Generating Classical Arabic Poetry using Pre-trained Models

Maryam ElOraby*
Mohammed Abdelgaber*
Nehal Elkaref
Mervat Abu-Elkheir
German University in Cairo, Egypt
{maryam.eloraby,mohammed. abdelgaber,nehal.elkaref}@student.guc.edu.eg
mervat.abuelkheir@guc.edu.eg

Abstract

Poetry generation tends to be a complicated
task given meter and rhyme constraints. Pre-
vious work resorted to exhaustive methods in-
order to employ poetic elements. In this pa-
per we leave pre-trained models, GPT-J and
BERTShared to recognize patterns of meters
and rhyme to generate classical Arabic poetry
and present our findings and results on how
well both models could pick up on these classi-
cal Arabic poetic elements.

1 Introduction

Arabic poetry dates back to the sixth century, mak-
ing it the earliest form of Arabic literature. It’s
often divided into two categories; classical and
modern poetry. The classical Arabic poetry refers
to the poetry written before the 20th century, more
specifically poetry that adheres to the rules of classi-
cal prosody ( 29 J.-J‘ al-‘arud ); following meters

or patterns of syllabic pulses, and a rhyme ( £\l

al-qafiya ). Modern poetry, on the other hand, has
liberated itself gradually from these rules.
Classical poetry is also called vertical poetry in
reference to the vertical parallel structure of its two
parts known as hemistichs. A classic poem is versi-
fied where each verse consists of two halves, each
is called e shatr ‘hemistich’. Each verse in a

poem follows a meter. Meters fall into fifteen dif-
ferent categories collected by the grammarian and
prosodist Al-Farahidi. Later, one of his students,
Al-Akhfash, discovered one more meter making
them sixteen.

2 Related Work

Generating poetry is not a straightforward task as
there are rules that need to be maintained to ensure
the presence of poetic elements such as rhythm and
rhyme, whereby these constraints tend to be added

* Contributed to the work equally.

53

as a part of the architecture of the model.

To model constraints during training, Hopkins and
Kiela (2017) converted their training corpus into
its corresponding phonetic encoding and trained
a Long-Short Term Memory (LSTM) trained on
these encodings. They also introduced another
approach that had a character-level LSTM model
trained on a generic corpus of poetry an upon out-
putting a word, it gets approved or rejected by a
Finite State Acceptor (FSA) classifier which en-
sures that only meter abiding words can be a part
of the final poem.

Ghazvininejad et al. (2016) created Hafez, a pro-
gram trained to generate topical poetry. Their sys-
tem relied on Recurrent Neural Networks (RNNs)
for coherence and finite state machinery to con-
straint thyme and rhythm. From prosaic text,
Van de Cruys (2020) generated English and French
poetry by having gated recurrent units (GRUs; Cho
et al. (2014)) in an encoder-decoder setting and
an added layer of general attention (Luong et al.,
2015). To ingrain their output with poetic elements,
they applied a prior probability distribution to their
network’s probability output, where probabilities
relating to words abiding by rhyme and topic con-
straints were boosted.

RNNSs have also been used without constrain, for
example, to build on encoder-decoder architecture
Yan (2016) created a network that constructs a
poem during each iteration, which gets fed to the
network during the following iteration, hence, each
poem takes part in constructing the next. On the
other hand, Zhang and Lapata (2014) reserved one
RNN for building hidden representations for a cur-
rent line of poetry which was then fed to another
RNN that sequentially predicted words of the next
line of poetry. Pre-trained models have been put to
use to the same task as well. For instance, Beheitt
and Hmida (2022) trained GPT-2 (Radford et al.,
2019) on Arabic news then fine-tuned the model
on Arabic poetry. Himéldinen et al. (2022) made

Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP), pages 53 - 62
December 8, 2022 ©2022 Association for Computational Linguistics



use of an encoder-decoder architecture to generate
modern French poetry, where the encoder is ini-
tialized from a pre-trained RoBERTa (Liu et al.,
2019) checkpoint while the decoder is based on
a pre-trained GPT-2 checkpoint. They scraped a
corpus of French poems, and used it to train their
model for sequence-to-sequence generation, where
it predicts a verse given a previous verse in a poem.
They also conditioned beam search on rhymes dur-
ing the generation phase.

In our work we dedicate another two pre-trained
models of different architectures to explore how ef-
fective they are at recognising patterns of classical
Arabic poetry through the poems they are trained
to generate.

3 Data

Initially, we compiled datasets of ashaar' and the
Arabic Poetry Dataset”. Combined, each data sam-
ple was comprised of a poem’s era/country of ori-
gin, verses, author, meter and a poem’s topic(s).
Additional scraping was done from al-diwan® to
fill in missing values and to add a new column to
the dataset that is rhyme.

Furthermore, the dataset was tweaked to only con-
tain poems from eight eras, the Abbasid, Ayubi,
Ottoman, Umayyad, Andalusian, Mamluk eras and
the Pre-Islamic Period. We target these eras as they
have more structure compared to the Free Verse
poetry which has no musical pattern or rhyme. We
also chose to centralise our poems around 15 out
of the main 16 meters of Arabic poetry and thus
we removed meters variants from our corpus.

3.1 Meters

We depict meter frequency in Figure 1 and we can
observe that the meters  J; skl al-Tawil, JAK.H al-
Kamil, lawd\ al-Basit, and 3\ al-Wafir are the
most dominant, while the least frequent meters are
tJL'a,H al-Mudari‘ and _v2al\ al-Mugtadab. Al-
though such imbalance could be problematic but
it is also reflective of the nature of classical Ara-
bic poetry, where the aforementioned four most
occurring meters were predominately utilised for

writing poetry compared to other meters (Golston
and Riad, 1997). Furthermore, C JLA‘al-Muddri‘

1https://huggingface.co/datasets/arbml/ashaar

Zhttps://www.kaggle.com/datasets/ahmedabelal/
arabic-poetry

3https://www.aldiwan.net

54

£ liasll -19
iaziall 22
nxall Y249
el J306
caxall JJ 688
Jo 1 a0
2,0l 1090
el J 222
o lazal| {2100
e N 059
o) - 3561
Lot N - <7
WE 2= 0 090 2 [E
St N -
Jes o)1 - 1 5+

Figure 1: Meter Frequency

and ;,wa:.a.“ al-Mugqtadab were rejected by most

theoreticians, beginning with Al-Akhfash, who re-
garded them as artificial, fictitious, and not used in
real poetry (Frolov, 1996). Each of the mentioned
meters has its own unique sequence of taf 'ilat ‘feet’
where a line of poetry follows this pattern of feet
in each of its” hemistich.

3.2 Topics

o s | 1504 4

Figure 2: Topic Frequency

Poems in our targeted eras cover 17 different
themes as shown in Figure 2. The most frequent
topics are 3awdl! al-gsyra ‘short’ and s\l al-

‘ama ‘generic’. As the the name of the former topic

suggests, poems labelled as 32!l al-gsyra ‘short’

should have a small number of verses and accord-
ingly we found that poems ranged from at least one
verse to ten verses. However, we discovered that
out of the entire 18K poems, 120 of them had more
than 10 verses and four more had a substantially
higher number of verses that reached over 50.


https://huggingface.co/datasets/arbml/ashaar
https://www.kaggle.com/datasets/ahmedabelal/arabic-poetry
https://www.kaggle.com/datasets/ahmedabelal/arabic-poetry
https://www.aldiwan.net

3.3 Rhymes

In vertical poems, a verse consists of two
hemistichs. The second hemistichs of all verses
within a poem are expected to end with the same
letter. Figure 3 below contains present rhymes and
their counts.

Figure 3: Rhyme Frequency

Rhymes could be consonants, short vowels or
long vowels. Three of the Arabic short vowels
written as diacritics have their long vowel version
in letter form, and each pair is phonetically identi-
cal. In Table 1 we provide short vowels existing in
our poems and their equivalent long vowel. In our
dataset, a poem having a short vowel for a rhyme is
labelled with its long vowel equivalent. Moreover,
a short vowel and its corresponding long vowel
could be used interchangeably within a poem. We
can see an example of this in the following verses*:

RECIT Ry REY
ERERORUAR AN G
2 Lo fb Sl el
NEEERHIE AP NESIERY

The second and fourth lines constitute the second
hemistichs of a verse. And as can be seen, the sec-
ond half of the first verse ends with (s ) while the

second half of the last verse ends With"a consonant
however preceded by the diacritic ( }).

*Poem by Bulbul Gram Ahajery from the Ayubi era https:
//www.aldiwan.net/poem14884.html

55

Long Vowel Short Vowel Pronunciation
S | il
\ i Jal
s i fu/

Table 1: Short vowels and their equivalent long vowels

4 Models

We experiment with training two different
transformer-based architectures: encoder-decoder
model and a decoder-only model to generate poetry
based once on a prompted meter, and again on a
prompted topic.

4.1 BERTShared

Transformer-based encoder-decoder models have
shown to significantly boost performance on a
variety of Seq2Seq (sequence-to-sequence) tasks
(Lewis et al., 2020; Raffel et al., 2020). How-
ever, the pre-training of encoder-decoder models
is highly costly (Zhang et al., 2020). Rothe et al.
(2020) proved the efficacy of warm-starting the
encoder-decoder models with the checkpoints of
publicly available pre-trained language models,
such as BERT and GPT-2, for various Seq2Seq
tasks.

Adopting this approach, we used CAMelBERT-
CA (Inoue et al., 2021), a BERT checkpoint pre-
trained on classical Arabic text, to warm-start both
the encoder and decoder. This checkpoint was
chosen since the subset of poems we chose to
work with is known a priori to be written in clas-
sical Arabic. We specifically experimented with
BERTShared architecture, in which the parameters
of the encoder and decoder are shared, reducing
the model’s memory footprint by half (Rothe et al.,
2020).

The input to the encoder is a vector sequence
X1:n, of length n, and at the decoder the model
generates an output sequence Y., of length n,,.
The model defines a conditional distribution of tar-
get vectors Y., given the input sequence X1y,

p68n079dec (Y15ny|X15nz) (1)

where the BERT-based encoder part encodes the
input sequence Xj., to a contextualized encoded
sequence Xy, :

f@enc : Xl:nz — Xl:nz

2


https://www.aldiwan.net/poem14884.html
https://www.aldiwan.net/poem14884.html

and the BERT-based decoder part models the con-
ditional probability distribution of the target se-
quence Y., given the sequence of encoded se-
quence Xj.p, !

POy (leny !sz )

To generate poems using this architecture, we
adopted the beam search multinomial sampling
scheme, with a set maximum generation length of
130.

3)

42 GPT-)

The performance of the transformer-based lan-
guage models goes up according to Power-law with
the number of model parameters, the size of the
dataset, and the amount of compute (Radford et al.,
2019). We use GPT-J, an open-source decoder-only
transformer language model with 6B parameters
(Wang and Komatsuzaki, 2021) which is four times
the size of the largest GPT-2 model and two times
the size of the largest GPT-Neo model (Black et al.,
2021) parameters-wise.

In uni-directional models like GPT-J, when given
an input sequence of tokens w = [w1, wa, ..., Wy,
a probability p(w) is assigned by the model to
the sequence by factorizing it as the product of
conditional probabilities:

p(w) = Hp(wt\wt_l, ey W) 4

t

so the task becomes predicting the next token given
the previously generated/input tokens.
Initial experiments done on the pre-trained GPT-J
model showed the model is capable of generating
coherent and grammatically correct Arabic sen-
tences. This motivated us to use the model in Ara-
bic poetry generation, adopting the Top-p method
of sampling.

5 Experiment Setup
5.1 BERTShared Setup

In both experiments implemented using the
BERTShared architecture, we tokenized our text
using CAMEeIBERT-CA’s pre-trained WordPiece
tokenizer. We also added two new tokens to the
tokenizer to outline the structure of the vertical po-
ems; a token to separate the two shatrs ‘hemistichs’
of a verse and another token to mark the start of a
verse and separate the verses from each other.

In the first experiment we used meters as inputs
and in the second we used topics. The poems are

56

passed as the targeted outputs in both experiments,
and 512 is used as a maximum output length since
BERT trains positional embeddings for up to 512
positions. Furthermore, we split each poem in our
dataset into chunks of 23 verses each.

Both of the BERTShared models were developed
using the HuggingFace transformers library> and
trained on a 16GB T4 NVIDIA Tesla GPU on a
Google Colab notebook®, using a batch size of
16. Both models were fine-tuned using Adam with
the default learning rate of Se-5, and a linear-rate
warm-up of 3k.

5.1.1 Maeters as Prompts

In the first experiment where we trained a
BERTShared model with meters as inputs, we
worked with a sample of 15,000 poems from our
dataset due to memory limitations. The meter fre-
quencies after sampling are shown in Figure 4.

gilaall -5
wiaisall {8
xall Pr8
gl P20
cazal| J231
JoJ1 203
= 76
il 27
ENE @ DU
el N 1 10
canas)| 65
JUNE = ity
DWWE === 00 pan
Jwi -
ool - 1 1

Figure 4: Meter frequency after sampling

Afterwards, we partitioned the dataset into 85%
training and 15% validation using a seed of 42. Re-
garding the input length, we used 5 as a maximum
length as we found that this length accounts for all
meter labels.

5.1.2 Topics as Prompts

This experiment involved generating poems based
on a prompted topic, thus topics were passed as in-
puts, with a maximum length of four. We excluded
all samples tagged as &\l al-‘ama ‘generic’ and

8 nadll al-gsyra ‘short’ to focus on the specific

topics rather than the general, miscellaneous ones.
Second, the poems in our dataset were originally

Shttps://huggingface.co/docs/transformers/
6ht’cps: //colab.research.google.com/


https://huggingface.co/docs/transformers/
https://colab.research.google.com/

Grouped Topics Label Topic Labels

Grouped Topics Label Topic Labels

(Sad) LW (Sad) &
(Lament) s,

(Separation) (3! 3

(Romantic) acuwdey (Romantic) acwdsy

(Sad) 44 > (Sad) < >
(Lament) 50,
(Separation) (3! 3

(Reproach) L ls

(Religious) &>
(Reproach) s
(Love) J &

(Religious) &>
(Reproach) s
(Love) J %
(Longing) (g4

(Romantic) acudey (Romantic) acuday
(Love) J &
(Longing) (3¢5

(Praise) CM

(Praise) C.u

(Praise) CM
(Invective) sl=a

(Praise) C.,u

(Blame) rS
(Invective) sl=a
(Patriotic) 4.log

(Patriotic) 4.l

Table 2: Adopted grouping of poetry topics in
BERTShared experiments.

labelled with 17 different topics, but some data
samples were scarce. In attempt to balance out
the number of samples per class, we ignored JLVJ

ibthal ‘supplication’, &K= hikma ‘wisdom’, and
d{>w2i nasiha ‘advice’ topics for being the rarest.
Then we grouped some of topics together, in a
manner slightly inspired by a grouping suggested
by Alyafeai et al. (2022). The grouping for this
experiment is shown in Table 2.

52 GPT-J Setup

Influenced by how character tokenizers perform
better compared to the BPE morphological tok-
enizer in Arabic poem-meter classification task
(Alyafeai et al., 2021), two models were devel-
oped using a character tokenizer, one of which uses
meters while the other uses topics as prompts. Ad-
ditional two models were implemented where the
rhyme is passed once along with the meter and an-
other with the topic to exert more control over the
generation process.

Google’s V3-8 TPU 7 was used to run the GPT-
J models. Pre-training the model on Arabic text
was not possible, as it requires at least a v3-256
TPU. Therefore, the GPT-J model pre-trained on
the English-dominated Pile dataset (Gao et al.,
2020) was fine-tuned on our dataset. The mod-
els with the highest validation score on the parti-

"https://cloud.google.com/tpu/docs/
regions-zones

57

(Blame) rS (Blame) rs

(Invective) sl=a

Table 3: Adopted grouping of poetry topics in GPT-J
experiments.

tioned 90% training and 10% validation dataset
were picked. Partitioning was done using a seed of
2022.

5.2.1 Data Preparation

Models fine-tuned on meters used 42,461 poems.
However, models fine-tuned on topics used only
12,252 poems after going through a process of ex-
clusion and grouping similar to what’s done in
BERTShared model.
All poems tagged as iJ! al-‘ama ‘generic’,
s aadll al-gsyra ‘short’, JLs\ibthal “supplication’,
4S> hikma ‘wisdom’, and &>wai nasiha ‘advice’,
were excluded. Then the rest of the poems were
grouped as suggested by Alyafeai et al. (2022).
Table 3 shows the final grouping used for GPT-J
experiments.
The prompt format used to feed the poems to the

model is:

[Tag]

Poem Text

<|endoftext|>

where Tag refers to the meter only, the topic
only, the meter and rhyme or the topic and rhyme
depending on which model is fine-tuned.

Each line of the poem (bayt) contains two verses
separated by a forward slash (/) just like the
following example:

el ¥) W5 ] £/ ol i o8

In the meter only and topic only models, rhyme
was emphasized by inserting a hyphen (-) before


https://cloud.google.com/tpu/docs/regions-zones
https://cloud.google.com/tpu/docs/regions-zones

Hyperparameter Value
Ir 5e-5
end Ir le-5
weight decay 0.1
batch size 16

Table 4: Hyperparameters set for all GPT-J models

Model Name Total Steps Warm up
Steps
Meter only 1380 100
Topic only 300 30
Meter and Rhyme 1450 150
Topic and Rhyme 630 60

Table 5: Number of fine-tuning steps for each GPT-J
model

the first letter of the rhyme.

5.2.2 Fine-tuning Hyperparameters

Table 4 shows the hyperparameters used for all
the mentioned models. Higher and lower learning
rates were used, but no sign of improvement was
observed in the validation score. Table 5 shows the
warm-up steps and the total steps for each model.

5.2.3 Inference Hyperparameters

To generate diverse poems, the inference hyperpa-
rameters used were:
Top-p = 0.9, and Temperature = 0.9

5.2.4 Omitted Models

Some initial model were implemented using
AraGPT2 8 BPE subword tokenizer. The poems
showed a great tendency for repetition, as well as
outputting invalid tokens and English letters.

An attempt was made to turn the AraGPT2 tok-
enizer into a character-level tokenizer by segment-
ing words into characters. This was done by insert-
ing a hyphen (-) between every two letters. Another
model was implemented using the new tokenizer
and despite it achieving the best validation score of
all models, the generated poems were incoherent
and incomprehensible.

6 Evaluation

Some of the generated poems of our models are
shown in Table 6. Because poems are essentially a
form of art, no automated tool, or AI model could

8https://huggingface.co/aubmindlab/
aragpt2-base

58

fully substitute the assessment of poetry by a hu-
man. Hence, we turned to four experts in classical
Arabic poetry for an evaluation based on a number
of dimensions as mentioned in 6.2. Additionally,
we employed existing tools to test how much our
model adheres to meters as will be explained in the
following subsection.

6.1 Machine Evaluation

We first utilized the Arabic poetry classification
model which Inoue et al. (2021) trained and made
available on HuggingFace’, to classify meters of
the generated poems and assess the models’ accu-
racy in capturing them.

We used each model to generate 10 poems per each
of the 15 meters, consisting of a maximum of seven
verses each. Then we passed the 300 poems to the
poetry classification model, verse by verse. For
each model and meter, we counted how many po-
ems out of the 10 had all their verses adhering to
their prompted meter. The results are presented in
Figure 5. It shows that for J; ¢kl al-Tawil - the

class with the most data samples - both models per-
form very well; the BERTShared model correctly
captured the meter in the 10 poems it generated
for this prompt, and the GPT-J model performed
as equally for the 10 poems it generated for the
same prompt. Both models could not capture the
meters for any of thbl Val-Mudari* or val.a.l Val-
Mugtadab, the classes which had the least amount
of samples in our dataset as shown in Figure 1. Fur-
thermore, GPT-J model outputs display an overall
linear correlation between the class size and the per-
class accuracy. BERTShared, on the other hand,
shows a good performance for some classes like
Jo )‘ al-Ramal that has 293 samples, but is under-

performing, for instance, in &= JﬁJ‘ al-Sarr‘ meter
of 1119 samples.

6.2 Human Evaluation

We sent out two surveys for our evaluators to assess
the quality of poems with respect to meters and
topics separately.

The survey analysing quality of topics of 16 po-
ems, two poems from each topic group shown in
Table 3 from each model. The evaluators were
asked to answer the following questions from a
scale of one to five, with one being the worst and
five being the best:

https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-ca-poetry


https://huggingface.co/aubmindlab/aragpt2-base
https://huggingface.co/aubmindlab/aragpt2-base
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca-poetry
https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca-poetry

10

Meter

BERTSharad

Figure 5: Per-meter accuracy of BERTShared and GPT-
J. The y-axis is sorted by meter frequencies as in Figure
1.

. How fluent is the generated poem?

How coherent is the poem with respect to as
specified topic?

How consistent is the rhyme throughout the
poem?

. What meter does this poem follow?

. How consistent is the meter throughout the
poem?

Meanwhile, our second survey had a total of 18
poems, covering the following nine meters:

* skl al-Tawil

e Lolal-Basit

. J.b‘jJ\al—Wdﬁr

o —2ad | al-Khafif

‘C f.;l‘al-Munsarih

. J&)\al-Ramal,

« o &l al-Mutagarib

. GfJ‘al-Sarl"‘

« W&V al-Kamil

Our evaluators were required to answer the fol-

lowing questions and much like the first survey
their answer should range from one to five:

59

. How fluent is the generated poem?

. How coherent is the poem with respect to as
specified topic?

How consistent is the rhyme throughout the
poem?

. How much do verses follow the same rhythm?

How close are the verses to the specified me-
ter?

Figure 6 shows each model’s per-meter accu-

racy, how well the generated poems adhered to the
prompted meter, as reported by the human evalu-
ation. The results also vary between our models;
GPT-J outperforms BERTShared in some meters
but BERTShared does in some others. Overall,
both models perform better the more data samples
there are. Similarly, the per-topic accuracy for each
model after averaging the evaluators’ ratings is de-
cipted in Figure 7.
Figure 8 reports the evaluators’ ratings of the gen-
erated poems in terms of their fluency, thematic
coherence, and rhyme consistency. On average,
we see that BERTShared outperforms GPT-J in the
fluency and grammatical correctness of the poems;
and the coherency. However, GPT-J model shows
a better ability of keeping the rhymes consistent
throughout the verses of the poem.

—— -0
A —— -5

o
T | —————
35
i) E—
— -
e e —————————— - 0

——
e

el ————————————————
T -
1]

25
ol
— 0
e | e 0

5.0
o T

Figure 6: Per-meter accuracy of GPT-J (Red) and
BERTShared (Grey) models as per human evaluation.

7 Conclusion & Future Work

We have presented two approaches to classical Ara-
bic poetry generation. We have experimented with
two transformer-based architectures: the encoder-
decoder model initialized with BERT-based check-
points, and the decoder-only architecture: GPT-J.
We fine-tuned both models on a classical Arabic



Model Prompt Generated Poem
BERTShared i i el O oy Bl e 0sal sall e Y]
Meter: Dy A Dge *—’j’“J by s, ds Sk o Cums
Sl al-wafir sy Wl e (gm0 Bl Lo caly Ol 3L Lo 4 ead
S ol sl e Yy s 9 ) et
By s o Jlo 5 ds dmly a gl il LT Y]
w3 oo YU Ly Slog ooy ol 52 Y Jls
N e 3 oS B sd] e g I L o
Topic: M ehle BB e ol by Caalel ehle 5~ AU
(Romantic) auuwiey . . .
sgaall 915 s oKl Wl ) bl Jlogl) OF o) elnas
o ¥ G Sy o) el a8 g o e s
GPT-] ‘-’)"g“-’ =l gl—‘ U’:—() @t e J"‘A‘L g‘l’ Cab)
Meter: O3y a2 cw ;_f dl FYSIE AW JeFls el dc\o by
Jestallal-Taw 36 B e U ey b a8 ke L 13) S04
Calsdl 55y e W B Bl Wl gl ey S
Py ngl 395 49> o9 s ol Ql_;f\N J:- s
by s> adll (§ e gl Lo (B 18] el aladl 3 e Ay
Topic: Lvyj Lre r\;\” IR Vo T VR U R B ViR B
(Sad) & o~ SSPEVNE L[ I N S P N IO
by s s ¥y Sl s (5o Qs g2 ! UL g L 13)
Table 6: Examples of generated poetry
|
*
i
=
I
S ¢
Ryhme
. - ©

Figure 7: Per-topic accuracy of GPT-J (Red) and
BERTShared (Grey) models as per human evaluation.

poems corpus for two prompt-based generation
tasks, and made use of two evaluation methods:
one machine-based that focused on the models’
ability to adhere to the prompted meters, and one
human-based that focused on assessing the quality
of the generated poems. The evaluators regarded
the poems as interesting human evaluation revealed
that BERTShared model performed slightly better

60

Coherence -

Fluency -

Figure 8: Rhyme consistency, fluency, and coherence
ratings of the poems generated by GPT-J (Red) and
BERTShared (Grey) models as per human evaluation.



in generating more fluent and coherent poems, but
GPT-J model could capture the rhymes much bet-
ter. In the future, we aim to incorporate human
evaluation in the loop in a reinforcement learning
environment, where the model should learn to gen-
erate the poetry based on corrected faulty poems.

Limitations

A limitation hindering both models are poems of
topics labelled &s\J! al-‘ama ‘generic’ and § a2l

al-gsyra ‘short’ as they are the most occurring top-
ics as show in Figure 2 yet they cover no distinct
domain. Furthermore, we found no records online
that could confirm that poets intended to write their
poems following a certain theme, therefore we had
to rely completely on aldiwan’s topic labelling not
knowing what is based on or how accurate it is. An-
other is human evaluation, despite the presence of
experts, there were too many poems to assess, and
evaluators were not keen on the surveys especially
meters evaluation as to them the number of meters
to evaluate poems for is large.

In addition, GPT-J could not be pre-trained due
to unavailability of the required hardware, so fine-
tuning was used instead, which is suboptimal.

Acknowledgements

We gratefully acknowledge Google TRC program
for providing the TPU machines that allowed us to
train the GPT-J models. We are grateful, as well,
to each of Abdel-Hamid Mohamed Taha, Mah-
moud Salam Abo-Malek, Rayyan Mohamed and
Mohamed Ashry for their contribution in evaluat-
ing this work.

References

Zaid Alyafeai, Maged Saeed AlShaibani, Mustafa
Ghaleb, and Irfan Ahmad. 2021. Evaluating vari-
ous tokenizers for arabic text classification. CoRR,
abs/2106.07540.

Zaid Alyafeai, Maged Saeed AlShaibani, and Omar
Hammad. 2022. Qawafi: Arabic poetry analysis
using deep learning and knowledge based methods.
https://github.com/ARBML/qgawafi.

Mohamed El Ghaly Beheitt and Moez Ben Haj Hmida.
2022. Automatic arabic poem generation with gpt-2.
In Proceedings of the 14th International Conference
on Agents and Artificial Intelligence (ICAART 2022),
volume 2, pages 366-374.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large

61

Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Dmitry Frolov. 1996. The circles of al-Khalil and the
structure of luzumiyyat of Abu’l-’Ala’ al-Ma’arri.
Studies in Near Eastern Languages and Literatures.
Memorial Volume of Karel Petracek, Praha, pages
223-236.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and Kevin
Knight. 2016. Generating topical poetry. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1183-1191.

Chris Golston and Tomas Riad. 1997. The phonology
of classical arabic meter. Linguistics: An Interdisci-
plinary Journal of the Language Sciences, 35(1):111—
132.

Mika Hémaéldinen, Khalid Alnajjar, and Thierry Poibeau.
2022. Modern French Poetry Generation with
RoBERTa and GPT-2. In Proceedings of the Inter-
national Conference on Computational Creativity,
IcccC’22.

Jack Hopkins and Douwe Kiela. 2017. Automatically
generating rhythmic verse with neural networks. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, volume 1,
pages 168-178.

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda
Bouamor, and Nizar Habash. 2021. The interplay
of variant, size, and task type in Arabic pre-trained
language models. In Proceedings of the Sixth Arabic
Natural Language Processing Workshop.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.


https://doi.org/10.48550/ARXIV.2106.07540
https://doi.org/10.48550/ARXIV.2106.07540
https://github.com/ARBML/qawafi
https://doi.org/10.5220/0010847100003116
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/doi:10.1515/ling.1997.35.1.111
https://doi.org/doi:10.1515/ling.1997.35.1.111
https://hal.archives-ouvertes.fr/hal-03708138
https://hal.archives-ouvertes.fr/hal-03708138
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neu-
ral machine translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1412—1421. Association for
Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21(140):1-67.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging Pre-trained Checkpoints for Se-
quence Generation Tasks. Transactions of the Asso-
ciation for Computational Linguistics, 8:264-280.

Tim Van de Cruys. 2020. Automatic poetry generation
from prosaic text. In Proceedings of the 58th an-
nual meeting of the association for computational

linguistics, pages 2471-2480.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Rui Yan. 2016. i, poet: Automatic poetry composition
through recurrent neural networks with iterative pol-
ishing schema. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence, pages 2238—2244.

Jingging Zhang, Yao Zhao, Mohammad Saleh, and Peter
Liu. 2020. PEGASUS: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119, pages 11328-11339.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 670-680.

62


https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html

