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1 Introduction

Recent studies have shown that language mod-
els (LMs) have the ability to capture many long-
distance dependencies such as filler-gap dependen-
cies (Wilcox et al., 2018) and subject-verb agree-
ment (Linzen et al., 2016) despite only learning
from surface strings. However, this ability has
primarily been shown for constructions for which
the surface strings frequently provide information
about dependencies in the form of agreement pat-
terns. For example, if a model has access to sen-
tences with and without a noun phrase intervening
between the subject and the main verb (1), it is of-
ten able to infer the agreement dependencies from
the surface string alone: (Linzen et al., 2016; Mar-
vin and Linzen, 2018; Goldberg, 2019; Gulordava
et al., 2018; Hu et al., 2020b). The surface cues are
boldfaced in (1):

(1) The girls who the boy likes are smiling.

Importantly, such agreement patterns are not avail-
able for all constructions. Consider, for example,
English control constructions with non-finite em-
bedded clauses (2-3). The main verb in the em-
bedded clause cannot be inflected and therefore the
clause generally lacks agreement information. The
main exception to this is when the embedded clause
contains a reflexive anaphor (e.g., himself ). In such
cases, the anaphor refers to either the subject or
the object in the higher clause (the controller) and
thus has to agree with the controller. In (2), the
anaphor himself is co-referential with the subject
under the subject control predicate promise. In (3),
the anaphor is co-referential with the object under
the object control predicate persuade.

(2) The artist promised the lawyers to make
fun of himself. (Subject control)

(3) The artists persuaded the lawyer to make
fun of himself. (Object control)

Given the lack of agreement information on the
verb, it is difficult to infer whether the controller
should be the subject or the object of the matrix
clause from the surface string alone, unless the em-
bedded clause contains a reflexive anaphor. Such
constructions, however, are almost non-existent in
corpora.1 Hence, LMs trained on naturalistic cor-
pora likely fail to capture this type of dependency.

In this work, we examine a Transformer-based
LM, namely Generative Pre-trained Transformer
2 (GPT-2) (Radford et al., 2019), which is trained
only on surface strings, to see whether or not the
model makes correct predictions about the agree-
ment patterns of reflexive pronouns in subject and
object control constructions. Our findings show
that GPT-2 struggles with subject control construc-
tions such as (2), but does quite well on object con-
trol constructions such as (3). One reason might
be that the model tries to associate the anaphor
with the closest noun phrase. Moreover, while we
find that a model with a larger number of parame-
ters shows higher accuracy on the tasks related to
subject control constructions, performance remains
below chance and the model does not mimic human
behavior.

2 Language model

We evaluated to what extent an LM predicts the
correct agreement patterns for subject and object
control constructions involving a reflexive anaphor.
Given its strong performance on many other syn-
tactic tasks (Warstadt et al., 2020), we used GPT-2
(Radford et al., 2019) through the HuggingFace
Transformer library (Wolf et al., 2020). GPT-2
uses a self-attention mechanism that enables it to
learn to focus on certain parts of the input that are

1For example, the Corpus of Contemporary American
English (Davies, 2008), which contains more than 1 billion
words, includes exactly one example with promise in which a
reflexive agrees with the controller.
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Condition Example

With object SUBJECT CONTROL
Promise Baseline The lawyer promised the artist to make fun of himself.

Distractor The lawyer promised the artists to make fun of himself.
Ungrammatical *The lawyers promised the artist to make fun of himself.

Offer Baseline The lawyer offered the artist to make fun of himself.
Distractor The lawyer offered the artists to make fun of himself.
Ungrammatical *The lawyers offered the artist to make fun of himself.

Guarantee Baseline The lawyer guaranteed the artist to make fun of himself.
Distractor The lawyer guaranteed the artists to make fun of himself.
Ungrammatical *The lawyers guaranteed the artist to make fun of himself.

OBJECT CONTROL
Persuade Baseline The lawyer persuaded the artist to make fun of himself.

Distractor The lawyers persuaded the artist to make fun of himself.
Ungrammatical *The lawyer persuaded the artists to make fun of himself.

Tell Baseline The lawyer told the artist to make fun of himself.
Distractor The lawyers told the artist to make fun of himself.
Ungrammatical *The lawyer told the artists to make fun of himself.

Force Baseline The lawyer forced the artist to make fun of himself.
Distractor The lawyers forced the artist to make fun of himself.
Ungrammatical *The lawyer forced the artists to make fun of himself.

No object SUBJECT CONTROL
Promise Baseline The lawyer promised to make fun of himself.

Ungrammatical *The lawyers promised to make fun of himself.
Offer Baseline The lawyer offered to make fun of himself.

Ungrammatical *The lawyers offered to make fun of himself.
Guarantee Baseline The lawyer guaranteed to make fun of himself.

Ungrammatical *The lawyers guaranteed to make fun of himself.

Table 1: Associates are boldfaced. Baseline, Distractor, Ungrammatical conditions are based on Hu et al. (2020a).

recognized to be more important for predicting the
next word than others. The model is pre-trained on
the WebText dataset (Radford et al., 2019) which is
estimated to contain 8 billion tokens (see Warstadt
et al., 2020). The corpus is tokenized into sub-word
units using the byte pair encoding compression al-
gorithm (Sennrich et al., 2016). GPT-2 is an autore-
gressive language model, that is, its pre-training
objective is a next-token prediction task in which
it aims to maximize the probability of each token
given its previous tokens.

To examine whether an increase in the number of
parameters affects performance on the agreement
task, we evaluated two differently sized pre-trained
GPT-2 models: GPT-2 (small) with ∼117 million
parameters and GPT-2 XL with∼1.5 billion param-
eters. Both models were trained on the same corpus
and only differ in their number of parameters.

3 Experimental design

The frequency of each reflexive pronoun in En-
glish (e.g., himself, herself, and themselves) differs
greatly from one another in many standard corpora
(Hu et al., 2020a). In order to minimize this con-
found, we keep the reflexive word constant in all
of our stimuli and vary the preceding context as
little as possible. Table 1 shows our example stim-

uli with the reflexive anaphor, himself, embedded
in a non-finite clause. We used himself instead of
herself, since himself is usually more frequent than
herself in corpora. We avoided using themselves
mainly due to its number-neutral usage. Under
our experimental design, the anaphor himself is
associated with either the subject or the object in
the matrix clause depending on the matrix predi-
cate (e.g., promise or persuade). We used 5 noun
phrases for subjects and objects, 3 matrix verbs for
subject control, 3 matrix verbs for object control,
and 5 embedded clauses (see Appendix A).

Adapting Hu et al.’s (2020a) experimental de-
sign, we generated grammatical sentences by
matching the number of the reflexive anaphor and
the controller (the associates) while being flexible
about the number of the non-associate. The ‘Base-
line’ condition consists of (non-)associates that al-
ways match in number. The ‘Distractor’ condition
consists of a non-associate that differs from the
associates in number. The associates are boldfaced
and the non-associates are underlined in (4-5):

(4) The lawyer promised the artist to make fun
of himself. (Baseline)

(5) The lawyer promised the artists to make
fun of himself. (Distractor)
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For the ‘Ungrammatical’ condition, the number of
the associates are mismatched while the number of
the anaphor and the non-associate are matched as
shown in (6):

(6) *The lawyers promised the artist to make
fun of himself. (Ungrammatical)

As mentioned in the previous section, GPT-2 as-
signs a probability to every token in a sentence
based on its preceding tokens. For minimal pairs
such as (4-6), we expect the probability assigned to
himself, P (himself), in the ‘Ungrammatical’ condi-
tion to be lower than P (himself) in both the ‘Base-
line’ and ‘Distractor’ conditions. Hence, chance
accuracy is 33%. We constructed 100 minimal
pairs for each of the matrix verbs shown in Table 1.

Since LM performance on reflexive anaphor li-
censing has generally been mixed (Marvin and
Linzen, 2018; Futrell et al., 2019; Hu et al., 2020a),
we also examined whether GPT-2 can make correct
associations between the reflexive anaphor and the
controller when there is no distracting noun (non-
associate) intervening between the two. Hence,
we examined simple control cases where the non-
associate is absent using subject control construc-
tions (7-8). Note that this is not possible with object
control constructions, since neither the subject nor
the object can be omitted.

(7) The lawyer promised to make fun of him-
self. (Baseline)

(8) *The lawyers promised to make fun of
himself. (Ungrammatical)

We constructed 25 minimal pairs: 25 sentences for
the ‘Baseline’ condition and 25 sentences for the
‘Ungrammatical’ condition. We expect P (himself)
in the ‘Ungrammatical’ condition to be lower than
P (himself) in the ‘Baseline’ condition. Hence,
chance accuracy is 50%.

4 Results

Table 2 shows that GPT-2 (small)’s mean accuracy
on subject control constructions with objects (4%)
is significantly lower than its mean accuracy on ob-
ject control constructions (100%). The larger GPT-
2 XL shows higher accuracy on subject control
constructions used with the matrix verbs promise
(13%→ 47%) and offer (0%→ 20%). However,
GPT-2 XL’s accuracy on subject control construc-
tions used with the matrix verb guarantee more or
less remains the same (0%→ 3%). The model’s

GPT-2 (small) GPT-2 XL

Promise 0.13 0.47
Offer 0.00 0.20
Guarantee 0.00 0.03
Mean 0.04 0.23
Persuade 1.00 0.95
Tell 1.00 0.95
Force 1.00 1.00
Mean 1.00 0.97

Table 2: GPT-2 performance on transitive subject and
object control constructions (with object). Mean accu-
racy for each type of constructions is included. Chance
accuracy is 0.33.

GPT-2 (small) GPT-2 XL

Promise 1.00 1.00
Offer 1.00 1.00
Guarantee 1.00 1.00
Mean 1.00 1.00

Table 3: GPT-2 performance on intransitive subject
control constructions (no object). Mean accuracy is in-
cluded. Chance accuracy is 0.50.

mean accuracy on subject control constructions
with objects (23%) is thus still below chance accu-
racy (33%) and is significantly lower than its mean
accuracy on object control constructions (97%).
The results from the control experiment in Table 3
show that the poor performance on subject control
with objects cannot be attributed to the issues re-
lated to reflexive anaphor licensing per se. Both
models perform at ceiling on sentences without ob-
jects (100%), which suggests that the models are
generally able to predict licensing patterns between
reflexives and noun phrases based on number.

Taken together, the results suggest that both ver-
sions of GPT-2 primarily rely on the heuristic to
associate the reflexive anaphor with the object NP.
One likely reason for this behavior is that the re-
flexive anaphor is linearly closer to the object than
to the subject. Given that syntactically complex
sentences are not commonly represented in cor-
pora (Marvin and Linzen, 2018), it is likely that
the model learned to associate reflexives with the
linearly closest noun phrase from naturalistic train-
ing corpora. Further, that both versions of GPT-2
perform similarly poorly suggests that an increase
in the number of parameters does not lead to a
considerable increase in accuracy.
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Figure 1: Mean negative log probability at the reflex-
ive anaphor in transitive subject control constructions.
Error bars indicate 95% confidence intervals.
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Figure 2: Mean negative log probability at the reflexive
anaphor in transitive object control constructions. Error
bars indicate 95% confidence intervals.

To further investigate the reason for the low per-
formance on the agreement task for the transitive
subject control constructions, we computed the
mean surprisal values at the reflexive word him-
self for each of the 3 conditions. Figure 1 shows
that, for the subject control constructions, both ver-
sions of GPT-2 have higher surprisal values in the
‘Distractor’ condition than in the ‘Ungrammatical’
condition, which provides additional evidence that
the model adopts the strategy of agreeing with the
closest NP. For object control constructions, on the
other hand, both versions of GPT-2 show higher

surprisal values in the ‘Ungrammatical’ condition
than in the ‘Distractor’ condition (Figure 2), as al-
ready indicated by the near-perfect accuracy on the
object control tasks. Moreover, we find that the
surprisal of himself is almost identical in the condi-
tions in which the object NP is singular (‘Baseline’
and ‘Ungrammatical’ for subject control construc-
tions, and ‘Baseline’ and ‘Distractor’ for object
control constructions), which further suggests that
the model bases its predictions primarily on the
number of the object NP in both types of construc-
tions.

5 Discussion

The results from our experiments suggest that GPT-
2 is unable to correctly distinguish subject control
from object control constructions.2 One potential
strategy for increasing model accuracy is to aug-
ment the training data with examples of the form
that we used for evaluation, which may lead mod-
els such as GPT-2 to learn the correct generaliza-
tions. However, while such a strategy may solve
the problem for these specific constructions, the
results that we presented here also highlight im-
portant limitations of training models from surface
strings present in naturalistic corpora alone. This
suggests that successfully mimicking human lin-
guistic behavior may require a model that has ac-
cess to meaning during training, as recently argued
by Bender and Koller (2020), so that for example,
it can learn the differences between subject and ob-
ject control verbs (e.g., promise versus persuade).
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A Stimuli

Noun phrases We manually constructed the fol-
lowing list of noun phrases: the professor, the
lawyer, the artist, the student, and the child. The
plural versions of the noun phrases were also used
to generate grammatical and ungrammatical sen-
tences. Each noun phrase is realized in the subject
and object positions equally often in transitive sen-
tences. Each noun phrase is realized with each of
their matrix verbs equally often as well.

Matrix verbs The matrix verbs determine
whether a given construction is subject or object
control. For subject control verbs, we used promise,
offer, and guarantee. For object control verbs, we
used persuade, tell, and force.

Embedded clauses We manually constructed a
list of non-finite embedded clauses hosting the re-
flexive anaphor himself : to make fun of himself, to
examine himself, to diagnose himself, to embarrass
himself, and to disguise himself. The embedded
anaphor refers back to either the subject or the ob-
ject depending on the matrix verb.
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