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Abstract

Many natural language inference (NLI)
datasets contain biases that allow models to per-
form well by only using a biased subset of the
input, without considering the remainder fea-
tures. For instance, models are able to classify
samples by only using the hypothesis, without
learning the true relationship between it and the
premise. These structural biases lead discrim-
inative models to learn unintended superficial
features and generalize poorly out of the train-
ing distribution. In this work, we reformulate
NLI as a generative task, where a model is con-
ditioned on the biased subset of the input and
the label and generates the remaining subset of
the input. We show that by imposing a uniform
prior, we obtain a provably unbiased model.
Through synthetic experiments, we find this ap-
proach to be highly robust to large amounts of
bias. We then demonstrate empirically on two
types of natural bias that this approach leads
to fully unbiased models in practice. However,
we find that generative models are difficult to
train and generally perform worse than discrim-
inative baselines. We highlight the difficulty
of the generative modeling task in the context
of NLI as a cause for this worse performance.
Finally, by fine-tuning the generative model
with a discriminative objective, we reduce the
performance gap between the generative model
and the discriminative baseline, while allowing
for a small amount of bias.1

1 Introduction
Natural language processing (NLP) datasets are
plagued with artifacts and biases, which allow mod-
els to perform tasks without learning the desired
underlying language capabilities. For instance, in
natural language inference (NLI) datasets, models
can predict an entailment relationship y from the
hypothesis text H alone, without considering the

∗Supported by the Viterbi Fellowship in the Center for
Computer Engineering at the Technion.

1Our code is available at https://github.com/
technion-cs-nlp/Generative-NLI.

premise P at all (Gururangan et al., 2018; Poliak
et al., 2018). Another identified source of bias is
lexical overlap between P and H , which is associ-
ated with an entailment prediction (McCoy et al.,
2019). We refer to such biases as structural biases,
cases where an undesired subset of the input alone
incorrectly identifies the label. Relying on such bi-
ases results in poor out-of-distribution (o.o.d) gen-
eralization when models are applied to data without
bias. Furthermore, models that contain such biases
may make surprising predictions when the bias is
present, causing problems in critical systems.

A line of work has attempted to improve the
performance on o.o.d datasets by proposing differ-
ent objective functions (e.g., Utama et al., 2020a;
Karimi Mahabadi et al., 2020). However, these
methods typically still result in a significant gap
between the performance in and out of distribution,
which indicates that the models are still biased.
Table 1 shows this gap, which we term the o.o.d
generalization gap (∆).

In this work, we reformulate classification as a
generative task, where the model’s task is to gen-
erate the remainder features R conditioned on the
biased features B and the label y. Using Bayes’
Rule, we decompose the posterior p(y | B,R) into
the likelihood p(R | y,B) and the prior p(y | B).
This reformulation lets us control the amount of
bias present in the final model. By setting a uniform
prior we can obtain a provably unbiased model. We
denote this generative model as GEN..

To assess the extent to which a given model is
biased w.r.t a specific structural bias, we consider
two metrics: the o.o.d generalization gap and the
correlation between a model and a biased model
p(y | B), such as a hypothesis-only or overlap-only
model. We first experiment with injecting synthetic
bias into a fraction of the training set and evalu-
ating on test sets with and without that bias. We
find that the discriminative model’s performance
decreases as the amount of bias increases, while
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SNLI MNLI

Test Hard test ∆ Test Hard test ∆

Utama et al. (2020a) – – – 82.8 79.8 +3.00
Karimi Mahabadi et al. (2020) 89.57 83.01 +6.56 83.47 76.83 +6.64
Sanh et al. (2021) – – – 83.32 77.63 +5.69
Gururangan et al. (2018) 86.5 72.7 +13.8 76.5 64.4 +11.1
Stacey et al. (2020) 79.39 69.92 +9.47 – – –
GEN. (BERT) 65.53 66.18 −0.65 58.55 57.33 +1.22
GEN. (BART) 70.58 72.19 −1.61 64.09 65.74 −1.65

Table 1: Results on regular and hard (o.o.d) test sets of SNLI and MNLI. Prior work exhibits large o.o.d generalization
gaps (∆), while our generative approach reduces the gap significantly. The “Hard test” set refers to a subset of the
regular test set that a hypothesis-only model fails on.

GEN maintains similar performance at all bias lev-
els. Moreover, the biased-ness of the discriminative
model increases, while GEN remains unbiased.

Next, we experiment with two kinds of natural
bias: hypothesis-only and overlap. We demonstrate
that GEN is unbiased compared to the discrimina-
tive baseline as measured by its low ∆ and low
absolute correlation with a biased model (ρ).

However, while our approach leads to unbiased
models, it performs worse than the discriminative
baseline even on o.o.d data. We then identify and
quantify several causes for the poor performance of
GEN. We show that generative modeling is a more
challenging task than discriminative modeling, and
that it requires learning a large amount of spurious
signal compared to the discriminative model.

Finally, to mitigate the difficulty of the genera-
tive modeling task, we fine-tune GEN with a dis-
criminative objective (Lewis and Fan, 2019). While
this leaks some bias into the model, the final model
(denoted as GEN-FT) matches or surpasses the dis-
criminative baseline while maintaining a relatively
small o.o.d generalization gap.

To conclude, our contributions are as follows:

• We develop a generative modeling approach,
which provably eliminates structural biases in
natural language understanding tasks.

• We demonstrate experimentally on two bias
types and different NLI datasets that this ap-
proach leads to unbiased models.

• We analyze the strengths and weaknesses of
the generative model.

• We show how discriminative fine-tuning im-
proves the generative model, while allowing
some bias to leak into the model.

2 Related Work

2.1 Biases and Artifacts

Many natural language understanding (NLU)
datasets contain biases or artifacts, superficial fea-
tures that are associated with a certain label. Ex-
amples include hypothesis-only biases in NLI such
as negation words in the hypothesis being corre-
lated with a contradiction label (Poliak et al., 2018;
Gururangan et al., 2018). Similar one-sided biases
have been found in other tasks, including visual
question answering (VQA) (Agrawal et al., 2018;
Manjunatha et al., 2019; Das et al., 2019), reading
comprehension (Kaushik and Lipton, 2018), and
fact verification (Schuster et al., 2019). Another
kind of bias identified in NLI is lexical overlap,
which is correlated with an entailment decision in
NLI datasets (McCoy et al., 2019). We view all
these cases as structural biases, cases where the in-
put can be split into two disjoint sets, of the biased
features and the remainder features.

The existence of structural biases in datasets al-
lows models to perform unreasonably well when
given access only to the biased features, such as
a hypothesis-only model being able to predict en-
tailment without access to the premise. The bias
learned by the model manifests in poor o.o.d gen-
eralization when evaluated on a test set where the
training set correlation between the biased features
and a certain label does not hold.

2.2 Mitigation Strategies

Common approaches for improving o.o.d general-
ization combine the main model with a bias model,
such as a hypothesis-only model. For instance, a
bias model may be trained adversarially, making
the main model perform worse when the bias model
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performs well (Belinkov et al., 2019b; Stacey et al.,
2020). Others use a bias model to modulate the
main model’s predictions in various ways (He et al.,
2019; Karimi Mahabadi et al., 2020; Utama et al.,
2020b; Sanh et al., 2021; Mendelson and Belinkov,
2021). All these approaches use discriminative
models to estimate p(y | P,H). Moreover, they
typically still result in a gap between in- and out-
of-distribution performance.

In contrast, we propose a novel generative for-
mulation of the NLI task, which leads to an unbi-
ased model, in theory, and in practice. Belinkov
et al. (2019a) also proposed to solve a generative
problem, modeling p(P | y,H), in order to en-
courage the model to consider the premise in its
predictions. However, they ended up not using a
generative model; rather, they approximated it with
discriminative models. Lewis and Fan (2019) used
a generative model for a different task, VQA, and
found it improves generalization from biased train-
ing data. While our basic approach is similar, we
analyze the generative model more rigorously, in-
vestigate the effect of different modeling options,
and focus on quantifying the model’s bias.

3 Structural Bias
Consider the general case of a classification task,
for which we wish to build a model pθ(y|X) where
y is a low-dimensional label and X is an arbitrarily
large set of features. The model is trained on an
empirical training set D = {(Xi, yi)}Ni=1. The
dataset is constructed by humans, and inadvertently
contains structural biases. We define a structural
bias as a case where, if the input X is split into two
disjoint sets X=(B,R = X −B), the label y can
be learned to be reliably predicted given only B.
For most choices of B this is not a problem, but
in some cases, the subset represents an externally
imposed constraint that needs to be maintained or
an externally imposed understanding of how the
model should operate.

This formulation comprises a broad set of com-
monly considered biases. For example, in the NLI
task, X = (P,H) where P and H are the premise
and hypothesis. If we choose the split B = H , we
arrive at the hypothesis-only bias. This is an unde-
sirable bias because as humans we know that NLI
is impossible if one is only given the hypothesis.

Taking different splits corresponds to different
biases. For instance, we can model the lexical
overlap bias under the structural bias framework
with the subset B = P ∩H . NLI models should

perform no better than chance when given only the
overlapping tokens between P and H .

Finally, this formulation extends beyond NLI
and NLP to broader biases. For example, if X is
a vector of information about individuals and one
of the features in X is a protected characteristic s
(e.g., gender or race), B = s.2 Then, depending on
the task, an undesirable structural bias may exist if
a model can learn to predict y given s.

We denote these biases as structural biases be-
cause they are defined through the structure B ⊂
X , rather than specific known patterns in the data.
For example, in the hypothesis-only case, this for-
mulation does not require knowledge about what
aspects of the hypothesis allow a hypothesis-only
model to predict the label (e.g., negation words),
only that somehow the hypothesis alone incorrectly
gives a signal about the label. Thus, this type of
bias is broader than specific known biases such as
the presence of negation words, but narrower than
unknown biases because it requires some knowl-
edge of where the bias might be found.

3.1 Generative Classifiers Eliminate
Structural Bias

Generative classifiers are models that make predic-
tions according to Bayes’ Rule. The generative
classifier framework provides a principled way of
handling structural bias:

pθ(y | X) = pθ(y | B,R) (1)

=
pθ(R | y,B)pθ(y | B)

pθ(R | B)

=
pθ(R | y,B)pθ(y | B)∑
y′ pθ(R | y′, B)pθ(y′ | B)

.

We emphasize that under this framework, one
may separately model pθ(R | y,B) and pθ(y | B),
but the marginal likelihood must be constructed
by marginalizing over the product of those compo-
nents rather than estimated separately.

Separating the bias component gives explicit con-
trol over a given structural bias in the model. For-
mally, consider the ability of any model to predict
the label given the bias subset, p(y | B), defined
by marginalizing out the remainder features:

p(y | B) =

∫
pθ(y | R,B)pθ(R | B)dR. (2)

2A non-trivial factorization of gender/race information
from other features may be required in the NLP case.
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For a discriminative model this may take any
value, but for a generative classifier this becomes:

p(y | B) =

∫
pθ(y | R,B)pθ(R | B)dR (3)

=

∫
pθ(R | y,B)pθ(y | B)dR

= pθ(y | B)

∫
pθ(R | y,B)dR = pθ(y | B).

Therefore, for any given structural bias, the abil-
ity of the model to rely on the bias alone, p(y | B),
can be eliminated in a principled way by training a
generative model to learn pθ(R | y,B) and setting
pθ(y | B) = Uniform(Y). R and B are collections
of tokens, so the actual training process amounts
to training a standard encoder–decoder model. Pre-
dictions are made using Equation 1 at inference
time. Unlike other methods, this approach does
not require a specific model for pθ(y | B); it sim-
ply requires the desired pθ(y | B), which is often
uniform.

3.2 Measuring Structural Bias

Typically, debiasing methods are evaluated by mea-
suring the accuracy of the resulting model on a
“hard” test set, a subset of the test set for which
a bias-only model p(y | B) predicts the incorrect
label. While this captures overall quality, it alone
does not assess the extent to which bias remains.
For example, a model that scores well on the “hard”
set but much better on the original test set must
retain a portion of the bias, whereas a model that
scores less well on the “hard” set but identically
on the original test set likely does not retain any of
the target bias. Thus, while the score on the “hard”
test set is related to the biased-ness of a model, it
alone does not tell the whole story. For some ap-
plications, the overall quality on non-biased data is
a reasonable final objective, but for other applica-
tions complete removal of bias is critical.

To quantify the remaining biased-ness of a given
model, we consider two metrics: the difference
between the accuracy of the model on the standard
test set and its accuracy on a “hard” set created with
respect to the bias in question, which we term the
o.o.d generalization gap (∆), and the correlation
(ρ) between the predictions of a given model and a
fully biased model, i.e., p(y | B).

A truly unbiased model will give a similar perfor-
mance on the original test set and the hard test set,
because it cannot rely on the predictive power of B

in the original test set even when it is present. Thus
low values of ∆ indicate the model is unbiased.

Similarly, a model that consistently makes simi-
lar decisions to the fully biased model p(y | B) in
the original test set is likely using only the biased
features B as the fully biased model. Therefore,
a larger ρ gives additional evidence that a specific
structural bias remains in a given model.

4 Experiments

In all experiments, we estimate p(R | y,B) with
an encoder-decoder model, with inputs (y,B) and
output R. To condition on y, we prefix a label-
specific token to B. We then train the model as a
conditional generative model, by fine-tuning BERT
(Devlin et al., 2019) or BART (Lewis et al., 2020)
with the standard auto-regressive cross-entropy
loss. To use BERT as an autoregressive decoder,
the bidirectional self-attention mechanism of BERT
is masked, and a language modeling layer, which
starts generating from the “CLS” token, is added.
A generative BERT model is comprised of a regular
BERT model as an encoder and a BERT decoder
(Rothe et al., 2020). All models are taken from the
Transformers library (Wolf et al., 2019), and are
fine-tuned with either the baseline discriminative
objective or our proposed generative formulation.
At test time, we attach all possible label tokens to
each B and pick ŷ = argmaxy∈Y pθ(R|y,B).

4.1 Synthetic Experiment

To empirically verify the analysis in Section 3, we
construct a synthetic experiment by artificially in-
jecting a hypothesis-only bias into an NLI dataset,
similarly to He et al. (2019). We use MNLI
(Williams et al., 2018), an English NLI dataset,
as the base dataset. For each example, we add one
of three tokens to the beginning of the hypothesis,
each token corresponding to a label. With prob-
ability p the token corresponds to the true label
and with probability 1 − p the token is randomly
selected from the three labels. The result is that
p directly controls the amount of hypothesis-only
bias present in the data3. We then train discrimina-
tive and generative BERT models on the resulting
data.

3A reviewer pointed out that the generative model may
rely on artifacts introduced by annotators when generating
the hypothesis. However, the synthetic bias token is arguably
more dominant than any such artifacts.
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Figure 1: Results for models trained with synthetic bias
and evaluated on MNLI dev hard without bias.

4.2 Hypothesis-only Bias

We train our models on the (English) Stanford Nat-
ural Language Inference dataset (SNLI; Bowman
et al. 2015) and on the MNLI dataset, two NLI
datasets that are known to contain hypothesis-only
biases (Poliak et al., 2018; Gururangan et al., 2018;
Tsuchiya, 2018). We evaluate models on the avail-
able in-distribution test sets and on o.o.d test sets
that have fewer or no hypothesis-only biases. For
SNLI, we use the hard set provided by Gururangan
et al. (2018). For MNLI, we use the blind evalua-
tion test and hard test sets for MNLI matched.

4.3 Overlap Bias

Another type of bias that has been demonstrated
in the MNLI dataset is lexical overlap bias. Mc-
Coy et al. (2019) demonstrate that, while somewhat
uncommon, lexical overlap, subsequence overlap,
and constituent overlap between the premise and
hypothesis give a strong signal for entailment. Like
hypothesis-only bias, this signal comes from pe-
culiarities of the dataset creation process. For a
model performing actual NLI, the overlap of words
between the hypothesis and the premise should not
give any indication of the label. This is emphasized
by McCoy et al. (2019), as they create a separate
label-balanced evaluation set where each example
has a high overlap.

To treat overlap bias in the generative formula-
tion, we set B = P ∩ H . Specifically, we con-
catenate the premise and hypothesis and mask out
any tokens that do not appear in both of them. The
input to the encoder of GEN is then the label y
followed by this partially masked concatenation.
For simplicity, the output of GEN is the unmasked
concatenation of P and H . In principle, we do not
need to output the unmasked tokens, but this sim-
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Figure 2: The o.o.d generalization gap (∆) and the
correlation to a bias model (ρ) of generative and dis-
criminative models. ρ is calculated on an unbiased test
set. Appendix A.1 shows correlations on a biased set.

plifies training and remains probabilistically valid.4

Because this setup is closely connected to the
way the BART model is pretrained, we experiment
solely with the BART model for this configuration.

While not traditionally studied in the overlap
bias case, we perform the same analysis as in the
hypothesis-only bias by constructing a hard set for
overlap bias. We train a discriminative model that
predicts the label from the masked concatenated
premise–hypothesis input, and filter the MNLI dev
set for examples where this model is incorrect.5

5 Results

5.1 Synthetic Experiment Results

Figure 1 shows the results when training with syn-
thetic bias in MNLI, for different values of p, and
evaluating on MNLI dev hard (without synthetic
bias), a subset that a hypothesis-only model pre-
dicts incorrectly. The discriminative model’s per-
formance degrades gradually as p increases, while
GEN maintains similar performance. At high lev-
els of p, the discriminative model falls below the
generative one, indicating that the presence of large
amounts of bias precludes the discriminative model
from learning the task effectively.

Figure 2 shows the two biased-ness metrics, cal-
culated for the generative and discriminative mod-
els across a range of p values. For each p, ∆ is
calculated from the difference in accuracy for a
given model between a version of the dev set with
the synthetic bias included as in training, and a
version of the dev set with the synthetic bias token

4An example for the data preparation is in Appendix A.3.
5As we cannot use the hidden test to filter based on labels,

we use dev matched/mismatched for val./eval. respectively.
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SNLI MNLI

Model Test Hard test ∆ Test Hard test ∆

B
E

R
T

Bias-only 70.82±0.6 32.09±1.7 38.73±1.2 59.77±0.4 34.41±2.3 25.36±2.1

Discriminative 90.49±0.2 80.55±0.3 9.94±0.1 84.08±0.4 76.27±0.3 7.81±0.2

GEN, hyp-only 81.42±0.5 61.39±1.4 20.02±0.9 68.5±0.3 52.24±1.4 16.21±1.5

GEN, uniform 65.86±0.3 66.74±0.5 −0.88±0.3 56.98±0.7 54.73±0.2 2.26±0.5

B
A

R
T

Hypothesis-only 70.37±0.3 31.61±0.3 38.76±0.1 57.89±2.3 37.83±1.6 20.05±3.9

Discriminative 90.78±0.3 81.04±0.6 9.74±0.3 85.67±0.1 78.84±0.4 6.83±0.4

GEN, hyp-only 84.36±0.1 67.22±0.8 17.14±0.7 73.85±0.6 60.79±0.6 13.06±0.2

GEN, uniform 70.80±0.2 73.16±0.9 −2.36±0.7 64.22±0.4 64.11±1.0 0.11±0.8

Table 2: Comparison between discriminative baselines and generative models, with Hyp-only or uniform prior, in
the hypothesis-only bias case.

Model Dev Hard dev ∆

Bias-
only

56.32±0.3 9.37±8.3 46.95±8.5

Disc. 86.44±0.5 79.72±0.8 6.73±0.2

GEN 63.67±1.1 65.56±0.6 −1.88±0.4

Table 3: Comparison of discriminative and generative
models (fine-tuned from BART) in the lexical overlap
bias case. GEN was trained with a uniform prior.

randomly chosen for each example. The fully bi-
ased model - p(y | H) used as the reference when
calculating ρ is a model that always selects the la-
bel that corresponds with the synthetic bias token
prefixed to the hypothesis. According to both met-
rics, as the bias ratio p increases, the discriminative
model quickly becomes significantly biased while
GEN remains entirely unbiased.

5.2 GEN Reduces the Generalization Gap

Hypothesis-only bias Table 2 shows the results
of the proposed generative model and the discrimi-
native baseline in the case of hypothesis-only bias.
For GEN, we show results with either a hypothesis-
only prior for p(y | H) or a uniform prior. The
generative approach with the uniform prior leads to
nearly identical accuracy on the i.i.d and o.o.d test
sets, that is, unbiased models as measured by low
o.o.d generalization gap (∆ between −2 and 3). In
contrast, the discriminative model has much larger
gaps (∆ of at least 9 on SNLI and 7 on MNLI),
meaning that it is a more biased model. GEN with
a hypothesis-only prior also exhibits large gener-
alization gaps, demonstrating the bias leak in this
model. Obviously, a hypothesis-only model is the
most biased, with the largest gaps.

Model Lex. Subseq. Const.

Hypothesis-only 48.2 48.7 50.4
Discriminative 80.7 55.5 66.3

Learned-mixin 77.5 54.1 63.2
PoE 72.9 65.3 69.6
Conf. reg. 73.3 66.5 67.2

Generative 50.7 57.7 53.2

Table 4: Discriminative and generative models evaluated
on the three HANS evaluation sets.

These results also show the advantage of using
a pre-trained encoder-decoder (BART) compared
to plugging a pre-trained encoder (BERT) and fine-
tuning it as an encoder-decoder. While both genera-
tive models are unbiased, BART is more amenable
to the generative fine-tuning than BERT, with over-
all better results. For this reason, we only report
results with BART henceforth.

Overlap bias Table 3 shows similar results in
the case of overlap bias on a hard set w.r.t this
bias. GEN exhibits a lower generalization gap (∆)
than the discriminative baseline. As expected, the
overlap bias model shows the greatest gap.

While the generative approach leads to unbiased
models for both bias types, it also performs sig-
nificantly worse than the discriminative model, on
both in-distribution and o.o.d test sets. We return
to this issue in Sections 6 and 7.

Finally, Table 4 shows the accuracies of the gen-
erative classifier and previous results from the lit-
erature, reported by Utama et al. (2020a) on the
three HANS evaluation sets (McCoy et al., 2019).
In general, the accuracies for the generative clas-
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Label Hypothesis Generated premise

contradiction a woman in a black shirt is sitting on a bench with a bag in her lap
entailment the woman has been shot a woman is being shot by a man in a blue shirt

neutral a woman in a blue shirt is sitting on a bench with a bag in her lap
contradiction a woman in a black shirt is smiling
entailment the woman is very happy a woman in a white shirt is smiling

neutral a woman in a white shirt is smiling
contradiction an elderly woman is sitting on a bench with her legs crossed and [...]

entailment the woman is young a young woman in a black shirt and jeans is walking down the street
neutral a woman in a red shirt is sitting on a bench with a bag in her lap

Table 5: Generated premises by GEN from <y,H> pairs. The original premise for the hypothesis was“A woman
with a green headscarf, blue shirt and a very big grin” and the gold label was “neutral”.

Model Hyp-SNLI Hyp-MNLI Overlap

Disc. 0.271 0.223 0.171
GEN −0.025 −0.009 −0.043
Majority 0.005 0.055 0.016
Uniform −0.018 −0.006 0.007

Table 6: Correlations of discriminative, generative, ma-
jority, and uniform models with bias models, on hyp-
only (on SNLI/MNLI) and overlap bias (on MNLI).

sifier are low. We hypothesize that this is due to
the fact that the examples in the HANS evaluation
set are significantly out of distribution compared
to the training set, w.r.t the amount of overlap be-
tween premise and hypothesis. In the training set,
sentences often have 20 or 30 tokens with only 1
or 2 token overlaps. In the HANS set, sentences
are shorter and all but 1 or 2 tokens overlap. This
makes the input significantly more out of domain
for the generative classifier only, which is used to
seeing many mask tokens in the input and in the
HANS set sees almost no mask tokens.

5.3 GEN is Uncorrelated with a Bias Model

Table 6 shows correlations ρ of GEN and the dis-
criminative baseline with a bias-only model. In the
hypothesis-only case, the models were trained on
SNLI or MNLI and correlations were measured on
predictions on SNLI test or MNLI dev mismatched,
respectively. In the overlap case, the models were
trained on MNLI and correlations were measured
on MNLI dev mismatched.

In both bias types, the discriminative model pre-
dictions are much more correlated with the bias
models than the predictions of the generative mod-
els. In fact, the correlations of the generative mod-
els are as low as those of a majority model or a
uniform model, which is unbiased by construction.

6 Evaluating Generated Premises

So far, we have only used GEN to score existing ex-
amples (with teacher forcing), conditioned on the
label and the biased features. In this section, we
evaluate the quality of its generations when decod-
ing without constraints. For the experiments here,
we consider the hypothesis-only bias and evaluate
the quality of GEN in generating premises. We
use a BART model trained on SNLI and generate
premises for all hypotheses in the test set.

To evaluate how well our model can generate
premises, we used two metrics: BLEU (Papineni
et al., 2002) of the generated premises w.r.t gold
premises, to measure the generation quality (higher
is better), and self-BLEU (Zhu et al., 2018) to mea-
sure the diversity of the generations (lower is more
diverse). We report a BLEU value of 0.1078, in-
dicating that the model is not very good at gener-
ating premises. We report self-BLEU of 0.8032
for the generated premises compared to 0.5875 for
the original premises, suggesting that the generated
premises are less diverse. Table 5 also shows exam-
ples where, given different hypotheses, the model
generates very similar premises.

A possible explanation for the difficulty of the
generative task may be found in the nature of NLI
examples in common datasets. In many cases, the
relationship is determined by a small number of
words in the premise and hypothesis pair. To quan-
tify this, we measured the number of words high-
lighted as explanations in the e-SNLI dataset (Cam-
buru et al., 2018) and found that less than 21% of
words in the premise are highlighted on average.6

This pattern is reflected also in decisions made by

6Of the premises that were highlighted at all.
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SNLI MNLI

Model Test Hard test ∆ ρ Test Hard test ∆ ρ

Disc. 90.78±0.3 81.04±0.6 9.74±0.3 0.27 85.67±0.1 78.84±0.4 6.83±0.4 0.22
GEN-FT 86.30±0.4 82.20±0.3 4.09±0.1 0.09 79.66±1.5 76.45±0.7 3.21±1.3 0.07

Table 7: Fine-tuned model results for hypothesis-only bias. Disc. is the discriminative baseline.

NLI models. By applying gradient attributions,7

we found that more than 70% of the premise words
have low attributions values (between −0.1 to 0.1),
with fewer than 6% of the words having absolute
values greater than 0.3. This shows that only a
small number of words had any significant effect
on the model predictions. Table 12 in the appendix
shows a qualitative example of this behavior. Fi-
nally, this pattern is also reflected in the generations
produced by GEN, as demonstrated in Table 5.

7 Discriminative Fine-tuning
The analysis in Section 6 suggests that the central
limitation of GEN is that the purely generative task
for which it is trained is challenging in its own
right, but unaligned with the downstream classifi-
cation task. The model is rewarded at training time
for devoting significant capacity to modeling the
full high-dimensional distribution of R, even when
large parts of that distribution are unimportant for
making downstream predictions.

To help GEN in such cases, we experiment with
an additional fine-tuning step in which we directly
optimize for predictive performance. Specifically,
for the fine-tuning step we construct the discrimi-
native distribution using Bayes’ Rule in Equation 1
and use it at training time by minimizing the label
cross-entropy loss:

Lft = −
N∑

i=1

log pθ(yi | Bi, Ri) (4)

= −
N∑

i=1

log
pθ(Ri | yi, Bi)pθ(yi | Bi)∑
y′ pθ(Ri | y′, Bi)pθ(y′ | Bi)

.

Using this objective requires a choice of
pθ(y | B). We explore the impact of different
choices for this distribution in Appendix A.2, but
found that using a pretrained and frozen pθ(y | B)
during the fine-tuning step works best. We hypoth-
esize that this setup allows the generative compo-

7We computed attributions for a discriminative BERT
model trained on SNLI, using Integrated Gradients (Sundarara-
jan et al., 2017) with Captum (Kokhlikyan et al., 2020).

Model Dev Hard dev ∆ ρ

Disc. 86.44 79.72 6.73 0.171
GEN-FT 79.87 74.98 4.89 0.106

Table 8: Fine-tuned model results for overlap bias on
MNLI mismatched dev set.

nent pθ(R | y,B) to ignore as much bias as possi-
ble. At inference, as we would like to ignore the
bias, we take the fine-tuned generative component
pθ(R | y,B) and perform inference the same way
as before, using Bayes’ Rule with a uniform prior.

The adjusted training procedure is composed of
the following steps: 1) Train a discriminative prior
model, pθ(y | B), freeze the weights. 2) Train
a generative model, pθ(R | y,B), as in Section
4. 3) Fine-tune the model using Equation 4, using
the pretrained pθ(y | B). 4) Test the model using
Equation 1 with a uniform prior.

7.1 Results

Tables 7 and 8 show the results of the fine-tuning
pipeline. The fine-tuned generative models (de-
noted as GEN-FT) achieve smaller o.o.d generaliza-
tion gaps (∆) and correlations to the biased models
(ρ) than the discriminative baselines. GEN-FT is
also significantly better than GEN in terms of o.o.d
performance, at the expense of slight bias leakage
(higher ρ compared to GEN in Table 6). In the case
of hypothesis-only bias, GEN-FT match or surpass
the results of the discriminative baselines on the
o.o.d sets. In the overlap bias case, GEN-FT does
not match the discriminative model on the o.o.d set,
but it narrows the gap.

The above results were obtained using a bias
model prior in the fine-tuning step and a uniform
prior at inference time. This was the strategy that
achieved the lowest generalization gap (∆) on the
dev set while outperforming the discriminative
baseline. See Appendix A.2 for an ablation study
of additional options.
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Figure 3: SNLI Hard results with different T5 models.

8 Scalability

Given that the generative approach consumes more
compute than the discriminative baseline, it is natu-
ral to ask whether it can scale to larger models. To
answer this, we experimented with the T5 model
(Raffel et al., 2020), an encoder-decoder available
in five sizes, from 60M to 11B parameters. We fo-
cus on the hypothesis-only bias case in SNLI. We
train the generative and discriminative models us-
ing regular fine-tuning (also called model-tuning),
and also experiment with prompt-tuning (Lester
et al., 2021), a faster and cheaper approach, which
adds a small number of learnable tokens to the
start of the input, and trains them end-to-end, while
the model’s original weights stay frozen. (Mem-
ory and training statistics are found in Table 14,
Appendix A.5.)

Figure 3 shows that both the generative and
discriminative approaches scale with model size.
Prompt-tuning is effective, matching model-tuning
performance at larger sizes. In larger models, the
generative approach narrows the gap from the dis-
criminative one, but cannot close it. Table 9 shows
that with the largest 11B model, the generative ap-
proach leads to unbiased models. The table also
shows that discriminative fine-tuning is possible
at this scale and obtains a similar performance to
the discriminative model on the hard set. Prompt-
tuning also allows us to hold only one model for
the discriminative fine-tuning phase (compared to
two models in model-tuning). We conclude that
the generative approach is scalable and can be used
with very large models to mitigate structural biases.

Method Model Test Hard test ∆

Model- Disc. 92.80 85.00 7.8
tuning GEN 76.76 78.53 −1.77

Prompt- Disc. 92.88 85.46 7.42

tuning GEN 79.91 79.70 0.21
GEN-FT 89.68 85.22 4.46

Table 9: Results on SNLI with T5-XXL (11B) model.

9 Conclusion

Structural biases are common in various NLI
datasets and are a major obstacle when trying to
create robust systems for this task. We proposed a
generative approach for NLI, which leads to unbi-
ased models. We demonstrated that our generative
models are robust to large amounts of bias and per-
form equally well in and out of distribution. This
comes, however, with a trade-off, where the gen-
erative models perform worse than discriminative
baselines. We investigated reasons for the difficulty
of training generative NLI models, highlighting the
large output space of generating sentences, as op-
posed to identifying a small subset of words that
are often sufficient for solving the task. We showed
how to mitigate this problem by fine-tuning GEN

with a discriminative objective. Finally, we demon-
strated that the method scales efficiently to large
language models.

Our work lays down a novel formulation for the
NLI task, which may be applied to many other
natural language understanding tasks. Future work
can examine other kinds of bias and different tasks.
For instance, if the bias variables are constructed
according to protected attributes like race or gender,
our approach leads to unbiased models w.r.t the
protected attributes.
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A Appendix

A.1 Correlations

Figure 4 shows the correlations of generative and
discriminative models to a bias model under dif-
ferent bias ratios in the synthetic bias case. Here
the correlations are calculated on a biased test set,
while in Section 5.3 they were calculated on an
unbiased test set. The pattern is the same: the dis-
criminative model is become more biased (higher
ρ) as the bias ratio increases, while GEN remains
unbiased (small ρ).
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0.0

0.25

0.5
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Bias Ratio
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Figure 4: The correlation to a bias model (ρ) of gen-
erative and discriminative models under different bias
ratios. ρ is calculated on a biased test set, so that each
model used the same bias ratio at training and inference
time.

A.2 Ablation study of fine-tuning pipeline

Our fine-tuning pipeline allows different ways to
combine the steps, such as choosing a prior or
whether to use another step of fine-tuning. Ta-
ble 10 presents an ablation study of the different
possible combinations, using BART on SNLI with
hypothesis-only bias. (The table shows means and
standard deviations of 3 runs with different random
seeds.) Row 1 shows the results of GEN, without
any fine-tuning; the same model from Section 3.
Fine-tuning with a hypothesis-only prior leads to a
smaller gap than fine-tuning with a uniform prior
(compare rows 3 and 5). We can explain these ap-
parently surprising results by the hypothesis-only
prior capturing some of the bias, such that remov-
ing it during inference allows the predictions to
be less biased. Fine-tuning with a uniform prior
does not allow such a decomposition, resulting in a

large gap (row 3). In contrast, using a hypothesis-
only prior at inference leads to biased predictions
(large generalization gaps; rows 2, 4 and 6). These
models perform well on the test set (relative to us-
ing uniform prior at inference; rows 3, 5, 7), but
relatively poorly on the o.o.d set. In fact, maintain-
ing the same kind of prior throughout the pipeline
(rows 3 and 6) leads to results similar to the dis-
criminative baseline (row 11).

The fine-tuning step allows a balancing of bias
and performance. Fine-tuning with a hypothesis-
only prior and using a uniform prior at test time
results in good o.o.d performance and relatively
small generalization gaps (row 5). This setting
achieve the smallest generalization gap that still
beats the discriminative baseline (row 11).

Another consideration is the additional training
time incurred by two phases of training. If we
skip the generative training phase and directly train
with the discriminative objective, we lose a bit in
terms of test performance but maintain a good o.o.d
performance, resulting in a medium-size general-
ization gap (row 9).

The model on row 9 shows comparable perfor-
mance to the one in row 5, with a slight perfor-
mance drop and a larger standard derivation. In
practice, that model demonstrated slight instability
and performed worse on the test and hard test sets
than the model on row 6, showing that the initial
generative training phase may allow the model to
generalize better.

A.3 Data preparation for overlap bias

Table 11 shows an example for how a P,H pair is
transformed to R,B which are used as an input to
the model in Section 4.3.

A.4 Gradient Attributions Example

Table 12 gives qualitative examples for the phe-
nomenon in Section 6.

A.5 Hyperparameters and Training Details

Table 13 shows the hyperparameters for the models
used throughout the paper. We experimented with
word dropout values of: 0.01, 0.1, 0.3, 0.5, weight
decay values of: 0.001, 0.01, 0.1, 1, learning rate
values in the range: [10−6, 10−4], and maximum
number of 5, 10, 20 and 100 epochs. The values
that achieved the best accuracy on the validation set
appear in the table. All other hyperparameters are
the default ones in Wolf et al. (2019). Where mean
and standard deviation is specified, we calculate
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Prior

Training Fine-tuning Inference Dev Hard Dev ∆

1

GEN

– Uniform 71.14±0.4 72.68±0.2 −1.54±0.3

2 – Hypothesis-only 84.99±0.3 64.29±0.7 20.69±0.9

3 Uniform Uniform 90.32±0.1 77.17±0.8 13.15±0.7

4 Uniform Hypothesis-only 89.31±0.5 70.33±1.9 18.98±1.4

5 Hypothesis-only Uniform 87.12±0.5 80.55±0.1 6.57±0.5*
6 Hypothesis-only Hypothesis-only 90.06±0.0 75.53±0.8 14.53±0.8

7

–

Uniform Uniform 90.05±0.1 76.54±0.4 13.51±0.3

8 Uniform Hypothesis-only 89.66±0.4 71.71±1.5 17.95±1.2

9 Hypothesis-only Uniform 87.11±0.9 80.53±1.2 6.58±0.6

10 Hypothesis-only Hypothesis-only 90.04±0.2 76.13±0.6 13.91±0.4

11 Discriminative baseline 91.49±0.0 79.59±0.5 11.90±0.5

Table 10: Ablations on SNLI validation set (Dev) with BART-base. Hard Dev was created similarly to SNLI hard
(Gururangan et al., 2018). Fine-tuning is done with a discriminative objective, while inference is always using the
generative objective. Uniform/Hypothesis-only refers to the kind of prior that was used during this phase. “*” marks
the model with the smallest o.o.d generalization gap (∆) that is better than the discriminative baseline.

Premise Hypothesis

A smiling costumed woman is holding an um-
brella

A happy woman in a fairy costume holds an
umbrella

Remainder Bias

A smiling costumed woman is holding an um-
brella <SEP> A happy woman in a fairy costume
holds an umbrella

A <mask> <mask> woman <mask> <mask> an
umbrella <SEP> A <mask> woman <mask> a
<mask> <mask> <mask> an umbrella

Table 11: Example for the data preparation for the overlap bias case.

those values over 3 runs, each with a different seed.
Otherwise, those are the results of only one run.

Each experiment was performed on one or two
NVIDIA RTX 2080 Ti GPUs. Training takes about
6–7 hours for discriminative models, 7–8 hours
for generative models, and 15–20 hours for the
discriminative fine-tuning step. Discriminative
BERT/BART models have 109M/140M parame-
ters, while generative BERT/BART models have
247M/139M parameters.

The experiment in Section 8 were preformed us-
ing NVIDIA A100s cards. The statistics for those
experiments are presented in Table 14. All experi-
ments used a batch size of 32, except for the model-
tuned T5-XL and T5-XXL, which were trained
with batch sizes of 16 and 8 respectively . For a fair
comparison, we used T5.1.1 “LM Adapted” check-
points, which are compatible with both model-

tuning and prompt-tuning.8 For prompt-tuning, we
used 20 additional tokens, resulting in <100K train-
able parameters even for the largest 11B model.

8https://github.com/google-research/
text-to-text-transfer-transformer/
blob/main/released_checkpoints.md#
lm-adapted-t511lm100k
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Premise Hypothesis Label

a woman in a black shirt looking at a bicycle .
a woman dressed in black

shops for a bicycle .
entailment

a black man in a white uniform makes a spectacular

reverse slam dunk to the crowd ’ s amazement.
the man is asian contradiction

Table 12: Gradient attributions example. Green/red show positive/negative attributions.

Model Learning rate No. of epochs Word dropout Weight decay

Discriminative /
Hypothesis-only

10−5 20 – –

Generative 10−5 20 – –
Fine-tuning 5 · 10−6 5 0.1 0.1

Table 13: Hyperparameters for models. All of the models used early stooping of 3 epochs without improvement.

Model
Number of
Parameters
(approx. )

Training Time
(hours)

Number of
GPUs For
Training

M
od

el
-T

un
in

g Small 60M 2 1
Base 220M 5 2
Large 770M 10 2
XL 2.8B 24 4
XXL 11B 48 8

Pr
om

pt
-T

un
in

g Small 60M + 10K 2 1
Base 220M + 15K 4 1
Large 770M + 20K 6 1
XL 2.8B + 40K 15 2
XXL 11B + 80K 20 4

Table 14: T5 model statistics. For the number of parameters for prompt-tuning, X + Y means that the model has X
frozen parameters, and additional Y learnable parameters are used for prompt-tuning.
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