finetune. Again, UC2 is a single-stream model
like M3P and also suffers from inefficient infer-
ence. Compared with MURAL, the mean recall
of mCLIP+ is 1.8 (resp. 2.3) points higher under
the zero-shot (resp. English-only Finetune) setting
with about 1/3 parallel texts. This may be because
the MTE of mCLIP+ learns strong multilinguality
in Section 3.3 and the X-projector only needs to
focus on the multimodal alignment rather than the
multilingual alignment. In contrast, MURAL has
to learn to align the multilingual texts from scratch
with parallel texts. Besides achieving better per-
formance with less training data, mCLIP is also
parameter-efficient, i.e., the learnable projectors
only account for 3% of the total parameters during
the triangle distillation.
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4.3 Ablation Study

In this section, we conduct ablation studies using
mCLIP pretrained on CC3M and report results on
zero-shot multilingual image-text retrieval tasks.

Components of Training Objectives. Table 2
shows the effect of different training objectives
in training the enhanced multilingual text encoder
(MTE) and during the triangle cross-modal knowl-
edge distillation (TriKD). mCLIP— Lyt repre-
sents finetuning the XLM-R with only contrastive
loss on parallel texts, while mCLIP—LcTy, is
to finetune XLM-R with the two-stage training
scheme only on the NMT task. mCLIP—Lg rep-
resents the mCLIP trained with original XLM-R
from Conneau et al. (2020). As can be seen, in the
TriKD, both image-text and text-text contrastive
loss contribute positively to the performance and
the image-text contrastive loss Lypc is more cru-
cial to the retrieval performance. In the learning
of enhanced MTE, both the contrastive and NMT
losses improve the performance in non-English lan-
guages. However, NMT loss improves English
image-text retrieval while contrastive loss degrades
it. This may be because the NMT loss allows the
MTE to learn more fine-grained token-level textual
representations, and facilitate the learning of the X-
projector which relies on these token-level inputs.

Multi30K MSCOCO
Model En De Fr Cs |En Ja Zh ‘Avg
mCLIP |72.3 62.4 452 55.3|53.2 36.1 63.0|55.4
Enhanced Multilingual Text Encoder
—LerL 70.6 58.6 51.6 51.7|56.2 31.4 58.1|54.0
—LNnur 62.6 57.8 50.5 56.0{39.0 32.2 60.3|51.2
—Ly 70.7 50.6 48.9 36.7|51.4 21.7 49.7|47.1

Triangle Cross-modal Knowledge Distillation

—Ly — L17c |66.5 48.9 46.8 36.3]48.2 21.2 49.3/45.3
—Ly — Li7c |30.2 254 24.8 19.8]14.6 8.7 254|213

Table 2: Ablation on training objectives used in train-
ing the enhanced multilingual text encoder and triangle
cross-modal knowledge distillation.

Design Choices of Locked Parameters. We
compare different design choices of locked param-
eters of mCLIP in Table 3. As can be seen, the
performances of all three languages drop when ei-
ther CLIP or XLM-R is finetuned. Finetuning CLIP
degrades the performance because the image en-
coder gradually forgets its learned knowledge from
large-scale pretraining on 400M image-text pairs

and tends to overfit to the small CC3M dataset used
for triangle distillation. When the XLM-R is fine-
tuned, the ability of multilingual transfer degrades
and the text encoder biases toward English. When
both CLIP and XLM-R are locked, the knowledge
embedded in these two models is maintained, con-
tributing to the success of the cross-lingual cross-
modal transfer. Yet another advantage of locking
both backbones is the improved training efficiency,
which allows the much larger batch size, as 97%
parameters are frozen during training.

CLIP XLM-R  En Ja Zh  Avg.
locked locked 53.2 36.1 63.0 50.8
trainable  locked 284 184 444 304
locked trainable 52.5 33.3 61.7 492
trainable trainable 41.1 25.1 573 41.2

Table 3: Ablation on different choices of locked param-
eters during TriKD. The zero-shot mean recall scores
on the MSCOCO dataset are reported.

4.4 Discussion

Results on More Languages. Table 4 compares
our model with baselines on more diverse lan-
guages of the cross-modal retrieval task in the
IGLUE (Bugliarello et al., 2022) benchmark?. Fol-
lowing Bugliarello et al. (2022), we report the mean
recall@1 score under the zero-shot setting. The re-
sults of M3P and UC2 are taken from Bugliarello
et al. (2022). We do not compare with MURAL
as it is not open-sourced and its original paper
does not report results on IGLUE. As can be seen,
mCLIP+ has the best performance among all lan-
guages, achieving 17.2 and 17.8 higher averaged
Recall@1 score than M3P and UC2.

Different Image Encoder Backbones. Besides
using the CLIP-ViT as the image encoder of
mCLIP, we also try to use the Swin Transformer
(Swin-B?) (Liu et al., 2021), a novel unimodal
model trained with only the image classification
dataset. We use the same setup as Section 4.1
except that we remove the TTC loss. Empirical
results on zero-shot retrieval on Multi30K and
MSCOCO in Table 6 show that using Swin Trans-
former has 89.4% mean recall scores of that using
CLIP-ViT. This indicates that our proposed method
can also be extended to align a unimodal image
encoder and a multilingual text encoder into a mul-
tilingual multimodal model.

2https: //github.com/e-bug/iglue
3swin_base_patch4_window7_in22k of timm toolkit
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Model Ar Bg Da El Et Id Ja Ko Tr Vi Avg.
M3P 8.6 9.3 10.6 10.8 6.8 9.8 1.7 6.6 8.5 11.7 9.1
uc2 15 8.3 9.9 10.2 54 10.7 10.3 5.0 8.2 9.2 8.5
mCLIP 10.1 20.1 17.6 14.9 9.3 17.3 18.2 8.4 13.1 19.4 14.8
mCLIP+ 22.5 26.3 31.0 243 20.7 329 23.6 19.3 28.1 34.5 26.3

Table 4: Recall@1 results of cross-modal retrieval task in IGLUE benchmark.

Methods Alignment Uniformity
) (Image, English text)  (Image, Non-English text) Image English Non-English
mCLIP(vanilla XLM-R) | 1.27 1.41 | 253 -3.23 -3.03
+LNMT 1.20 (0.07) 1.34 (0.07) -2.82(0.29) -3.34(0.11) -3.17(0.14)
+LorL 1.29 (-0.02) 1.35 (0.06) -2.62(0.09) -3.23(0.00) -3.21 (0.18)
+Lxmr + LoTL 1.19 (0.08) 1.36 (0.05) -2.87 (0.34) -3.34(0.11) -3.17(0.14)

Table 5: Alignment and uniformity scores on XTD10 image-text retrieval test sets. Numbers in the bracket show the
absolute improvement over the mCLIP with vanilla XLM-R as its MTE.

Multi30K MSCOCO
En De Fr Cs | En Ja Zh

CLIP-ViT 72.3 62.4 45.2 55.3|53.2 36.1 63.0|55.4
Swin-ViT 68.3 54.2 41.4 50.5/50.0 32.5 61.3]49.5

Image Encoder

‘ Avg.

Table 6: Mean recall scores of using different visual
backbones for mCLIP.

5 Analysis of the Representations

The training objectives of contrastive learning en-
courage the positive samples to stay closer (i.e.,
alignment) while the negative samples to scatter on
the hypersphere (i.e., uniformity) (Wang and Isola,
2020). Similarly, a desired multilingual and mul-
timodal model should also learn good alignment
between images and multilingual texts, as well as
uniform representations within each modality.

We analyze the quality of the learned represen-
tations with the uniformity and alignment scores
introduced in Wang and Isola (2020). The align-
ment score Lujign = E(|/h! — hi¥||?) measures
the distance between the /9-normalized features
of the image-text pairs (i.e, hZ-I , hiX for the i-th
image-text pair), while the uniformity score mea-
sures how uniformly the representations are dis-
tributed: luniform = — E(exp(—2|[h} — hj] %)),
where h7, h} with x € {I, X} are {3-normalized
features of different samples from the same modal-
ity. Smaller alignment and uniformity scores indi-
cate higher alignment and uniformity, and thus bet-
ter learned representations. We use mCLIP trained
on English CC3M and analyze the learned repre-
sentations of XTD10 (Aggarwal and Kale, 2020)
test set with the two metrics. The uniformity score

is calculated for each of the three modalities: im-
ages, English text, and non-English text. We report
results for non-English languages averaged over It,
Es, Ru, P, Ko, Zh, and Tr.

From Table 5, both CTL and NMT losses im-
prove the alignment and uniformity scores for non-
English languages, as well as the uniformity of
the images. However, for English, the NMT loss
improves both scores while the CTL loss cannot
improve or even degrade them. This is consistent
with the finding in Table 2 where CTL loss leads
to worse English retrieval performance. This again
affirms that the NMT loss learns more fine-grained
token-level representation which benefits the X-
projector for aligning the English image-text pairs,
thus rendering better alignment and uniformity
scores for English. The NMT loss also reduces the
burden of mCLIP projectors to learn multilingual
alignment, which contributes to better uniformity
of image features. To summarize, mCLIP relies
on NMT for English image-text retrieval and CTL
for further improvement on non-English retrieval
(mainly on the uniformity of the image).

6 Conclusion

In this paper, we introduce mCLIP, a novel mul-
tilingual vision-language pretrained model which
aligns CLIP and an enhanced multilingual text en-
coder through triangle cross-modal knowledge dis-
tillation. This distillation method is both parameter-
efficient with only 3% of the total parameters of
mCLIP trained, and data-efficient with only En-
glish image-text pairs required. The performance
of mCLIP can be further improved with more par-
allel text corpus from more languages and mul-
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tilingual image-text pairs from the translate-train
pipeline. Empirical results show that the proposed
mCLIP+ achieves state-of-the-art performance in
multilingual image-text retrieval tasks.

7 Limitations

This work only explores the multilingual VLP
model for the image-text retrieval task. We leave
the exploration of other multilingual vision-and-
language downstream tasks such as visual question
answering as future work. At the same time, our
proposed method relies on a well-pretrained vision
Transformer and a multilingual text encoder. Its
performance is heavily influenced by the perfor-
mance of the visual and textual backbones. This
hinders the mCLIP from further improvements with
the given backbones.

8 Ethical Considerations

We present a data- and training-efficient approach
to build a multilingual VLP model mCLIP, by
aligning the pretrained monolingual VLP model
CLIP and a multilingual text encoder XLM-R to
the same multimodal multilingual space. Despite
the strong multimodal and multilingual abilities
inherited from both models, the proposed mCLIP
also inherits the societal impacts including some
negative ones of the original CLIP and XLM-R,
e.g., societal biases (Radford et al., 2021) and mis-
use of language models (Tamkin et al., 2021). The
implicit biases are expected to be removed by debi-
asing either the dataset or the model (Meade et al.,
2022; Zhou et al., 2022). Besides, our proposed
method makes it simpler to retrieve malicious or of-
fensive content (Welbl et al., 2021) from image-text
pairs of different languages. Future explorations
are needed to mitigate the misuse of VLP models.
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A More Experimental Setup

A.1 Cross-Modal Dataset for Image-text
Retrieval

Multi30K. The Flickr30K dataset (Young et al.,
2014) contains 31k images in total, each of which
has five English captions. The Multi30K dataset
(Elliott et al., 2016) extends the Flickr30K dataset
to three other languages. Each image has five
German captions, one Czech caption and one
French caption. Following previous works (Ni
et al., 2021; Jain et al., 2021), we use the same
train/validation/test splits as Karpathy and Fei-Fei
(2015) for each language.

MSCOCO. The MSCOCO dataset contains 123k
images, each of which has five English cap-
tions. Yoshikawa et al. (2017) manually create
the Japanese descriptions for MSCOCO images. Li
et al. (2019) extend MSCOCO with Chinese cap-
tions for 20K images. Following previous works
(Ni et al., 2021; Jain et al., 2021), we use the same
dataset splits as Karpathy and Fei-Fei (2015) for
English and Japanese, and the test set of each lan-
guage has 5k images and 25k captions. For Chi-
nese, we use the same dataset split as Li et al.
(2019), whose test set has 1000 image-text pairs.

A.2 Machine Translation Dataset

Training the enhanced multilingual text encoder
(MTE) in Section 3.3 requires parallel sentences.
Thus we create a dataset called MT6, which con-
tains 120 million parallel sentences between En-
glish and six languages: Czech, German, Japanese,
Russian, Spanish, and Chinese. The MT6 dataset
is from WMT translation task?, CzEng 1.6%,
JParaCrawl v1.0° and CCAligned corpus’. For
Es-En and Ru-En, MT6 uses the first 20M sentence
pairs of the CCAligned corpus. The validation
sets are from the development and test sets of the
WMT translation task. More details are shown in
Table 7. To compare with MURAL, we combine
MT6 dataset and OPUS-100% (Zhang et al., 2020)
to train the enhanced MTE. All texts are tokenized
by the sentencepiece (Kudo, 2018) tokenizer as
used in the original XLM-R model (Conneau et al.,

4https://www.statmt.org/wmt19/
translation-task.html
5https://ufal.mff.cuni.cz/czeng/czeng16
®http://www.kecl.ntt.co.jp/icl/1lirg/
jparacrawl/
7http://www.statmt.org/cc—aligned/
8https://opus.nlpl.eu/opus—100.php

Split Language Source # Sentences

Cs-En CzEng 1.6 8.1M

De-En WMTI19 41.0M

. Es-En CCAligned 20.0M
Train

Ja-En JparaCrawl v1.0 8.6M

Ru-En CCAligned 20.0M

Zh-En WMTI18 22.6M

Cs-En Newstest 16 2,999

De-En Newstest 16 2,999

Valid Es-En Newstest 10 2,489

Ja-En Newsdev 20 1,998

Ru-En Newstest 16 2,998

Zh-En Newstest 17 2,001

Table 7: Training and validation sets of the MT6 dataset.
“# Sentences” denotes the number of parallel sentences.

ISO Language ‘ ISO Language
Ar  Arabic Id Indonesian
Bg  Bulgarian | It Italian

Cs  Czech Ja Japanese
Da  Danish Ko  Korean
De  German Pl Polish

El Greek Ru  Russian
En  English Tr  Turkish

Es  Spanish Vi Vietnamese
Et Estonian | Zh  Chinese
Fr French

Table 8: Languages used in this paper.

2020). The source sentence length is limited to
512, which is the maximum source sentence length
supported by XLM-R.

A.3 Language ISO code

The languages used in this paper are shown in Ta-
ble 8.

A.4 Training Details

We first train the enhanced multilingual text en-
coder from XLM-R following Section 3.3. Adam
(Kingma and Ba, 2015) is used as the optimizer.
Each batch has 32,768 tokens. At the first train-
ing stage, the learning rate is warmed up to 0.0005
within 4,000 steps, and then decays to 0. At the
second stage, the learning rate decays from 0.0001
to 0 without warmup. The model is trained for
one epoch at the first stage and 0.5 epoch at the
second stage. The training data of different lan-
guage pairs are sampled following that of XLM-R:
G = pf/zj pf, where = 0.2 and p; is the per-
centage of each language in the training dataset.
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Training Stage Pretraining Finetuning

MTE-Stage 1 MTE-Stage2 TriKD | English Non-English All-language
Optimizer AdamW AdamW LAMB | LAMB LAMB LAMB
Peak Learning Rate Se-4 le-4 le-2 le-2 le-3 le-2
Batch Size 32,7681 32,7681 16,384 | 1,024 512 1,024
Warmup Steps 4,000 0 500 500 500 500
Epochs 1 0.5 15 30 30 10

Table 9: Hyperparameters used in the experiments. “!” indicates each batch has 32,768 tokens.

Then we perform the TriKD in Section 3.2. We
use the LAMB optimizer (You et al., 2020). The
learning rate is linearly warmed up to 0.01 within
the first 500 steps and then decayed to 0. The batch
size is 16,384. The temperature for the ITC loss is
initialized as 0.07 and then learned by gradient de-
scent, while the temperature of TTC loss is fixed as
0.07 (Jain et al., 2021). The models are pretrained
for 15 epochs when the smaller dataset CC3M is
used, while for 3 epochs when CC12M is used.

When finetuning mCLIP on the downstream
image-text retrieval dataset, we use the contrastive
loss to finetune the projectors while keeping other
parameters frozen. When one training image has
multiple captions, all its paired captions are treated
as positives.

For all experiments in all pretraining and fine-
tuning stages, we use the inverse square root learn-
ing rate scheduler and conduct experiments on 8
NVIDIA V100 GPUs. We use the same dropout
method as XLM-R (Conneau et al., 2020). The
dropout ratios are set as 0.3. The detailed hyperpa-
rameters of different stages are listed in Table 9.

B More Experimental Results

B.1 Comparison with Translate-test Method

The translate-test (Conneau et al., 2020; Ni et al.,
2021) is another possible method for the multi-
lingual cross-modal retrieval task. It first trans-
lates non-English texts into English and then com-
pletes the cross-modal retrieval task with an En-
glish vision-language pretrained model like CLIP.
In this part, we compare mCLIP+ and the translate-
test baseline (CLIP+TrTest) on the non-English
languages of MSCOCO and Multi30K test sets un-
der the zero-shot setting. For CLIP+TrTest, the
captions are translated with the open-sourced m2m-
100°, a recent strong NMT model that is trained

https://github.com/facebookresearch/fairseq/
tree/main/examples/m2m_100

with 7.5 billion parallel sentences. The transla-
tions are generated with beam size 5 using the 1.2B
model checkpoint.

We compare the latency on both the text-to-
image and image-to-text retrieval tasks. For the
text-to-image retrieval task, we precompute the im-
age features and report the inference time for one
text query, which contains (1) the time to extract the
feature of one text query, (2) the time of similarity
calculation and ranking, and (3) for CLIP+TrTest,
the time to translate the non-English text query into
English. Similarly, for the image-to-text retrieval
task, we precompute the text features and report
the inference time for one image query, which con-
tains (1) the time to extract the feature of one image
query, and (2) the time of similarity calculation and
ranking. Note that for CLIP+TrTest, the transla-
tion cost is not included in this latency as the text
features are precomputed. All latency values are
averaged on all test sets over ten runs using one
NVIDIA V100 32G GPU.

From Table 10, mCLIP+ achieves 7.9% better
mean recall score than CLIP+TrTest, with fewer
model parameters and lower latency. Directly de-
signing a multilingual cross-modal retrieval model
like ours is more practical than the translate-test
method: (1) The translate-test method has to de-
ploy an additional NMT system, which introduces
the storage and computation overhead. Although
CLIP+TrTest can be improved with better trans-
lations, it usually comes with the cost of larger
NMT models and longer latencies. (2) For the
translate-test method, the translation process of ev-
ery text query has to go through the encoder and
decoder of the NMT model. The decoding pro-
cess is usually in an autoregressive manner, which
brings non-negligible computing overhead and la-
tency. However, the text query of mCLIP+ only
goes through a multilingual encoder, which is com-
puted parallelly. (3) The translate-test method is
not suitable for the image-to-text retrieval task. To
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Mean Recall Latency (ms)

Model Multi30K MSCOCO A Params. (M)
De Fr Cs Ja Zh Ve i-to-t  t-to-i

mCLIP+ 76.6 76.1 745 55.6 71.8 709 444 163 17.2
CLIP+TrTest | 72.8 734 70.0 453 67.1 65.7 1351 16.2  438.7

Table 10: Comparisons of mCLIP+ and CLIP (Translate-test) on zero-shot cross-modal retrieval tasks. ‘Params.” is
the total number of model parameters required for inference. ‘Latency’ is the average inference time for one query.

apply the translate-test method, every non-English
image description has to be translated into English
and stored in databases, which is infeasible for real
billion-level cross-modal retrieval applications.

B.2 Comparison with English CLIP.

For zero-shot English retrieval on MSCOCO, the
mean recall of the original CLIP (ViT-B/32) model
is 60.4 (Radford et al., 2021). On the other hand,
though mCLIP gains zero-shot cross-lingual trans-
ferability on the non-English image-text retrieval,
from Table 1, its mean recall score on English is
only 53.2, accounting for only 87.2% of the origi-
nal CLIP’s performance. This comparison reveals
that one limitation of mCLIP is that the proposed
method may slightly degrade the performance on
the English cross-modal retrieval task. This perfor-
mance degradation can be alleviated by using more
pretraining data, i.e., mCLIP+ trained with more
parallel corpus and multilingual image-text pairs
retains 93.8% English retrieval ability of the orig-
inal CLIP. In addition, since the image backbone
of mCLIP initialized from CLIP is frozen during
training, one can store an additional CLIP text en-
coder for English image-text retrieval task when
the storage is allowed.
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