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Abstract

Turn-taking is a fundamental aspect of human
communication and can be described as the
ability to take turns, project upcoming turn
shifts, and supply backchannels at appropri-
ate locations throughout a conversation. In this
work, we investigate the role of prosody in turn-
taking using the recently proposed Voice Ac-
tivity Projection model, which incrementally
models the upcoming speech activity of the in-
terlocutors in a self-supervised manner, without
relying on explicit annotation of turn-taking
events, or the explicit modeling of prosodic
features. Through manipulation of the speech
signal, we investigate how these models implic-
itly utilize prosodic information. We show that
these systems learn to utilize various prosodic
aspects of speech both on aggregate quantita-
tive metrics of long-form conversations and on
single utterances specifically designed to de-
pend on prosody.

1 Introduction

Turn-taking is the fundamental ability of humans to
organize spoken interaction, i.e., to coordinate who
the current speaker is, in order to avoid the need
for interlocutors to listen and speak at the same
time (Sacks et al., 1974). A dialog can be viewed
as a sequence of turns, constructed through the joint
activity of turn-taking between the two speakers. A
turn refers to segments of activity where a single
speaker controls the direction of the dialog.

In conversational systems, turn-taking has tra-
ditionally been modeled using threshold policies
which recognize silences longer than a chosen
duration as transition-relevant places. Although
these types of models are commonly used, it is
well known that they are insufficient for modeling
human-like turn-taking (Skantze, 2021). Studies of
human-human conversation have shown that turns
are frequently shifted with a gap of just 200ms
(Levinson and Torreira, 2015), or even with a slight
overlap. Thus, given that humans also need some
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time to prepare a response, it would be infeasi-
ble for humans to just use silence as a cue to
turn-taking. Instead, it has been suggested that
they are able to project turn completions already
while the other person is speaking (Sacks et al.,
1974; Levinson and Torreira, 2015; Garrod and
Pickering, 2015). In addition, humans produce so-
called backchannels (short feedback tokens such as
"mhm") in a timely manner, often in overlap with
the other speaker (Yngve, 1970).

A common research question in phonetics,
psycho-linguistics, and conversational analysis con-
cerns the various cues (including speech, gaze, and
gestures) that humans use to detect or project turn-
shifts (Duncan, 1972). When it comes to speech, a
common distinction is made between the prosodic
(non-lexical) and lexical (textual, syntactic, seman-
tic) components of the speech signal. For example,
De Ruiter et al. (2006) argued, based on listening
experiments, for the importance of syntactic infor-
mation over intonation (pitch) in turn-taking, while
Bogels and Torreira (2015) showed that intonation
is important when syntactic completion is ambigu-
ous. However, such studies often require human
listening experiments which are costly, anecdotal,
and constrained in time resolution and are therefore
limited to small amounts of conversational contexts.
An alternative approach is to use computational
models (Laskowski et al., 2019) to investigate what
type of information they are sensitive to.

Ekstedt and Skantze (2022) recently proposed
Voice Activity Projection, VAP, which is a gen-
eral, self-supervised turn-taking model. The model
incrementally projects the future speech activity
of the two speakers directly from raw audio wave-
forms. The model can be trained on lots of data,
without human annotations, and is agnostic with
respect to different types of speech information, as
it does not depend on explicitly extracted features.
This makes the VAP model potentially suitable as
a data-driven approach for investigating the role of
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prosody in turn-taking.

In this work, we train VAP models on a large
dataset (Godfrey et al., 1992; Cieri et al., 2004) of
dyadic spoken interactions and evaluate it on spe-
cific turn-taking metrics, while perturbing the input
audio to omit certain sources of prosodic informa-
tion. We analyze the performance over different
tasks to investigate three research questions:

1. Do Voice Activity Projection models trained
on raw waveforms learn to pick up prosodic
information that is relevant to turn-taking?

2. When/how is prosodic information important
for turn-taking predictions?

3. What is a suitable time resolution for such
models to best represent prosody?

2 Background

Prosody refers to the non-verbal aspects of speech,
including intonation (FO/pitch contour), intensity
(energy), and duration (of phones and silences). It
has been found to serve many important functions
in conversation, including prominence, syntactic
disambiguation, attitudinal reactions, uncertainty,
topic shifts, and turn-taking (Ward, 2019). Studies
on both English and Japanese have found that level
intonation (in the middle of the speaker’s funda-
mental frequency range) tends to serve as a turn-
holding cue, whereas either rising or falling pitch
can be found in turn-yielding contexts (Gravano
and Hirschberg, 2011; Local et al., 1986; Koiso
et al., 1998). When it comes to intensity, stud-
ies have found that speakers tend to lower their
voices when approaching potential turn boundaries,
whereas turn-internal pauses have a higher inten-
sity (Gravano and Hirschberg, 2011; Koiso et al.,
1998). Regarding duration and speaking rate, Dun-
can (1972) found a “drawl on the final syllable or
on the stressed syllable of a terminal clause" to be
a turn-yielding cue (in English). This is also in line
with the findings of Local et al. (1986).

When it comes to lexical information, a very
strong cue to turn-taking is of course whether the
utterance is syntactically or pragmatically complete
(Ford and Thompson, 1996). Thus, even if prosodic
cues can be found near the end of a turn-shift, it
is not clear to what extent such cues provide ad-
ditional information compared to lexical cues, or
if they are redundant. In an experiment by De
Ruiter et al. (2006), subjects were asked to listen

to a conversation and press a button when they
anticipated a turn ending. The speech signal was
manipulated to either flatten the intonational con-
tour, or to remove lexical information by low-pass
filtering. The results showed that the absence of
intonational information did not reduce the sub-
jects’ prediction performance significantly, but that
their performance deteriorated significantly in the
absence of lexical information. From this, they
concluded that lexical information is crucial for
end-of-turn prediction, but that intonational infor-
mation is neither necessary nor sufficient. Ekstedt
and Skantze (2020) also found that it is possible to
build fairly reliable turn-taking models using only
lexical information.

However, it has also been argued that while
lexical information is important for turn-taking,
there are many cases where a phrase may be syn-
tactically complete, but it is unclear whether the
turn is in fact yielded or not (Ford and Thomp-
son, 1996). To investigate this, Bogels and Torreira
(2015) performed a similar experiment as De Ruiter
et al. (2006), but selected the stimuli so that they
contained several syntactic completion points (e.g.
“Are you a student / at this university?"), and where
the intonation phrase boundary provided additional
cues to whether the turn was yielded or not. They
found that subjects indeed made better predictions
with the help of intonation and duration.

Most previous attempts at modeling prosody in
turn-taking have been limited in that they (I) only
use instances of mutual silence for predicting turn
shifts (and therefore do not model projection of
turn completion), and (II) only use fairly superficial,
hand-crafted features, such as the extracted pitch
slope or pitch level right before the pause (e.g.,
Gravano and Hirschberg 2011; Meena et al. 2014).
Apart from the problem that such features might be
too simplistic, they also typically require speaker
normalization of the pitch (Zhang, 2018).

In this work, we investigate various forms of
turn-taking events (including projection of both
turn shifts and backchannels). We also use a more
agnostic modeling approach, using latent speech
representations that are learned in a self-supervised
manner and extracted from the raw waveform
(van den Oord et al., 2018). If our model is in-
deed able to pick up relevant prosodic information
from these representations, it means that we do not
have to do any special prosodic feature engineering
or speaker normalization.
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3 Voice Activity Projection Model

Ekstedt and Skantze (2022) proposed a generic
turn-taking model that does not predict specific
turn-taking events at specific moments in time. In-
stead, the model is given the task of Voice Activity
Projection (VAP), which means that it has to incre-
mentally predict the future voice activity (VA) of
each interlocutor in a dialog. The prediction target
at each incremental step is defined by a window of
2 seconds containing the future VA for both speak-
ers. The window is discretized into 8 separate bins
(4 for each speaker) where each bin is assigned a
value of one if more than half of its frames are ac-
tive, to produce an 8 bit binary digit, corresponding
to 256 unique classes.

The VAP model consists of an encoder that pro-
cesses raw audio waveforms, along with the current
VA information, to produce latent representations
of a defined frame frequency f.,.Hz which are then
fed into the predictor network. The predictor is a
causal sequence network that processes the context
available up until the current frame and outputs a
probability distribution over the 256 VA classes,
see Figure 1.

The encoder consists of two sub-modules, a
speech module which processes raw waveforms,
x, specifically a CPC (van den Oord et al., 2018)
model that outputs frame-level representations
hspeech.t € R¥O, at fen. Hz. A second VA module,
matching the frame rate of the speech encoder, pro-
cesses the current VA frame vector v{ € {0,1}2,
along with a concise representation of the VA his-
tory. The VA history features provide long-ranging
contextual information outside of the receptive field
of the acoustic model. This history is defined as the
activity ratio of speaker A over speaker B for re-
gions of size {-inf:60, 60:30, 30:10, 10:5, 5:0} sec-
onds into the past, where O is the current time step,
resulting in a vector v € R with values between 0
and 1, for each frame. The VA module projects the
VA features to vectors Ny ¢, hpist € R256 which
are added to the speech representation Ngpeech, ¢
to produce the encoder output h;, for each frame
t. The dialog input waveforms are volume nor-
malized, resampled to 16kHz, mixed to a single
channel and split into 10s segments (using a 1s
overlap).

The predictor consists of a causal, decoder only,
transformer (Vaswani et al., 2017), with linear at-
tention (Press et al., 2022), using a hidden size of
256, 4 layers, 8 heads, and 0.1 dropout. The output
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Figure 1: The VAP model processes the input features
at time ¢. The input to the model is the combined speech
waveforms of the two speakers (z;), the VA frames of
the window (vtf ), and the longer VA history (vf). The
waveform and VA features are processed separately, pro-
jected to a common feature space, and added together to
produce the predictor input, h;. The predictor consists
of a causal transformer feeding into the VAP-head to
produce the output projection. The green box illustrates
the various outputs of the different models that we com-
pare. Source: (Ekstedt and Skantze, 2022)

of the transformer model is fed to the VAP head, a
final linear layer, which outputs logits associated
with the 256 VA classes. Since transformer mod-
els are powerful but come with the cost that they
scale quadratically in compute, with respect to in-
put length, we are interested in whether using a
slower frame rate of the sequence model has any
significant impact on the turn-taking performance.
Following previous work, we utilize a pre-trained
CPC (Riviere et al., 2020) encoder which produces
output representations at 100Hz, and for two of our
three models, we include a single additional convo-
lutional layer which projects the representations to
50 and 20Hz. In other words, we train three models
which use different frame rates of the predictor.

3.1 Turn-taking Metrics

The Voice Activity Projection in itself is just a
distribution of 256 possible futures. However,
Ekstedt and Skantze (2022) also showed how this
distribution can be used to predict various turn-
taking events as zero-shot classification tasks. We
utilize three of these metrics, namely Shift/Hold,
Shift-prediction, and Backchannel-prediction, and
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will briefly explain them here.

Shift/Hold: This metric evaluates how well the
model predicts the next speaker during mutual si-
lence, i.e., whether the current speaker will Hold
the turn, or whether the turn will Shift to the other
speaker. The frames used for evaluation start S0ms
into the silence, covering a total of 100ms consecu-
tive frames.

Shift prediction: This metric evaluates how well
the model can continuously predict an upcoming
Shift in the near future, while a speaker is still
active. We follow prior work and consider a range
of 500ms that covers the end of a VA segment,
before a Shift-event (as defined above), as positive
samples. Similarly, we sample negative ranges,
of the same duration, from regions where a single
speaker is active but far away (2s) from any future
activity of the other speaker.

Backchannel (BC) prediction: This metric eval-
uates how well the model can continuously pre-
dict an upcoming BC in the near future (similar to
(Mueller et al., 2015; Ruede et al., 2017)). BCs are
defined as short and isolated VA segments (< 1s),
preceded by > 1s of silence and followed by > 2s
of silence by the same speaker. We consider re-
gions of 500ms before a BC as positive samples
and the negatives are sampled similarly to the Shift
prediction metric, with the addition of allowing
for non-active segments, i.e., backchannels can be
predicted during silences as well.

4 Training and Data

We train three different VAP models with differ-
ent frame-level frequencies: 20, 50, and 100Hz.
We use the combination of two dyadic conversa-
tional datasets, Switchboard (Godfrey et al., 1992)
and Fisher! (Cieri et al., 2004), resulting in 8288
unique dialogs. We set aside a test set of 5%
(of each dataset) and split the remaining dialogs
into a 90/10 train/validation split used for train-
ing. We use the AdamW (Kingma and Ba, 2015;
Loshchilov and Hutter, 2019) optimizer and an
early stopping criteria on the validation loss with
a patience of 10 epochs. The code is imple-
mented in Python using the PyTorch (Paszke et al.,
2019), PyTorch-Lightning (William et al., 2020)
and Wandb (Biewald, 2020) libraries, and are pub-
licly available?.

"Because of limited access we only use Part 1 of the full
corpus.

https://github.com/ErikEkstedt/conv_
ssl

4.1 Data perturbation

In order to investigate the role of prosody in the
model’s turn-taking predictions, we perturb the in-
put audio waveform of the test data in five ways
to omit parts of the signal encoding for various
prosodic features:

FO0 flat: the intonation contour is flattened to the
average FO of each speaker and segment.

Low pass: the signal is low pass filtered by
down-/up-sampling of the waveform similar to We-
ston et al. (2021). This effectively removes all high-
frequency phonetic information, while only the FO
and intensity contours are relatively intact. We use
a cutoff frequency of 400Hz across all samples.

Intensity flat: The intensity contour is flattened
to the average value of each speaker over all speech
frames (as determined by the VA features). We
note that this transformation is difficult to perform
without including acoustic artifacts despite having
access to speech boundaries given by the VA fea-
tures. Breaths become very loud and the gain inside
smaller segments of silence is prominent.

Duration average: Each phone in a segment
is scaled to the average duration, of that specific
phone, across the dataset.

FO shift: The intonation contour is shifted by
90% of the original value for each speaker over
each active speech segment. This should (in theory)
not affect the turn-taking predictions. However, we
include this perturbation to verify that the transform
in itself does not have a too strong effect (e.g.,
through artifacts).

All  perturbations were done  using
Praat (Boersma and Weenink, 2022; Jadoul
et al., 2018) and the Torchaudio® library.

5 Aggregate Turn-taking Evaluation

In this experiment, we evaluate the models on the
turn-taking metrics described in Section 3.1, on a
withheld test set, using the original audio and the
respective augmentations, with the exception of
Duration average®, listed above. The performance
across models and metrics is visualized in Figure 2.
We note that the Shift/Hold metric is highly imbal-
anced, containing a substantially larger amount of
holds, indicated by the high baseline weighted F1
(= 0.77). The remaining metrics are balanced by
design, resulting in a lower baseline value (=~ .33).

Shttps://pytorch.org/audio
*We do not have access to phone aligned annotations of
the datasets.
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Figure 2: Aggregate results for the three tasks on the Switchboard and Fisher test set, depending on model frequency
and perturbation. Majority class baseline is shown with the dashed black line.

The least intrusive augmentation across all mod-
els and metrics is, as expected, the FO shift trans-
formation. However, the artifacts introduced still
seem to have some effect on the models. Inter-
estingly, it has the greatest impact on the 100Hz
model, indicating that a higher frame rate of the
predictor model could make it more sensitive to
detailed phonetic information disregarded by the
slower versions.

On the Shift/Hold metric, all models are simi-
larly and substantially impacted by the Low pass
augmentation, lowering the performance towards
baseline performance. This augmentation omits
almost all information other than the FO and in-
tensity contours and shows that the model does
rely on more complex cues to predict the next
speaker. FO flat interestingly has the least negative
effect, across all models (disregarding FO shift).
This is surprising, given that pitch seems to be the
most frequently used prosodic cue in computational
turn-taking models. However, while Intensity flat
severely affects the 100Hz model, making it worse
than the baseline, it has a lesser effect than Low
pass for the other two.

On the Shift prediction and Backchannel predic-
tion tasks, where the evaluation point occurs inside
of an ongoing utterance, all models are substan-
tially affected by the Low pass transform, and the
higher the frame rate of the model, the larger the
impact. The transformation removes faster pho-
netic information obfuscating phones, words, and
their durations (or boundaries), which are more
discernible to models operating on higher frame
rates, making the impact variation across models
less surprising. However, this variation is greater
on the Backchannel prediction task, with a large
difference of effect between the 20 and 100hz mod-
els. The second most impactful perturbation is In-

tensity flat, which indicates, in accordance with
the turn-taking literature in general, that shifts
and backchannels are preceded by changes (ar-
guably drops) in the intensity contour of the current
speaker.

6 Utterance-level Analysis

While the analysis above gives an overall esti-
mate of how important prosody is, it has been
hypothesized that prosody is especially important
when the semantic/pragmatic completion is am-
biguous, as discussed in Section 2. To focus their
analysis on such situations, Bogels and Torreira
(2015) constructed question templates where a
short and a long version, sharing initial lexical
information, were recorded through scripted in-
terviews (in Dutch). As an example, a short/long
question pair "did you drive here?” and "did you
drive here this morning?” contain the same initial
words up to a common completion point (after the
word "here”), which we will refer to as the short
completion point, SCP. Note that in order for the lis-
tener (or the model) to predict a turn-shift towards
the end of the short utterance, but not at the corre-
sponding place in the long utterance, it has to rely
on prosody. Through listening experiments, where
the participants are asked to press a button when
they expect a turn shift, Bogels and Torreira (2015)
found that the reaction time was indeed much faster
after the short version than after a long version cut
after the SCP.

For our experiments, we created a similar set of 9
long/short utterance pairs in English (see Table 1 in
the Appendix) using the Google TTS" service and
produced 10 versions of each long/short pair using
5 male and 5 female voices. An example of such a

Shttps://cloud.google.com/
text-to-speech

545


https://cloud.google.com/text-to-speech
https://cloud.google.com/text-to-speech

waveform

: here

Rel. FO

Rel. FO

Mel (Hz)

- 4096
F2048
r 1024
F512

-0

F200

FO (Hz)

r 150

100

waveform

Mel (Hz)

F200

r 150

FO (Hz)

100

Figure 3: A short/long phrase pair. The plots show
the waveforms, mel-spectrograms, FO contours, and the
model assigned Shift/Hold comparison, for the short
and long versions respectively. The blue color in the
bottom plots indicates a majority probability (over 50%)
for Hold whereas the yellow indicates Shift. The short
completion point (SCP) is shown as a red dashed line
for the long utterance and the filled red line shows the
end time of the last word in each utterance.

pair is visualized in Figure 3. In the figure, we have
also visualized the VAP model’s Shift prediction,
as described in Section 3.1.

As can be seen in the figure, for this example,
the model correctly assigns a high probability to
Hold until towards the end of each utterance, where
it changes to Shift. This clearly illustrates the
model’s ability to project turn shifts before the ut-
terance is complete, and before the large rise in
final pitch has actually happened. In addition, we
see how the model makes a clear distinction be-
tween the two utterances at the short completion
point (SCP), where it predicts a Hold for the longer
variant. This illustrates that the model is indeed
sensitive to prosody, as that is the only informa-
tion that is different up until that point. Additional
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Figure 4: Duration and maximum relative FO over the
last syllable at the “short completion point" for the
(L)ong and (S)hort versions of the synthesized voices.
The x- and y-axis corresponds to mean-shifted duration
and relative FO peak.

samples and visualizations are publicly available®.

Since we rely on artificially generated utterance
pairs, we can of course not be certain to what ex-
tent they reflect similar prosodic patterns as those
generated by humans. We therefore perform a sim-
ilar analysis of the phrases as Bogels and Torreira
(2015), by measuring the duration and maximum
FO frequency over the last syllable of the short com-
pletion point. In their analysis, they showed that
longer duration and a higher rise in FO are associ-
ated with the end of a turn, separating the measures
at the SCP of the short phrase from the long, as
shown in Figure 4a. We obtain similar distributions
from 4 of our 9 phrases, but note that the others are
not as easily separated, but show more uniform dis-
tributions for the duration dimension as shown in
Figure 4b. However, from listening to the phrases,
we still consider all recordings natural enough to
be included in our further analysis. Although both
duration and pitch might sometimes clearly indi-
cate turn-shifts according to the literature, there
is no guarantee that this is actually the case for

®https://erikekstedt.github.io/conv_
ssl/
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Figure 5: Model output from a female TTS voice saying “Are you a student here at this university?" (long).

all types of phrases. This indicates that simple
models that only track these superficial features
might not capture the whole picture. We provide
the mean-shifted duration and relative FO rise over
all generated phrases in Figure 4c.

We compare the performance of the VAP model
on the short and long versions of each phrase to
investigate whether it can recognize the prosodic
differences and correctly predict the short comple-
tion point as either a Hold (long phrase) or a Shift
(short phrase). In addition to the original record-
ings, we include evaluations of the performance on
the perturbed versions to investigate whether any
specific perturbation changes the predictions of the
model more than the others. We use the 50Hz
model, as it performs comparably to the 100Hz
model on the original audio, while being less af-
fected by the FO shift transform, indicating less
sensitivity to arbitrary artifacts introduced by the
perturbations.

The model output on the long version of the
phrase “Are you a student here at this university?",
for the various perturbations, is visualized in Fig-
ure 5. Inspection of the original performance in
Figure 5a indicates that the model is sensitive to
prosodic information and assigns a higher likeli-
hood of a Hold at the SCP located on the word
"student”. However, for the FO flat perturbation,
in Figure 5b, we note that the model flips and as-

signs a higher Shift-probability at the SCP, which
indicates that if the dynamics of the FO contour
is omitted, the model cannot recognize that the
speaker will continue to speak. Interestingly, the
Intensity flat perturbation also affects the output of
the model, but after the SCP is completed. Here,
the model does have access to the FO contour and
correctly assigns a larger Hold-probability at the
SCP, but then changes prediction to indicate that
a Shift is probable following the word "here”. As
a final note, the Low pass transform, which filters
out all phonetic information while keeping both
the intensity and FO contour, does produce predic-
tions close to that of the original audio, while being
slightly less certain of a Shift after the entire utter-
ance is completed, as seen in Figure 5e. We also
provide the corresponding visualizations over the
short version of the same speaker and phrase in
Figure 7 in the Appendix.

To get an aggregate evaluation of the model
across all 9 phrases and 10 voices, we define three
regions in each utterance, up until the SCP point
(for both long and short phrases), namely hold, pre-
dictive and reactive, and measure the average Shift
probability predicted by the model in those regions.
The hold region covers the start of the utterances
until 200ms before the SCP, where the predictive
region begins. The final reactive region is the very
last frame of the SCP where the entire last word (of
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Figure 6: Shift probabilities for the S0Hz model on the
short completion point over the hold, predictive and
reactive regions over all short and long phrases.

the short utterance) has been processed. Over the
long utterances, the model should consistently pre-
dict a low shift probability, given that the speaker
will continue their turn, while the shift probabili-
ties should increase over the regions of the short
utterances. The aggregate model performance over
all phrases is visualized in Figure 6.

The left part of Figure 6 displays the average
Shift probabilities for the points on the SCP for
the short phrases (Short@SCP) which preferably
should start low and rise consistently. The right part
of the figure shows the corresponding performance
but on the long phrases (Long @SCP) and should
be consistently low, indicating that the speaker will
continue their turn. Looking at the non-perturbed
signal (Original), and comparing the left and right
figures, we see that the model is indeed sensitive
to prosody, confirming the anecdotal observation
from Figure 3. The Low pass transform clearly
hinders the model from predicting a Shift, indi-
cating that pitch and intensity in themselves are
not enough. Among the other perturbations, FO flat
seems to have the largest negative effect, which con-
firms that intonation is important for disambiguat-
ing turn completion when lexical information is
not enough. Duration seems to be less important,
which aligns with the observation in Figure 4c.

7 Conclusion and Discussion

In this work, we train general computational
models of turn-taking, provide analytical meth-
ods suitable for evaluating their performance on
turn-taking tasks, and investigate how they utilize
prosodic information in the speech signal. We in-
vestigate the models’ reliance on prosody by ex-
tending psycho-linguistic experiments designed to

measure the effect of prosody on turn-taking in hu-
man subjects. We conclude by addressing our three
research questions below.

Do Voice Activity Projection models trained on
raw waveforms learn to pick up prosodic informa-
tion that is relevant to turn-taking? We apply spe-
cific prosodic perturbations to the input signal and
show a deterioration across all models on the tasks
of turn-taking and backchannel prediction, indicat-
ing that prosodic cues are utilized by the models.
We note that phonetic information has the largest
impact on these measures and that FO information
is less important for turn-taking in general. Even
more convincing are perhaps the specific compar-
isons of the models’ ability to predict Shift vs Hold
at syntactic completion points, where the lexical
information is identical. This task requires access
to the prosodic dynamics of the signal and should
be impossible to distinguish based on lexical infor-
mation alone.

When/how is prosodic information important for
turn-taking predictions? Overall, we show that all
models are most sensitive to the low-pass trans-
form, indicating that phonetic information is im-
portant for turn-taking in general. We note that
intensity is at least as important as pitch when ap-
plied to actual human long-form conversations, but
that pitch plays a more important role for the dis-
ambiguation at syntactically equivalent completion
points. Interestingly, we note that the importance
of duration plays a less important role, indicating
that the FO-contour is the most reliable cue in the
presence of lexical ambiguity. Another interesting
observation in Figure 6 is that even if intonation
seems to be the most important individual cue, flat-
tening it does not completely collapse the distinc-
tion between turn-holding and turn-yielding. Thus,
there must also be redundant information in inten-
sity and/or duration. This shows that prosody is
indeed a complex set of signals, which the model
has captured.

What is a suitable time resolution for such mod-
els to best represent prosody? In our analysis of
the turn-taking metrics, we note a negligible per-
formance degradation when decreasing the frame
rate of the predictor model. We note that high-
frequency models tend to focus more on phonetic
information, indicated by their sensitivity to the
Low pass transformation. The faster models seem
more sensitive to general acoustic artifacts, as in-
dicated by the larger performance drop on the F0
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shift perturbation, which should not have an impact
on turn-taking cues in general. Overall, we favor
the slower models given their lower memory and
computational requirements, their robustness, and
comparable performance.

It should be noted that the models were not
trained on perturbed versions of the data, which
include highly unnatural speech (i.e., no humans
speak with a perfect flat intonation contour). Thus,
the evaluations of Section 6 can be considered out-
of-distribution. Nevertheless, it is interesting that
for many of these perturbations, the models still
perform relatively well. Also, the drops in perfor-
mance are typically in line with what could be ex-
pected from the literature. For future work, it could
be valuable to train multiple models, on data with
different prosodic perturbations, and compare their
performance for further analysis. Another interest-
ing approach could be to identify actual instances
of syntactically ambiguous phrases, rather than re-
lying on TTS. Moreover, it would be interesting to
include a larger linguistic context, and investigate
whether the importance of prosody decreases.
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A Appendix

waveform

Table 1: The 9 phrases used in the utterance-level analysis.

Mel (Hz)

Item Short Long

1 Are you a student? Are you a student here at this university?

2 Do you study psychology? Do you study psychology here at this university?

3 Are you a first-year student? Are you a first-year student here at this university?

4 So do you play basketball? So do you play basketball on Thursdays?

5 Have you participated in any ex- | Have you participated in any experiments before here
periments before? at this university?

6 Do you live by yourself? Do you live by yourself or with someone else?

7 So you work on the side? So you work on the side in a supermarket in addi-

tion to your studies?
8 Did you come here by bike? Did you come here by bike this morning?
9 Did you drive here? Did you drive here this morning?

student

waveform

are/

student student

waveform
o

Mel (Hz)

Mel (Hz)

(a) Original.

(b) Flat FO. (c) Flat intensity.

student ‘

student ‘

student ’

(d) FO shift.

(e) Low-pass.

(f) Duration avg.

Figure 7: Model output from a female TTS voice saying “Are you a student?" (short).
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