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Abstract

Word embedding aims to learn the dense rep-
resentation of words and has become a regular
input preparation in many NLP tasks. Due to
the data and computation intensive nature of
learning embeddings from scratch, a more af-
fordable way is to borrow the pretrained em-
bedding available in public and fine-tune the
embedding through a domain specific down-
stream dataset. A privacy concern can arise
if a malicious owner of the pretrained embed-
ding gets access to the fine-tuned embedding
and tries to infer the critical information from
the downstream datasets. In this study, we pro-
pose a novel embedding inversion framework
called Invernet that materializes the privacy
concern by inferring the context distribution
in the downstream dataset, which can lead to
key information breach. With extensive experi-
mental studies on two real-world news datasets:
Antonio Gulli’s News and New York Times,
we validate the feasibility of proposed privacy
attack and demonstrate the effectiveness of In-
vernet on inferring downstream datasets based
on multiple word embedding methods.

1 Introduction

Discriminative representation learning is a criti-
cal factor in determining the success of machine
learning models. In Natural Language Process-
ing (NLP), many deep neural networks need the
input words or documents to be represented in a
form of numerical vectors which indicate the se-
mantic distinction among information. Different
methods of converting vocabulary tokens to repre-
sentations have been discussed in literature Wang
et al. (2020). For example, an intuitive way of con-
verting categorical vocabulary to numerical vectors
is to one-hot encode the tokens into a bitstring or
commonly known as a bag of words representa-
tion Harris (1954). However, one-hot encoding
can easily result in high-dimensional representa-
tions and incapability of accommodating unseen

information. Another way is using distributed rep-
resentation called word embedding Mikolov et al.
(2013a), which is low-dimensional and has become
increasingly popular by capturing complex and
subtle semantic difference of input words or docu-
ments Babić et al. (2020).

In practice, well trained word embeddings de-
mand large-scale training corpus, sufficient training
iterations, and high computational capacity. For ex-
ample, Strubell et al. (2019) shows that training a
BERT-base model emits around 1,500 lbs of carbon
dioxide and costs around $3,000 - $12,000. En-
suring such environmentally and financially costly
training factors are not economical for most small
organizations and individuals. As a result, large
organizations (e.g., Google Cloud, Hugging Face)
with computational resource would train word em-
beddings on large and generic datasets, and offer
the pretrained embeddings to public through plat-
forms like Tensorflow Model Hub or Hugging Face
Model Repository Wolf et al. (2020). With the
pretrained embedding in hand, public users can fur-
ther refine the embeddings by training on their own
datasets. As a result, domain adapted downstream
embeddings can be generated with much smaller
corpus and cost. Such refinement process is known
as fine-tuning and can be considered as the de facto
standard practice of how word representations are
commonly learned in today’s natural language pro-
cessing tasks Ruder (2021), such as the biomedical
domain Gu et al. (2021) and the financial domain
Araci (2019), etc.

Often times, users of pretrained word embed-
dings think that the embeddings are simply dense
vector representations that nothing much can be
inferred about the training corpus from a collection
of numbers. So, most of the times, they do not
exercise caution in keeping their downstream word
embeddings secure. For this widespread case, we
attempt to address a question: is it safe to release
fine-tuned embeddings if the downstream dataset
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is sensitive? Specifically, by assuming that the
fine-tune embeddings inherit certain optimization
pattern from pretrained embeddings, the inference
of a downstream dataset can be made inversely
from the fine-tuning embedding if we know the
examples of how the pretrained embeddings are
derived at the beginning. Therefore, in this work,
we consider a particular attack model: when the
malicious party knows the pretrained datasets (e.g.,
pretrained embedding publishers), and gets the ac-
cess to fine-tuned embeddings, is it feasible to infer
the semantic information of downstream corpora
such as word co-occurrence statistics?

Attacks on machine learning models have been
studied extensively Pitropakis et al. (2019). In
Shokri et al. (2017), the authors train adversar-
ial shadow models to carry out membership in-
ference attacks against different commercial mod-
els. Feature-based analyses of information leakage
in machine learning models are discussed in Chen
et al. (2020), and Song and Raghunathan (2020). In
Chen et al. (2020), the authors consider the owner
of the downstream dataset as the attacker and per-
form a feature alignment based attack on the source
dataset in a deep transfer learning setting. In Song
and Raghunathan (2020), the authors try to infer
the constituent words of a sentence given that they
have access to sentence embedding. However, our
proposed research problem is unique in that we
consider the owner of the source dataset to start
the attack on the downstream dataset. With the ad-
vantage of having inference datasets similarly dis-
tributed as source datasets, the source dataset owner
can simulate fine-tune training multiple times and
study the fine-tuning results based on a particular
input. Therefore, the attackers can inversely infer
how the downstream dataset looks like by compar-
ing the resulting embedding with pre-trained em-
bedding. Furthermore, the attack strategy makes
the inference model-agnostic, thereby rendering
our proposed problem and method generic across
various embedding models, such as Word2Vec and
GloVe.

Specifically, we develop an inversion framework
Invernet for attacking downstream dataset based
on leaked fine-tuning embeddings. The primary
components of Invernet architecture are a focused
document sampling scheme, and a deep-learning-
based inference model. The goal of the focused
sampler is to ensure that the selected samples for
inference will have reduced variance. Then the

Figure 1: Attack model.

inference model is designed as an ensemble clas-
sification problem where multi-layer perception
models try to learn the inverse relationship between
the fine-tuning embeddings and the context infor-
mation in the downstream dataset from different
inference samples. In the experimental study, We
validate the performance of the proposed frame-
work in terms of how much context information
of the downstream dataset is predicted, and we il-
lustrate the utility of context prediction through
the experiments on membership attack. Based on
the results on two real-world datasets and three
embedding models, our work validates the privacy
concern of publishing fine-tuned embeddings, and
demonstrates the effectiveness of proposed infer-
ence framework. The contributions of our work are
as follows:

• Presenting a novel privacy problem of using
fine-tuned embeddings to infer the contextual
information of downstream datasets.

• Designing an inference attack framework us-
ing neural network with focused inference
sampling strategy to accurately predict the
context information of downstream datasets.

• Conducting comprehensive experimental
study on two real-world datasets including
AG_News and New York Times. Results
demonstrate the advantage of the proposed
Invernet framework over all the baselines.

2 Attack Model and Problem Statement

As shown in Fig. 1, Alice is a malicious user (at-
tacker) who has the computational power to train
complex embedding models from a large dataset
DAlice and publishes her pre-trained word embed-
dings ΦAlice. Bob, the victim, downloads and fine-
tunes ΦAlice on his smaller dataset DBob. VAlice

and VBob are sets of all the unique words from
DAlice and DBob respectively, excluding the stop-
words. The formal assumptions are as follows:
• Alice owns DAlice and ΦAlice.
• Alice can compute a binary word-to-word co-
occurrence CAlice of DAlice.
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Table 1: Binary co-occurrences of the word “economy”
in DBob within a window size WC = 1 after removing
stop words from Sentence 1=“Condition of economy is
good” and Sentence 2=“Economy is growing”.

Vocab condition economy good growing
Sentence 1 1 0 1 0
Sentence 2 0 0 0 1

• Alice gets access to fine-tuned embeddings ΦBob

either from the public domain (e.g. Bob shares it)
or by malicious means (e.g. through an attack or
an insider).
• VBob ∩VAlice ̸= ∅.

Alice’s attack objective is to obtain the private
semantic information in DBob. Given the fine-tuned
embeddings from Bob, we formulate the task as
predicting the word-to-word co-occurrence statis-
tics among Bob’s vocabulary, considering that co-
occurrence statistics can truly reflect the seman-
tic information of a dataset. Therefore, the ques-
tion we are asking is: “Can Alice learn the binary
word-to-word co-occurrence CBob from Bob’s fine-
tuned word embeddings ΦBob with the knowledge
of DAlice, CAlice, and ΦAlice?” Formally, we de-
fine our question as a learning problem where Alice
learns a set of mapping functions F, such that
F = { fword | ∀ word ∈ VAlice ,

fword : < ΦAlice,ΦBob > → CBob(word) }
(1)

Table 1 shows an example of the output co-
occurrence vectors for the target word "economy".

3 Methodology

3.1 Pretraining

We use different embedding models like Word2Vec
Mikolov et al. (2013a),and GloVe Pennington et al.
(2014) to pretrain word embeddings. Word2Vec
model can be trained using either Continuous Bag-
of-words (CBOW) or SkipGram method. CBOW
method maximizes the log probability of a word
given a set of surrounding words and SkipGram
method maximizes the average log probability of
the contextual words given a target word. For a
window range of [-c, c] around a word wt at po-
sition t, CBOW and SkipGram methods optimize
the following Eqs. (2) Mikolov et al. (2013a) and
(3) Mikolov et al. (2013b) respectively. For GloVe,
we optimize the following Eq. (4) where Xij is the
number of times words wi and wj co-occur within
a certain window, vi and ṽj are the word vectors of

wi and wj respectively Pennington et al. (2014).
log p(wt|wt−c, ..., wt−1, wt+1, ..., wt+c) (2)

1

T

T∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (3)

∑

i,j

f(Xij)(v
⊤
i ṽj − logXij)

2 (4)

where T is the total number of words in a specific
sequence. In Eq. (3), p(wt+j |wt) is fundamen-
tally defined as a softmax probability Mikolov et al.
(2013b) that can be computed using either a hierar-
chical softmax or negative sampling for computa-
tional feasibility Mikolov et al. (2013b).

3.2 Fine-tuning
Fine-tuning is the process of updating pretrained
word vectors based on a downstream domain or
downstream task or both. When training a model
from scratch, the word vectors can be initialized to
either constant or random values sampled from a
specific distribution. However, during fine-tuning,
the word vectors are initialized using pretrained
vectors and then updated using gradient descent
method as follows:

θt = θt−1 − η∇θJ(θ
t−1) (5)

where θt is the state of the weight vector at epoch
t, η is the learning rate, and ∇θ is the gradient of
the cost function J(θ).

3.3 Invernet Framework
The Invernet framework consists of two primary
components namely a focused inference data sam-
pler and an inference model. The objective of the
Invernet framework is to learn - how embedding
of a word changes under the impact of particular
context distributions during the fine-tuning process.
Therefore, supplying a large number of diverse fine-
tuned word embedding matrices to the inference
model will enable us to better learn the fine-tuning
changes.

First, as Fig. 2 showing the inference sampler
of Invernet, the attacker Alice’s source dataset is

Figure 2: Inference sampler.
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Figure 3: Invernet: the embedding inversion framework.

split into two separate datasets: the pretraining
dataset and inference dataset Song and Raghu-
nathan (2020). Based on the inference dataset, we
sample a number of overlapping article sets that
we call inference samples. The resulting multi-
ple inference samples should be able to show the
characteristics of inter-sample diversity and inner-
sample multiplicity which are critical to help the
inference model learn how a certain binary context
distribution of a word imposes certain fine-tuning
changes to the pretrained word embeddings.

Second, as shown in Fig. 3, based on the pre-
trained word embeddings Φpre, we fine-tune Φpre

with each of the inference samples. For each spe-
cific target word, we have N fine-tuned inference
embedding matrices Φfine and the corresponding
binary context vectors Cfine. For the r-th row of
the embedding matrices corresponding to the vec-
tor representation of word wr, we further apply
self-attention to both the pretrained and fine-tuned
embedding matrices separately to realize the pair-
wise word influence in the form of attention scores,
so that the spatial change between pretrain and fine-
tune embedding can be better captured.

Next, we collect the inputs from all the inference
samples, where each input xi is the concatenation
of the pretrained embedding matrix, the inference
embedding matrices, and their corresponding self
attention scores as shown in Eq. (6). Accordingly,
we stack all the context vectors Cfine to form the
target of the inference model.

xi = [Φpre;self_attn(Φpre);self_attn(Φfine
i );Φfine

i ]
(6)

Finally, we adopt multiple fully connected layers

to implement the mapping function in Eq. (1) to
construct the neural inference model. Each hidden
layer is defined in Eq. (7), where the weight matrix
Wl and bias bl are the parameters of l-th layer. al
is the input of l-th layer (a0 = xi), and g(·) is a
non-linear activation function like the ReLU. The
prediction layer is defined in Eq. (8), where aL
is the output from the last hidden layer, and the
σ(·) is the sigmoid function to generate the final
prediction. In Eq. (9), we adopt a Cosine Similarity
loss function which minimizes the cosine distance
between the prediction and the ground truth. Given
xi and yi are respectively the input features and the
label, we calculate the loss of inference model. The
algorithm of Invernet is shown in Algorithm 1.

al+1 = g
(
W T

l al + bl

)
(7)

fθ(xi) = σ
(
aL

)
(8)

L(θ) = −
n∑

i=1

(||fθ(xi)||2 × ||yi||2) (9)

In model testing, after thresholding the sigmoid
output, we obtain the binary context vector of a
target word like in Table 1 and conduct evaluation.

4 Experiments

4.1 Datasets

We conduct the experiments of the proposed In-
vernet model on two real-world datasets. The first
dataset is the AG News dataset Gulli Zhang et al.
(2015). AG News dataset1 contains 4 news sec-
tions (e.g. Sports, World, Business, Technology.)
spanning 120,000 sample articles. After prepro-

1https://huggingface.co/datasets/ag_news
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Algorithm 1: Invernet framework.

Input : DTrain, target_word, n, b
Output : context vector of target_word

1 Dpre,Dinference ← split_dataset(DTrain)
2 Φpre ← pretrain embeddings on Dpre

3 Φfine,Cfine ← ∅, ∅
4 for i← 0 to n do
5 datai ← sample b documents from Dinference

6 Φi ← fine-tune Φpre on datai

7 Φfine ← concatenate Φfine & Φi

8 Ci ← target_word context vector in datai

9 Cfine ← concatenate Cfine & Ci

10 Train model f to predict Cfine from
< Φpre, self_attn(Φpre), self_attn(Φfine), Φfine >

cessing, we get around 60,000 unique words in
the dataset. The second dataset is a collection of
New York Times (NYT) articles Yao et al. (2018).
We use around 34,000 articles from 4 sections (e.g.
World, Arts, Sports, Opinion) of the NYT dataset
to conduct our experiments. After removing the
stopwords, the vocabulary size of the NYT dataset
is 61,766. We have shared our implementation at
https://github.com/ihayet/Invernet.git.

4.2 Training Details

From the datasets, we firstly remove special char-
acters and stop words Bird et al. (2009), replace
numbers by “<num>” tag, perform case-folding,
and tokenize the articles in the datasets. We then
randomly sample a set of target words from each
dataset. For each target word, we sample a sub-
set of the documents that contain the target word,
and aggregate all the sampled documents to for-
mulate the final experimental datasets. We hold
out 10% of documents from one news section as
the test set. Then, we randomly pick around 1000
documents from the remainder of that section and
combine it with 1000 documents from each of the
other news sections to form the training data. The
rationale behind the subdomain setting is that the
downstream users usually look for generic embed-
dings that are pretrained on relatively large datasets
containing a wide ranges of domains, and it is likely
that downstream dataset will be more or less re-
lated to a subdomain of the pretrain dataset. In the
membership inference attack, we further explore
a cross-domain setting to mimic the scenario in
which the pretrain data and inference data come
from different datasets (AG_News vs. NYT). Last,

we empirically choose 20 as the dimension of word
vectors which is also validated by Patel and Bhat-
tacharyya (2017). For both CBOW and SkipGram
models, we have used Gensim Rehurek and Sojka
(2011) and for GloVe we have used the original
source code2 Pennington et al. (2014) for pretrain-
ing and Mittens3 for fine-tuning. We trained the
inference model on Quad 3.5 Xeon server with
32GB Ram and a single GPU. Training time of the
inference model for each type of embedding model
was around 12 hours.

4.3 Baselines

We use the following experimental approaches for
the inference modeling:
• Motion based Inference. We tried to encode the
spatio-temporal motion features of the word vectors
during their training using ConvLSTM layers in
Keras. Then, using a series of CNN and dense
layers we tried to infer the context of a target word
using the latent motion encoding.
• Multi-output Logistic Regression. We fine-
tune on the entire inference dataset without any
inference sub-sampling. We train and test a logistic
regression model to learn the mapping from this
fine-tuned embedding and the binary context vector
for the target word.
• Stacked Generalization. Again, we fine-tune
using the entire inference dataset without any in-
ference sub-sampling. We use an ensemble of in-
ference models on the same fine-tuned embedding
set and aggregate the results from all the models
using a generalizer. We have used a combination
of CNN and dense layers to build the ensemble
models. For the generalizer, we have used a series
of fully connected dense layers.
• Invernet. As a preparatory step for the attack,
we sub-sample from the inference dataset, n (num-
ber of inference samples) subsets each with a ran-
domly and uniformly sampled b (inference sam-
ple bin size) number of articles from the inference
subset. We experiment with n = 5, 15, 30 and
b = 5, 25, 50. For each combination of n and b,
we obtain n binary context vectors of the target
word from the n inference samples, and further
generate n fine-tuned word embeddings. We run
the Invernet based on the fune-tune embeddings
derived from the inference samples.

We repeat each method once for each target word.

2https://github.com/stanfordnlp/GloVe
3https://github.com/roamanalytics/mittens
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Table 2: Average F1 and AUC scores of different meth-
ods on AG_News and NYT datasets.

Method F1 AUC
Motion Inference 0.37 0.50
Stacked Generalization 0.51 0.56
Logistic Regression 0.59 0.61
Invernet 0.71 0.79

For each target word, we use the same pretrained
word embeddings for all the different approaches.

4.4 Baseline Comparison

In Table 2, we compare the average F1 and AUC
scores of the different baseline models and our pro-
posed Invernet framework for both datasets. We
consider the same set of unique target words for
the different models. The motion inference method
uses an approximation of the latent motion encod-
ing of the downstream dataset. Because we are
only approximating the motion encoding and not
exactly inferring it for the downstream dataset, we
have the worst performance from the motion infer-
ence model. The stacked generalization method
uses different inference models on the same infer-
ence dataset in hopes of deriving different patterns
of data from the different models. However, due to
the complexity of the models and the method, the
stacked generalization method suffers from poor
generalization and achieves poor performance. The
logistic regression model is a straightforward sim-
ple model that too infers binary context from the
same inference dataset. But, it has better gener-
alization ability and performs slightly better. In-
vernet demonstrates the best performance among
all these models because of multiple inference sub-
sampling and a deep neural network. Fig. 4(a)
shows the ROC curves for different baselines. For
every method, we get one ROC curve for each tar-
get word and we use vertical averaging Fawcett
(2006) to combine the ROC curves for all the tar-
get words. We can see that the proposed Invernet
consistently outperforms all the other baselines.

4.5 Ablation Study

In the ablation study as shown in table 3, we re-
port the different F1 and AUC scores from tuning
the hyperparameters n (number of inference sam-
ples) and b (number of articles per sample). We
hypothesized that with a higher number of infer-
ence samples, our inference model will be exposed
to a larger number of data and therefore will be
able to learn better. The setting n=30 and b=25

Figure 4: ROC analysis of (a) baseline comparison; (b)
embedding model & dataset comparison with inference
sample number n=30 and inference sample size b=25.

gives the best performance. Meanwhile, we can
notice a competitor setting at n=30 and b=50 where
the F1 scores and AUC scores are better than most
settings but slightly worse than n=30 and b=25.
With a higher value of n and b, the likelihood of
encountering duplicate documents across multiple
inference samples increases. With such duplicity,
the diversity in the inference sample distribution
decreases thereby causing overfitting. On the other
hand, with lower values of n and b, we are sam-
pling fewer documents and again reducing the dis-
tributional diversity among the inference samples.
Therefore, the goal of tuning the hyperparameters
n and b is to find the optimal inference samples so
that we can ensure the heterogeneity of each sam-
ple and preserve the significant changes resulted
by fine-tuning. Fig. 4(b) shows the ROC curves
for different embedding models applied to different
datasets with n=30 and b=25, we can see that Inver-
net generally provides good inference performance
with all the embedding methods and datasets.

4.6 Membership Inference

4.6.1 Hit Ratio Analysis
In the hit ratio analysis as shown in Table 4, we
take some positive and negative documents from
the target dataset (e.g. AG’s News) and a non-target
dataset (e.g. NYT Dataset) respectively. We form
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Table 3: F1 and AUC scores for different settings of the inference sample number n={5, 15, 30} and the inference
sample size b={5, 25, 50}.

Dataset Emb Eval
n 5 n 15 n 30

b 5 b 25 b 50 b 5 b 25 b 50 b 5 b 25 b 50

CBOW
F1 0.60 0.63 0.63 0.61 0.62 0.64 0.66 0.69 0.67
AUC 0.71 0.73 0.74 0.73 0.76 0.77 0.75 0.78 0.76

AG_News
SkipGram

F1 0.59 0.60 0.62 0.62 0.65 0.66 0.67 0.70 0.68
AUC 0.71 0.74 0.75 0.74 0.77 0.79 0.77 0.79 0.78

GloVe
F1 0.62 0.64 0.66 0.64 0.67 0.69 0.70 0.72 0.71
AUC 0.74 0.76 0.76 0.75 0.77 0.79 0.77 0.80 0.79

CBOW
F1 0.59 0.62 0.64 0.65 0.66 0.68 0.67 0.70 0.68
AUC 0.71 0.72 0.74 0.74 0.76 0.76 0.77 0.79 0.78

NYT
SkipGram

F1 0.61 0.65 0.66 0.67 0.69 0.69 0.68 0.71 0.69
AUC 0.71 0.73 0.74 0.74 0.77 0.78 0.78 0.81 0.79

GloVe
F1 0.64 0.66 0.68 0.67 0.69 0.70 0.69 0.73 0.71
AUC 0.73 0.75 0.76 0.78 0.80 0.80 0.80 0.82 0.81

Table 4: Hit ratio analysis.

Total Pos Neg
Hit Ratio (Top k)

NDCG
k=1 k=2 k=3

250 50 200 0.51 0.53 0.55 0.58
500 100 400 0.53 0.54 0.57 0.60

1000 200 800 0.58 0.62 0.66 0.70
2000 400 1600 0.60 0.63 0.69 0.73

sets of 1 positive and 4 negative documents for
each target word. In this evaluation, our goal is to
find out whether a given fine-tuned embedding is
coming from the positive or negative documents
based on the predicted binary context vector. For
each set of 1 positive and 4 negative documents, we
consider the union of their vocabulary to form the
context vectors. We compute the context vectors
for each of the 5 documents from a set with window
size=5. Then, we apply the Invernet framework to
the positive samples and predict the context vec-
tors for the target words. If the Hamming distance
between the predicted and the positive sample’s
context vectors is less than that between the pre-
dicted and at least half of the negative samples’
context vectors, we call it a hit and otherwise a
miss. We also rank the 5 documents based on the
same hamming distance. We perform normalized
discounted cumulative gain (NDCG) evaluation of
the ranking.

4.6.2 Sequence Reconstruction Analysis

In order to inspect the quality of model inferred bi-
nary context vector, we use them to automatically
construct candidate sentence fragments and manu-
ally evaluate whether these synthesized sentences

are semantically similar to the actual sentences
from the downstream dataset. For a target word,
we apply Invernet using incremental window sizes
(e.g., Wc =1, 2, or 3) and take the differences be-
tween the binary context vectors of two consecutive
window sizes. Starting from a target word, we ob-
tain the candidate words for the immediately next
positions of the target word and continue similarly
for all positions until Wmax

c . Given a set of candi-
date words at each position, we randomly sample
the words at each position to generate the popu-
lation of sentence fragments for evaluation and
manually judge the similarity between a candidate
fragment and a corresponding sentence from the
downstream dataset. Table 5 shows our similarity
evaluation based on three human judged classes -
“Similar”, “Fairly Similar” and “Dissimilar”. Over-
all, we find most of cases (80%) are similar to cer-
tain degree reflecting the effectiveness of Invernet
framework.

4.7 Qualitative Analysis of Distributional
Performance

We perform a heat map analysis in Fig. 5 to visu-
alize the performance of our framework for target
words with different frequency. The cell color func-

Table 5: Human-in-the-loop similarity judgement
(Wmax

c = 3).

Observations Similarity
∼ 55% of the times Fairly Similar
∼ 25% of the times Similar
∼ 20% of the times Dissimilar
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Figure 5: Word-to-word distributional performance of (a) CBOW embedding model + logistic regression inference;
(b) SkipGram embedding model + logistic regression inference; (c) GloVe embedding model + logistic regression
inference; (d) CBOW embedding model + Invernet inference; (e) SkipGram embedding model + Invernet inference;
and (f) GloVe embedding model + Invernet inference.

tion of the heat maps is as follows:
color(i, j) = 1− ||ŷword(i), word(j) − yword(i), word(j)||

(10)
In Eq. (10), the value of color defines the distance
between the ground truth ŷ and the prediction y
with respect to the value 1. If the prediction is in-
correct by a large margin, the distance between ŷ
and y increases and the value of color decreases.
With correct predictions, color is closer to 1 and
the corresponding cell color becomes green. With
incorrect predictions, color is closer to 0 and the
corresponding cell color becomes red. Patterns in
Fig. 5 show the inability and low confidence of the
naive logistic regression model while respectively
identifying the context of a large number of infre-
quent target vocabulary and the context of frequent
target vocabulary. On the other hand, the Invernet
framework is most of the times confidently correct
about the context of frequent target vocabulary and
rarely incorrect with lower confidence regarding
the infrequent target vocabulary. We can also ob-
jectively claim from the pattern changes in Fig. 5
that the performance of Invernet becomes progres-
sively better from CBOW to SkipGram and from
SkipGram to GloVe embedding model, confirming
that the better a word embedding model becomes,
the easier it becomes to invert the fine-tuned em-
beddings trained with that model.

5 Related Work

In Mikolov et al. (2013a), Mikolov et al. intro-
duced Word2Vec that included two models namely

Continuous Bag-of-words (CBOW) and Skip-gram
method to learn word embeddings. GloVe model
Pennington et al. (2014) produces continuous word
vectors using the global co-occurrences statistics
and matrix factorization. Ruder et al. provided an
excellent explanation of how transfer learning is
applied in NLP through the pretraining and fine-
tuning paradigm in Ruder et al. (2019). We find
further reference of transfer learning in NLP in
Azunre (2021). Authors in Pruksachatkun et al.
(2020) observed that training an embedding model
further on an intermediate task between pretraining
and fine-tuning ensures much better performance.

An established trend in membership inference or
embedding inversion attacks is to use an auxiliary
dataset that closely resembles the original dataset.
In our study, the combined inference samples act
as such auxiliary dataset. Shokri et al. introduced
a shadow modeling technique for membership in-
ference attack on Machine Learning models in or-
der to identify whether a specific piece of data
belongs to the training dataset of a target model
Shokri et al. (2017). Authors in Chen et al. (2020)
demonstrated inference attacks in different transfer
learning paradigms such as model based, mapping
based, and parameter based using respectively the
shadow modeling technique, hidden features align-
ment and batch property inference using transferred
gradients. In Song and Raghunathan (2020), the
authors presented an embedding inversion attack
on sentence embeddings in order to find out the
constituent words of the sentence. Attacks men-
tioned in Shokri et al. (2017), Chen et al. (2020),
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and Song and Raghunathan (2020) all use auxiliary
datasets in some capacity as a critical component
of training their attack models. Fredrikson et al.
trained attack models based on confidence values
and auxiliary information to reveal lifestyle survey
responses and to reconstruct facial images Fredrik-
son et al. (2015). Authors in Melis et al. (2019)
also use auxiliary data to train property inference
attack models against collaborative learning.

6 Conclusion

We focus on the situation when a malicious partici-
pant has access to a pretraining dataset, pretrained
word embeddings and also downstream word em-
beddings that are fine-tuned on a private down-
stream dataset. Access to the pretraining compo-
nents can be through ownership rights or from the
public domain. Access to the downstream word
embeddings can be through public domain or mali-
cious means. We have carried out extensive experi-
ments and demonstrated that a significant amount
of context distribution from the downstream dataset
can be inferred using Invernet framework. In light
of our findings, we wish to raise awareness about
taking care when storing or sharing fine-tuned word
embedding models.

7 Limitations

Since we only consider the common words between
the pretraining and downstream datasets, a limita-
tion of our proposed approach is the inability to
determine whether words that are not in the vocab-
ulary of the pretraining dataset but appear in the
context of a target word in the downstream dataset.
Also, our primary goal was to empirically demon-
strate the effectiveness of the inversion attack with
a simple series of fully connected layers. Further
sophisticated inference models can also be devel-
oped to experiment their efficacy.
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