Subword-based Cross-lingual Transfer of Embeddings
from Hindi to Marathi and Nepali

Niyati Bafna and Zdenék Zabokrtsky,
Charles University, Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics
niyatibafnal3@gmail.com, zabokrtsky@ufal.mff.cuni.cz

Abstract

Word embeddings are growing to be a crucial
resource in the field of NLP for any language.
This work introduces a novel technique for
static subword embeddings transfer for Indic
languages from a relatively higher resource lan-
guage to a genealogically related low resource
language. We primarily work with Hindi-
Marathi, simulating a low-resource scenario
for Marathi, and confirm observed trends on
Nepali. We demonstrate the consistent benefits
of unsupervised morphemic segmentation on
both source and target sides over the treatment
performed by fastText. Our best-performing
approach uses an EM-style approach to learn-
ing bilingual subword embeddings; we also
show, for the first time, that a trivial “copy-
and-paste” embeddings transfer based on even
perfect bilingual lexicons is inadequate in cap-
turing language-specific relationships. We find
that our approach substantially outperforms the
fastText baselines for both Marathi and Nepali
on the Word Similarity task as well as WordNet-
Based Synonymy Tests; on the former task,
its performance for Marathi is close to that of
pretrained fastText embeddings that use three
orders of magnitude more Marathi data.

1 Introduction

Subword-level embeddings are useful for many
tasks, but require large amounts of monolingual
data to train. While about 15 Indian languages
such as Hindi, Bengali, and Marathi have the re-
quired magnitudes of data, most Indian languages
are highly under-resourced; they have very little
monolingual data and almost no parallel data, and
not much digitization. For example, to the best
of our knowledge, Marwadi, spoken by 14M peo-
ple, has no available monolingual corpus; Konkani,
spoken by about 3M people, has a monolingual cor-
pus containing 3M tokens, and no parallel data.'

"The Opus Corpus (Tiedemann, 2012), one of the most

popular collection of parallel texts, contains no parallel data
for languages such as Konkani or Bundeli.
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However, many of these languages have very close
syntactic, morphological, and lexical connections
to surrounding languages including the mentioned
high-resource languages. Our approach aims to
leverage these connections in order to build embed-
dings for these low-resource languages, in the hope
that this will aid further development of other NLP
tools for these languages.’

While there is a growing interest in shifting
towards contextual embeddings with BERT (De-
vlin et al., 2018), as well as extending them to
low-resource languages, static embeddings retain
value in being lightweight and less computation-
ally expensive, especially as studies show that
they can perform comparably to contextual em-
beddings in certain settings (Arora et al., 2020)
and encode similar linguistic information (Miaschi
and Dell’ Orletta, 2020). Thus, an efficient method
to develop static embeddings for languages with
minimal or no NLP research remains a relevant
step to building a basic range of resources in these
languages. In this study, we primarily work with
Hindi-Marathi as our genealogically and cultur-
ally related language pair, and use asymmetric
resources (large data for Hindi, artificially small
monolingual data for Marathi), confirming our final
results for Nepali.

Most languages of the Indic/Indo-Aryan family,
spoken over most parts of North India, are mor-
phologically rich, including Hindi, Marathi, and
Nepali. This means that while related language
pairs may have a high number of cognates, these
may be “disguised” by surrounding inflectional
or derivational morphemes. Therefore, even with
an identical underlying syntactic structure, lexi-
cal correspondences between languages may be
obscured or rendered incongruent. Further, when
working with small data, the corpus frequencies of

“While some languages may have a little parallel data,
we assume none, so as to cater to languages that are just
undergoing digitization.
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fully inflected surface forms would be much less
reliable than those of stem and affix morphemes,
intuitively resulting in a less robust embeddings
transfer. These factors add weight to the intuition
that many Indic languages share morpheme-level
correspondences with each other. This motivated
us to apply unsupervised morphemic segmentation
on both the source and target language data; we
demonstrate the benefits of doing so in our evalua-
tions. Note that this also makes it natural to work
with subword-level embeddings rather than word
embeddings; studies show that the former have an
advantage over word embeddings especially for
morphologically rich languages. (Chaudhary et al.,
2018; Zhu et al., 2019b; Li et al., 2018).

The idea of the transfer is to project the low-
resource language (LRL) subwords into a shared
bilingual space with the high-resource language
(HRL). We first attempt a trivial transfer that simply
finds the “closest” HRL subword for each LRL sub-
word, and copies its embedding. We demonstrate
that this approach, while tempting, is not enough
to capture the relationships between even identi-
cal words in both languages; embeddings spaces
appear to encode more complex information that
this approach would suggest. For our best perform-
ing approach, we adapt the EM-style algorithm
described in Artetxe et al. (2017) to a subword-
setting; the algorithm alternately optimizes the dis-
tance between pairs belonging to a bilingual map-
ping, and generates a bilingual mapping between
words from the resulting bilingual embeddings. As
far as we know, our work is the first to apply this
algorithm in the context of embeddings transfer.
We compare the resulting bilingual embeddings
to data-intensive fastText models using the Word
Similarity and WordNet-Based Synonymy Tests
for Marathi; for Nepali, we evaluate on the latter
task due to the lack of a Word Similiarity dataset.

2 Previous Work

2.1 Subwords in Embedding Spaces

In a seminal work, Bojanowski et al. (2017) present
fastText embeddings, that work at a subword level
by representing words as bags of chargrams. Kudo
and Richardson (2018) present a subword tokenizer
for neural text processing, and Kudo (2018) shows
the benefits of using multiple subword segmenta-
tions in neural machine translation, especially in
low-resource settings. Zhu et al. (2019b) look at the
segmentation of a word, such as using chargrams,
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Byte Pair Encoding (BPE) (Gage, 1994; Sennrich
et al., 2016), Morfessor, as well as the composi-
tion of the subword embeddings (addition, averag-
ing, etc.) to construct the final word vector, and
conclude that the best performing configuration is
highly language and task dependent. A subsequent
work (Zhu et al., 2019a) focuses on LRLs and finds
the combination of BPE and addition largely robust,
although they once again note language-dependent
variability. They also find that encoding “affix” in-
formation with positional embeddings is beneficial,
hinting that the embedding space may distinguish
the importance of different kinds of subwords.

2.2 Cross-lingual embeddings

The problem of learning bilingual embeddings has
usually been studied in a symmetric resources sce-
nario. Xu et al. (2018) propose an unsupervised
method of mapping two sets of monolingual static
embeddings into a shared space; they present re-
sults for English paired with Spanish, Chinese, and
French, evaluated on the bilingual lexicon induc-
tion and Word Similarity tasks. Chaudhary et al.
(2018) experiment with joint and transfer learn-
ing for training bilingual subword embeddings for
pairs of Indic LRLs from scratch, by projecting
different scripts into the International Phonetic Al-
phabet (IPA). Kayi et al. (2020) present an exten-
sion of the BiSkip cross-lingual learning objec-
tive that leverages subword information to train
English-paired bilingual embeddings for LRLs, us-
ing around 30K parallel sentences. We describe
Artetxe et al. (2017) in some detail below, since we
use this algorithm in our approach. There is also
growing interest in multilingual contextual embed-
dings (Devlin et al., 2018; Kakwani et al., 2020;
Ruder et al., 2019) such as multilingual BERT;
Wang et al. (2020) propose an approach to extend
multilingual BERT to low-resource languages with-
out retraining it, Pfeiffer et al. (2020) suggest an
approach towards incorporating previously unseen
scripts into a multilingual BERT model.

2.3 Bilingual Lexicon Induction

This task is closely related to that of embeddings
transfer; we see that these two tasks leverage each
other in the literature. Older works such as Koehn
and Knight (2002) and Haghighi et al. (2008) use
monolingual features such as frequency heuristics,
orthographic features, tags, and context vectors in
order to find bilingual mappings for mainly Eu-
ropean language pairs. Hauer et al. (2017) use



word2vec embeddings (Mikolov et al., 2013) in
order to iteratively train a translation matrix.

2.4 Summarizing Artetxe et al. (2017)

Artetxe et al. (2017) present an EM-style approach
to training bilingual embeddings from monolingual
embeddings without parallel data; however, it as-
sumes high quality monolingual embeddings for
both languages trained on at least 1 billion word
corpora each. Given the two sets of word embed-
dings, they find a bilingual dictionary D by choos-
ing the closest target word for each source word
with respect to the cosine distance between source
and target word embeddings. In the next step, they
use the dictionary D to calculate a linear transfor-
mation matrix that minimizes the sum of cosine
distances of the embeddings of all word pairs in
D. They apply an orthogonality constraint on the
transformation matrix in order to preserve mono-
lingual invariance i.e. to prevent the degradation
of the monolingual relationships in the resulting
embedding space. These steps are repeated until
convergence.

3 Note on languages

Hindi, spoken by about 340M people, is related
to other large Indic languages such as Marathi,
Punjabi, and Bangla, and has 48 recognized “di-
alects” over India, which makes it a good choice
for the HRL in this project. Hindi is written
in the Devanagari script, which is also used for
over 120 other (often related) languages, including
Marathi and Nepali. Hindi, Marathi, and Nepali
share morpho-syntactic properties common within
the Indic language family, such as (split) erga-
tivity and primarily SOV structure with reorder-
ing allowed under constraints. For all three lan-
guages, (some) nouns inflect for case and num-
ber, verbs inflects for tense, number, gender, and
person, and adjectives inflect for gender and num-
ber, and case in Hindi and Marathi. Some differ-
ences are that Marathi and Nepali exhibit more
agglutinative tendencies than Hindi, both allow-
ing suffix stacking with certain boundary changes.
For example, a Marathi token may be a sequence
of verb+nominalizing-morpheme-+case-marker or
noun+postposition+genitive, whereas Hindi sepa-
rates these morphemes into tokens in many cases
(while still exhibiting inflectional and some deriva-
tional morphology). See Figure 1.
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Mar:SHIOTrTelT

karnAryAlA
AN

N
& & i &%
do nominalizing-morph ACC-casemarker ( to the doer)

Hin: &l dTel &l

karne vAle ko

Figure 1: Tokens in Marathi and Hindi. The stem for
“do” is the same (i.e. “kar”) in both languages; Marathi
uses one token whereas Hindi uses three.

4 Data and Resources

4.1 Training Data

For Hindi, we used 1M sentences containing
roughly 18M tokens from the HindMonoCorp 0.5
(Bojar et al., 2014). For Marathi, we used 50K
sentences containing 0.8M tokens from the Indic-
Corp Marathi monolingual dataset (Kakwani et al.,
2020)3, and for Nepali, we use 1.4M tokens from
the Wortschatz corpus (Goldhahn et al., 2012). We
choose these numbers for Marathi and Nepali be-
cause it seems to be the ballpark of the amount
of monolingual data collected for newly digitized
Indic languages.* All the above corpora, as well as
following resources, are in the Devanagari script.

4.2 Pretrained Embeddings

We use pretrained fastText embeddings for Hindi,
presented by Grave et al. (2018), in line with the
assumption that we have good quality resources for
the HRL. These embeddings (HIN-PRETR-2G") are
trained on the Wikipedia corpus as well as Com-
mon Crawl, containing a total of about 2G tokens.
We also use the pretrained fastText embeddings
(MAR-PRETR-334M, NEP-PRETR-393M) presented in
the same work, solely for the purpose of evalua-
tion; these embeddings are trained on 334M tokens
(Marathi) and 393M tokens (Nepali).

4.3 Evaluation datasets

4.3.1 Word Similarity Dataset

A Word Similarity dataset is a set of word pairs,
each annotated by humans according to the de-

3Note that we do not lemmatize our data; good-quality
lemmatizers are a scarce resource that we cannot assume for
the LRL.

4See https://www.ldcil.org/
resourcesTextCorp.aspx for efforts on collect-
ing data on under-resourced languages such as Bodo, Dogri,
Santhali, etc.

SWe use the following shorthand to refer to our mod-
els unless otherwise specified: <language>-<method_label>-
<tokens_of_training_data>. There may be two data slots
in the case of bilinugal embeddings, containing amount of
Marathi/Nepali and Hindi data respectively.


https://www.ldcil.org/resourcesTextCorp.aspx
https://www.ldcil.org/resourcesTextCorp.aspx

gree of similarity (integers ranging from 1 to 10)
between the two words. Evaluation is usually per-
formed by finding the cosine similarity between the
two words vectors, and calculating the Spearman’s
Rank Correlation between the human and model
“similarity” judgments for all word pairs. We report
this correlation multiplied by 100.

We present results on the Marathi Word Sim-
ilarity dataset presented by Akhtar et al. (2017),
containing 104 word pairs. This dataset is cre-
ated by translating a subset of the WordSimilarity-
353 English dataset into Marathi by native Marathi
speakers, and re-evaluating the similarity scores by
8 native speaker annotators.°

4.3.2 WordNet-Based Synonymy Tests

We also perform WordNet-Based Synonymy Tests
(WBST) (Piasecki et al., 2018) for Marathi and
Nepali. A WBST consists of a set of “questions”
consisting of one “query word”, and N options, all
of which occur M IN times in the corpus. One of
the options is a synonym or closely related to the
query word, while the rest are “distracters”, or ran-
domly selected words. The task is to identify the
synonym; we do this by calculating the cosine dis-
tances between the query word vector and each of
the options and selecting the closest. The reported
score is the percentage of correctly answered ques-
tions. We use the IndoWordNet,” built by Sinha
et al. (2006); Debasri et al. (2002), for generating
the WBST.

5 Segmentation

5.1 Motivation

Due to the fusional/agglutinative nature of the lan-
guages, as well as the morphological and tokeniza-
tion differences as discussed in Section 3, we ap-
ply unsupervised morphemic segmentation to both
source and target side data. This is motivated by
the need to handle data scarcity on the LRL side,
since fully inflected tokens are much rarer than
their constituent subwords; we see that the unseg-
mented Marathi and Nepali data have 100K and
140K distinct tokens respectively, but only 20K
and 40K distinct “morphemes”, respectively, post-
segmentation.

The morphemic segmentation is also an attempt
to isolate the morphs in the language data since,

®not available for Nepali.
"See http://www.cfilt.iitb.ac.in/
WordNet /webmwn /
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Figure 2: Shared subwords in Hindi and Marathi cor-
pora; numbering up to 17.23% of the total # of sub-
words in the Hindi corpus. Common subwords are well-
distributed over the range.

according to our hypothesis, it is easier to find cor-
respondences between the two languages at this
level rather than at the token level. This is clear in
the fact that 50% of the subwords in the Marathi
segmented data also occur in the Hindi corpus,
whereas for the unsegmented data, this is only 20%
of tokens. For Nepali, the difference is lower, in
particular, 40% and 20% respectively. See Fig-
ures 2 and 3 for a visualisation of the frequency
range of the common subwords over that of all
subwords in the Hindi and Marathi corpora respec-
tively. Finally, we see that while the mean length
of subwords in the Marathi and Hindi corpora are
5.02 and 4.72 respectively, the mean length of com-
mon subwords is 3.95; this indicates that shorter
subwords are (naturally) more likely to be common
than longer counterparts. We see similar numbers
for Nepali.

The most obvious fallout to attempting static
embedding transfer at the subword level is morpho-
logical homonymy i.e. morphs that may have more
than one “meaning”, and therefore deserve more
than one static embedding.® There are many ex-
amples of such morphs, e.g. /te/ is both the (free)
third person plural pronoun, as well as the (bound)
first person female present tense morph in Marathi.

5.2 Tools and evaluation

We experimented with BPE and Morfessor and de-
cided to use the latter, since BPE seemed unable to
preserve longer morphs regardless of parameter set-
tings. However, this decision may vary according
to language type. We perform a manual evaluation

8This is of course a general problem with static embed-
dings; however, it is exacerbated at the level of subwords,
especially imperfectly segmented, since they are shorter and
more multifunctional, as it were, than longer lexemes.


http://www.cfilt.iitb.ac.in/WordNet/webmwn/
http://www.cfilt.iitb.ac.in/WordNet/webmwn/
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Figure 3: Shared Hindi-Marathi subwords, numbering
up to 40.39% of the total # of subwords in the Marathi
corpus. As in Figure 2, we see a distribution over the fre-
quency range with the bulk in the mid-to-low frequency
range.

of the resulting Marathi segmentation® over 100
words sampled by frequency, which shows 72.6%
precision and 64.9% recall. True and false posi-
tives are counted with respect to morph boundaries
rather than at the word level, and each boundary
prediction contributes equally to precision/recall.
61% of words are segmented completely correctly.

6 Approach

As baseline, we train fastText models on the avail-
able tokenized data (MAR-BASE-0.8M, NEP-BASE-
1.4M) for both languages. We work with 300-
dimensional embeddings for all experiments.'”

6.1 Normalized Edit Distance (NED)
Approach (Marathi)

Our initial experiments were performed on Hindi-
Marathi. The NED approach is based on finding
a bilingual subword-level mapping; it takes advan-
tage of the high number of cognates and borrowings
between related languages as well as the common
script. Its primary intuition is that since the lan-
guages share not only lexical items but also syn-
tactic and morphological properties, embedding
vectors can essentially be “copied” over to the LRL
from the HRL.

For each Marathi morph, we choose the Hindi
subword with the minimum NED from it. NED is
calculated in the following way:

edit_distance(l, h)
max(length(l),length(h))

NED(I,h) =

°The authors do not speak Nepali and are therefore unable
to provide a manual evaluation.

10Repeating some experiments for 100 dimensional em-
beddings spaces, we observe similar trends, with a generally
lower performance.
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To obtain the embedding of any Marathi word,
we first segment it. For each subword, we look for
the closest Hindi subword by NED, and retrieve the
corresponding Hindi subword embedding. Finally,
we compose the subword embeddings, using addi-
tion, to give the word embedding. See Algorithm 1
for a depiction.!!

Algorithm 1: NED Approach

1_word <— LRL word;
H_EMB < HRL embeddings;
1_morphs < segment_lri(1_word);
I_subwords_emb < empty list;
for I_morph in I_morphs do
h_closest < closest_H RL_morph(l_word);
append(l_subwords_emb, H_EMB (h_closest));
end
I_emb < compose_subwords(l_subwords_emb);
return I_emb ;

6.2 Iterative approach (Marathi, Nepali)

Although the approach presented in Artetxe et al.
(2017) is intended to generate bilingual word em-
beddings for equally well-resourced languages (See
Section 2.4), we hypothesize that the algorithm
will maintain its quality at the subword level for
morphologically rich languages; further, that in
our data-asymmetry situation, this approach will
serve to “transfer” some of the higher quality of the
HRL embedding space to the LRL embeddings, by
leveraging a bilingual mapping to induce the rela-
tionships already encoded in the HRL embeddings.

We apply this approach to both Marathi and
Nepali. As the initial set of LRL embeddings, we
use fastText vectors trained on available segmented
data (MAR-SEGM-0.8M, NEP-SEGM-1.4M). For the
HRL, we can use any available resource. We try us-
ing pretrained fastText vectors (HIN-PRETR-2G); we
also retrain fastText on the segmented Hindi data
(HIN-SEGM-18M). For all runs, we set the initial seed
dictionary as identical words'? in the source and
target corpora.!? See Algorithm 2 for a depiction
of OOV handling for this approach. For compos-
ing the subword embeddings of a word, we tried

"Of course, an NED-based approach is highly limited to
related words in the language. However, testing it out gives us
an interesting insight about cognates and identical words (see
Section 9.1)

"2This is only possible because the languages share a script.

3Note that this approach does not use any parallel data
or bilingual lexicons; this aligns with our assumptions about
parallel data. However, in the case that parallel data does exist,
it can be used to find a good quality bilingual seed lexicon in
lieu of using identical words; this has been shown to improve
the quality of the resulting bilingual embeddings.



Algorithm 2: Bilingual embeddings with

MAR-SEGM-0.8M/NEP-SEGM-1.4M as backoff
I_word <+ LRL word;
L_EMB < Bilinual LRL embeddings;
L_EMB_backoff +— Monolingual LRL embeddings;
1_morphs < segment_Iri(l_word);
1_subwords_emb < empty list;
for [_morph in I_morphs do

I_morph_emb <— empty list ;

if [_morph in L_EMB then
| 1_morph_emb <+ L_EMB(_word);

end

else
| 1_morph_emb<—L_EMB_backoff(l_morph);

end

append(l_subwords_emb, 1_morph_emb);

end
I_emb<— compose_subwords(l_subwords_emb);
return 1_emb ;

Approach Score
MAR-BASE-0.8M 24.64
MAR-SEGM-0.8M 43.23
BI-MAR-JOINT-0.8M-18M | 35.48

Table 1: Marathi monolingual and Marathi-Hindi Joint
results on Marathi WordSim task. Notation of models
explained in Section 4.2.

addition, averaging, and picking the first subword
embedding while discarding the rest. The idea be-
hind the last method is that this approximates the
word stem, and also reduces the noise created by
summing different subword embeddings.

7 Results: Word Similarity (Marathi)

7.1 Baseline and Comparison Models

In Table 1, we show the performance of MaR-BASE-
0.8M and MAR-SEGM-0.8M. taking motivation from
Chaudhary et al. (2018), we also try a joint ap-
proach i.e. we train bilingual embeddings jointly
on the segmented Hindi and Marathi data (Bi-Magr-
JoINT-0.8M-18M). We observe that simple segmen-
tation of the data causes an improvement of over
20 points, outdoing not only Mar-Basg-0.8M but
MAR-SKIPGR-27M (See Table 2). Surprisingly, the
joint model B1-MAR-JOINT-0.8M-18M dips in perfor-
mance in comparison to the MAR-SEGM-0.8M. We
discuss this effect of the Hindi data on the bilingual
embeddings in Section 9.1.

In Table 2, we show the performance of pre-
trained fastText Marathi embeddings mentioned in
Section 4.2 (MAR-PRETR-334M), as well as the best
performing model score from Akhtar et al. (2017)
on this evaluation dataset. Akhtar et al. (2017) test
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Embeddings Score
MAR-PRETR-334M | 54.89
MAR-SKIPGR-27M | 41.12
HIN-PRETR-2G 39.94

Table 2: Scores of high-resource Marathi and Hindi
models on Marathi WordSim task for comparison.

. Identical
Embeddings Word Score
HIN-PRETR-2G 41.17
MAR-PRETR-334M | 50.38

Table 3: Scores of pretrained embeddings on word pairs
from the Marathi WordSim dataset that are identical in
both languages

different sets of embeddings including Skip-gram,
CBOW (Mikolov et al., 2013) and fastText (Bo-
janowski et al., 2017) algorithms, all trained on a
corpus with 27M tokens, of which the Skip-Gram
(MAR-SKIPGR-27M) performed best.

Finally, Table 3 shows the performance of the
MAR-PRETR-334M and HIN-PRETR-2G oOn certain
word pairs in the Marathi WordSim dataset such
that both words are also used identically in Hindi.'*
These word pairs were manually identified from
the Marathi evaluation dataset; we found that there
were 64 such word pairs.!> Surprisingly, we see a
significant dip in the performance of HIN-PRETR-2G
on these word pairs as compared to MAR-PRETR-
334M, indicating that while the word pairs appear
identical in both languages to a native speaker, their
usage in the corpora or interaction with other words
from the language is different.'¢

7.2 Normalized Edit Distance (NED)

Our NED models use only Hindi embeddings,
and project Marathi morphs onto Hindi morphs as
shown in Algorithm 1. For further simplicity, we
also tried a self-mapping; i.e. we simply calculate
the (Hindi) embeddings of the Marathi morphs ob-
tained by segmentation, as they are. Note that this

“That is, both of the words in the word pair must be both
Hindi and Marathi words with the same spelling, and near-
identical senses.

'>Many of these are transliterations of English words. 24 of
the total 135 unique words are transliterations, and they occur
40 times i.e. 19.6% times in the 104 word pairs.

Note that HIN-PRETR-2G performs very well on the
Hindi WordSim dataset; its monolingual quality is not the
problem.



Approach Score
BI-MAR-SELF-SEGM-0.8M-18M | 43.62
BI1-MAR-SELF-PRETR-0.8M-2G | 42.72
Bi-MAR-NED-PRETR-0.8M-2G | 41.85
B1-MAR-NED-SEGM-0.8M-18M | 39.37

Table 4: Scores on Marathi WordSim for self-mapping
and NED strategies, using different Hindi embeddings.
Notation: Bi-<lrI>-<mapping_method>-<hin_embs>-
<Irl tokens>-<hin_tokens>.

is only possible because Marathi and Hindi share a
common script. The resulting embeddings are com-
posed by addition unless otherwise mentioned. See
Table 4 for the results on different combinations of
embeddings and mappings.

Firstly, we observe that the self-mapping per-
forms better than NED in general.!” This is un-
surprising; NED would only perform better for
Marathi words that are cognates with Hindi words
and show a slight difference in spelling; it will per-
form competitively with self-mapping for identical
words in Hindi and Marathi. As we discuss in Sec-
tion 7.1, such words form a large part of the evalu-
ation dataset. As for the remaining words, it seems
that the Hindi embeddings are able to capture the
meaning of the unknown Marathi morphs, perhaps
due to similarities at a subword level. Applying
the NED mapping, however, can result in Marathi
words being mapped to arbitrary Hindi words that
may share no semantics with the Marathi word.

Another interesting observation is that the B1-
MAR-SELF-SEGM-0.8M-18M performs a little better
than B1-MAR-SELF-PRETR-0.8M-2G. This affirms our
intuition in Section 5 that segmentation on the
Hindi side may facilitate the correspondence be-
tween commmon subwords, leading to better per-
formance on a Marathi evaluation set despite orders
of magnitude less (Hindi) data.

7.3 Iterative Approach

There are several points of interest in the re-
sults, given in Table 5. Firstly, we see that the
BI-MAR-ITER-SEGM-0.8M-18M outperforms Bi-MAR-
ITER-PRETR-0.8M-2G; i.e. once again, we find that it
is better to use embeddings trained on segmented
Hindi data for the transfer, even though HiN-SEGM-

7Note that there is a difference between the self-mapping
model and directly applying HIN-PRETR-2G as in Table 2 In
the former, we segment the Marathi word ourselves and apply
Hindi embeddings to the resulting subwords; in the latter, we
leave it up to fastText. We note that the former does better.
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Approach Comp. | Score
(MAR-BASE-0.8M - 24.64)
BI-MAR-ITER-PRETR-0.8M-2G | Sum 4428
BI-MAR-ITER-SEGM-0.8M-9M | Sum 49.49
BI-MAR-ITER-SEGM-0.8M-18M | Sum 49.21
BI-MAR-ITER-SEGM-0.8M-18M | FM 50.06
BI-MAR-ITER-SEGM-0.8M-36M | FM 50.10

Table 5: Iterative approach results on Marathi Word-
Sim task using different sets of Hindi embeddings
for the crosslingual transfer. Format of the ap-
proach name: Bi-<Irl>-Iter-<hin_embs>-<Irl_tokens>-
<hin_tokens>. Comp.: Composition function. FM (first
morph) refers to the strategy of simply using the embed-
ding of the first morph

18M is trained on two orders of magnitude fewer
data than HIN-PRETR-2G. Since this approach is
explicitly bilingual and attempts to project the
Marathi and Hindi embeddings into a shared space,
this is a much more direct affirmation that the sim-
ilarities between Hindi and Marathi are best ex-
ploited at the subword level from both sides. Sec-
ondly, we see that the “first-morph” manner of
composition does slightly better than summing or
averaging'® the subword embeddings.'® Finally,
note that doubling the amount of Hindi data used
to train the initial Hindi embeddings does not help.
This indicates that the Hindi data is only useful up
to a point.

8 Results: WordNet-Based Synonymy
Tests (Marathi, Nepali)

See Table 6 and Table 7 for the Marathi and Nepali
scores respectively. These results confirm some of
the findings from the WordSim results for Marathi,
while showing similar trends for Nepali. We see
once more that segmentation helps: MAR-SEGM-
0.8M and NEP-SEGM-1.4M consistently outperform
the baselines; further, the iterative method is the
best among the low-resource embeddings. We also
note that doubling the Hindi data for the iterative
approach (e.g. with BI-MAR-ITER-0.8M-36M) seems
not to have much effect on the resulting embed-
dings for both Marathi and Nepali. It is interest-
ing to observe that Nepali is slightly less respon-

8We do not report averaging scores since they are almost
identical to the summing scores.

This could be for several reasons; for example, if the first
subword approximates the root of the word, then it may cap-
ture most of the meaning, whereas the remaining information
may be irrelevant or add noise.



. MAR-BASE | MAR-SEGM B1-MAR-ITER BI-MAR-ITER MAR-PRETR
(MIN, N) | Test size -0.8M -0.8M -SEGM-0.8M-18M | -SEGM-0.8M-36M -334M
(10,6) 1183 51.23 58.92 61.62 57.06 84.70
(10,5) 1183 51.90 54.78 58.66 61.54 84.87
(20,6) 684 48.98 53.65 59.94 58.19 84.50
(20,5) 684 57.89 59.94 64.47 64.33 87.57
(50,5) 293 58.02 63.14 67.24 68.94 81.23

Table 6: WBST Results. M IN: min. freq. of the question and options in the corpus, /N: number of total options,
Test size: number of questions. The two best-performing models have been bolded.

(MIN, N) | Test size NEP-BASE | NEP-SEGM B1-NEP-ITER BI-NEP-ITER NEP-PRETR
-1.4M -1.4M -SEGM-1.4M-18M | -SEGM-1.4M-36M -393M
(10,6) 1414 58.20 63.93 65.28 65.06 74.11
(10,5) 1414 61.10 67.75 69.17 69.10 76.37
(20,6) 974 62.32 69.30 69.71 69.10 76.38
(20,5) 974 63.86 69.51 70.74 70.12 78.23
(50,5) 451 66.29 70.29 71.62 71.84 77.16

Table 7: WBST Results for Nepali. Formatted similarly to Table 6.

sive to the iterative approach than Marathi; this
can perhaps be explained by its lower shared sub-
word vocabulary with Hindi (approximately 40%
as compared to 50% for Marathi-Hindi). Finally,
as MIN increases, the performance of the low-
resource methods generally increases; they natu-
rally perform better on words seen more frequently
in the corpus.

9 Discussion

Some of the clearer findings of our experiments
are as regards segmentation and the benefits of a
non-trivial bilingual embeddings transfer.

We see repeatedly that segmentation on both
sides of the transfer helps the quality of the LRL
embeddings. Segmenting the Marathi data causes a
large boost in monolingual performance (Table 1);
furthermore, when transferring from Hindi embed-
dings, BI-MAR-ITER-SEGM-0.8M-18M outperforms
BI-MAR-ITER-PRETR-0.8M-2G (Table 5); the Hindi
embeddings used in the latter are trained on 2 or-
ders of magnitude higher (unsegmented) data.?’
This suggests that the interaction between the two
languages is indeed facilitated at a subword level,
validating our bilingual native speaker intuition
about the same. We also see that the iterative ap-

2Note that we are talking about performance in terms of
the resultant Marathi bilingual embeddings rather than the
direct evaluation of the Hindi embeddings.

proach consistently outperforms both monolingual
models MAR-BASE-0.8M and MAR-SEGM-0.8M, indi-
cating that bilingual interaction between the related
languages is indeed beneficial. In general, this is a
good sign for the project of building NLP tools for
low-resource languages, although it invites explo-
ration of the impact of different typologies on the
observed bilingual effect.

Finally, we find that, in agreement with the find-
ings of the papers that investigate subword com-
position functions (Zhu et al., 2019a,b), the best-
performing composition function for subword em-
beddings seems to be task and data dependent;
even discarding everything except the first subword
seems to work better sometimes than aggregating
all subword embeddings.

9.1 Using Hindi data

To the best of our knowledge, this is the first work
that clearly demonstrates that a trivial “copy-and-
paste” transfer approach, such as our NED models,
is not adequate, even when working with two cul-
turally related languages that share a very high per-
centage of vocabulary as well as morphosyntactic
properties. Our experiments with identical words
pairs in Table 3 especially show that even identical
words that are not false friends may behave dif-
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ferently depending on the language;”! using Hindi
embeddings directly, even for identical words, is
problematic. We believe that this is an important
insight into embeddings transfer that rejects relying
on trivial or simplistic approaches.

Many of our experiments are intended to indi-
cate how useful the Hindi data and embeddings
are to the LRL; e.g. we evaluate HIN-PRETR-2G di-
rectly on the Marathi WordSim task (Table 2), we
experiment with different amounts of Hindi data
for both tasks (Tables 5 and 6), and we try a self-
mapping with the NED model (see Table 4). We
see that doubling the amount of Hindi data some-
times even harms performance;>> we also see that
BI-MAR-JOINT-0.8M-18M performs worse than Mar-
SEGM-0.8M (see Table 1). In conjunction, these re-
sults imply that under the current transfer paradigm,
adding more Hindi data may sometimes hurt rather
than benefit; too much Hindi data for the purpose of
training bilingual embeddings may actually “con-
ceal” Marathi word interactions. We also applied
the iterative approach on Konkani-Hindi, with a
mere 100K tokens of Konkani data and 18M to-
kens of Hindi data as before; however, the bilin-
gual effect was less clearly visible with this setup,
supporting the need for investigation into the opti-
mal balance of LRL-HRL data. We invite further
investigation of this effect.

10 Future Work

This work is intended to be the pilot in a series
of similar studies. We hypothesize that we can
obtain similar results for other genealogically re-
lated LRL-HRL pairs. We intend to repeat these
experiments for language pairs (simulating LRL
environments) such as Punjabi-Hindi, Assamese-
Bengali, Konkani-Marathi, and others. Some of
the issues we will be working against are different
scripts, morphemic segmentation of typologically
different languages, and the lack of evaluation data.
We would also like to experiment with the integra-
tion of parallel data into this approach. Finally, we
also think it would be interesting to extend our so-

IThis is to say even if words a and b occur identically and
with the same senses in both languages, the word pair (a, b)
may have a different relationship depending on the language.

2Qur particular “doubled” dataset actually shows roughly
the percentage of shared subwords as before doubling; it is
possible that data introducing new subwords will perform
better. However, in any case, it is interesting to note that the
transfer is not improved by having more HRL data for the
same subwords which we might intuitively hope would help
the quality of the HRL embeddings and therefore the transfer.
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lution from a bilingual to a multilingual one, with
multiple sources for a target language. This would
be highly pertinent in the case of Indic languages,
where even major Indic languages may be intercon-
nected, and regional languages may benefit from
the resources of more than one HRL.

11 Conclusion

Embeddings transfer from a high-resource lan-
guage to a low-resource related language is an
important task in today’s scenario of data inequal-
ity across languages. We target a family of geo-
graphically and genealogically related languages,
including some high-resource languages and other
low-resource languages, possibly undergoing dig-
itization and data collection. We take two Indic
language pairs, Hindi-Marathi/Nepali, simulating
a low-resource scenario for Marathi and Nepali,
and present an approach to embeddings transfer
that uses very little monolingual data on the LRL
side, and no parallel data. We demonstrate the
benefits of unsupervised morphemic segmentation
on both source and target sides for subword-level
embeddings transfer. Our final approach improves
substantially over monolingual fastText baselines
for the Marathi WordSim task, and the WBST task
for Marathi and Nepali. Further, we show that a
“copy-and-paste” embeddings transfer fails even
with a perfect bilingual dictionary for a closely re-
lated language pair, establishing the need for more
sophisticated methods of low-resource bilingual
transfer.
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