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Abstract
Deep neural networks, empowered by pre-
trained language models, have achieved remark-
able results in natural language understanding
(NLU) tasks. However, their performances can
drastically deteriorate when logical reasoning
is needed. This is because NLU in principle de-
pends on not only analogical reasoning, which
deep neural networks are good at, but also log-
ical reasoning. According to the dual-process
theory, analogical reasoning and logical rea-
soning are respectively carried out by System 1
and System 2 in the human brain. Inspired by
the theory, we present a novel framework for
NLU called Neural-Symbolic Processor (NSP),
which performs analogical reasoning based on
neural processing and logical reasoning based
on both neural and symbolic processing. As
a case study, we conduct experiments on two
NLU tasks, question answering (QA) and natu-
ral language inference (NLI), when numerical
reasoning (a type of logical reasoning) is nec-
essary. The experimental results show that our
method significantly outperforms state-of-the-
art methods in both tasks.1

1 Introduction

Natural language understanding (NLU) has made
remarkable progress recently, when pre-trained lan-
guage models such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), and BART (Lewis
et al., 2020) are exploited. The deep neural
networks based on pre-trained language models
even exhibit performances superior to humans
in the tasks of question answering (QA) (Ra-
jpurkar et al., 2016) and natural language infer-
ence (NLI) (Ghaeini et al., 2018). However, lan-
guage understanding requires not only analogi-
cal reasoning, which deep neural networks are

*The work was done when the first and second authors
were interns at ByteDance AI Lab.

1The code and data are available at https:
//github.com/chadlzx/NSP_QA; https://github.com/
zihao-wang/Number-NLI.

good at (Bengio et al., 2021), but also logical
reasoning, including numerical reasoning. For
example, to answer the questions in Table 1 or
to infer the entailment relations in Table 2, we
need to first ‘interpret’ the meanings of the in-
put texts and then perform numerical reasoning,
in general, logical reasoning, to obtain the final
results. Exploiting deep neural networks alone
would not easily accomplish the goal. Recently,
there has been research to address the problems
in QA and NLI. For example, a dataset called
Discrete Reasoning Over Paragraphs (DROP) has
been created for QA, and several methods have
been proposed (Dua et al., 2019; Ran et al., 2019;
Chen et al., 2020). Among them, Numerically-
Aware QANet (NAQANet) (Dua et al., 2019) uti-
lizes deep neural networks to individually solve
the sub-problems of span extraction, counting, and
numerical addition/subtraction. A dataset called
AWPNLI (Ravichander et al., 2019) has also been
created for NLI in which numerical reasoning is
needed.

According to the dual-process theory developed
by the psychologist Kahneman and others (Kahne-
man, 2003), human thinking is carried out by two
different systems in the brain. System 1 is a fast,
unconscious, and effortless mode of thinking, often
associated with analogical reasoning. In contrast,
System 2 is a slow, conscious, and effortful mode
of thinking, also evoking logical reasoning. The
theory should also hold for human language under-
standing, a specific case of thinking. Inspired by
the theory, we propose a new framework for lan-
guage understanding, which performs both analogi-
cal reasoning and logical reasoning, corresponding
to System 1 and System 2 respectively. In fact, de-
signing AI systems containing System 1 and System
2 is a popular research topic recently (e.g., (Bengio
et al., 2021)). Our key idea is to employ a neural
network to conduct analogical reasoning on the
text input as usual and in the meantime, to employ
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Figure 1: An overview of the Neural-Symbolic Processor framework. Analogical reasoning is performed by the
predictors (neural processing). Logical reasoning is performed by the decoders and executors (neural and symbolic
processing). A mixture-of-experts is used to make the final prediction.

another neural network to translate the text input
into a program and a symbolic system to execute
the program to perform logical reasoning.

The new framework for natural language under-
standing, called Neural-Symbolic Processor (NSP),
is shown in Figure 1. First, the encoder transforms
the input texts (the question and text in QA, the two
texts in NLI) into a text embedding (an intermediate
representation). Then, the predictors take the text
embedding as input and generate neural predictions.
In parallel, the decoders transform the text embed-
ding into programs. Note that the encoder and
the decoders form sequence-to-sequence models.
Moreover, the executors take the programs as in-
put and generate symbolic predictions. Finally, the
mixture-of-experts (with a gating network) takes
all the neural predictions and symbolic predictions
as input and selects one of the predictions to make
the final prediction.

We evaluate the NSP framework in QA and NLI.
For the QA task, we sample a subset of DROP
(about 32K instances), referred to as DROP-subset,
and annotate a program for each question-answer
pair requiring numerical reasoning. The experi-
ments on the DROP-susbset show that our approach
outperforms the baselines by 2.40% and 2.51% in
terms of F1 score and exact match. In particular,
for question-answer pairs requiring multiplication,
division, and averaging, our approach improves F1
by 56.42%. For question-answer pairs requiring
addition and subtraction, our approach improves F1
by 3.91%. For the NLI task, we use the AWPNLI
dataset (Ravichander et al., 2019) and also anno-
tate programs for each text pair. The experiments

on AWPNLI show that our approach exceeds the
baseline with a large margin of 20.7% in terms of
F1 score.

The contribution of our work is as follows:

• We propose a new framework for NLU,
Neural-Symbolic Processor, to conduct both
analogical reasoning and logical reasoning.

• We perform experiments on QA and NLI to
verify the effectiveness of our approach and
show that our approach can achieve remark-
able improvements in the tasks when they
need numerical reasoning.

• We add programs into the two datasets of QA
and NLI, DROP-subset and AWPNLI, and
will release the annotated data.

2 Related Work

Question Answering with Logical Reasoning
Given a short text and a question, the QA task
is to predict the answer obtained from the short
text. QA has made considerable progress in recent
years. Models such as BiDAF (Seo et al., 2016),
R-NET (Wang et al., 2017), and QANet (Yu et al.,
2018) have been proposed, which have shown ex-
cellent performances on the benchmark dataset of
SQuAD (Rajpurkar et al., 2016). Recently, the
QA models empowered by the pre-trained lan-
guage models of BERT (Devlin et al., 2018), XL-
Net (Yang et al., 2019), and RoBERTa (Liu et al.,
2019) have significantly advanced the performance
of the task. Nonetheless, they still cannot effec-
tively handle cases that need complex reasoning.
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Passage Question Program & Prediction
... kicker Kris Brown getting a 53 - yard@N9 and a
24 - yard@N10 field goal. ...

How many more yards
was Kris Browns’s
first@Q1 field goal
over his second@Q2?

Program: diff(N9,N10)
Symbolic Prediction:
29
Ground-Truth: 29

... The first@N1 issue in 1942@N2 consisted of de-
nominations of 1@N3, 5@N4, 10@N5 and 50@N6
centavos and 1@N7, 5@N8, and 10@N9 Pesos.
The next year@N10 brought "replacement notes"
of the 1@N11, 5@N12 and 10@N13 Pesos ...

In which year@Q1
were there replacement
notes of the 1@Q2 ,
5@Q3 , and 10@Q4
pesos ?

Program: add(N2,N10)
Symbolic Prediction:
1943
Ground-Truth: 1943

Table 1: Two examples of question answering requiring numerical reasoning. In our method, the numbers in the
input are attached with special tokens (in orange). The programs are generated for logical reasoning, in addition to
analogical reasoning. The symbolic predictions are obtained by executions of the programs.

To tackle the problem, several models have been
developed. NAQANet (Dua et al., 2019) adapts
the output layer of QANet to numerical reason-
ing by predicting answers from arithmetic compu-
tation over the numbers in a text. NumNet (Ran
et al., 2019) and QDGAT (Chen et al., 2020) further
utilize a numerically-aware graph neural network
to encode numbers. The approaches still rely on
neural networks, which are good at analogical rea-
soning but not logical reasoning, and thus cannot
fundamentally resolve the problem.

There has also been existing work trying to
perform symbolic processing for QA. BERT-
Calculator (Andor et al., 2019) and NeRd (Chen
et al., 2019b) generate executable programs to pro-
duce the final answers. (Gupta et al., 2020) employ
a parser to generate a program comprised of neural
modules from the question and a program executor
based on neural module networks to find the answer.
Unfortunately, the methods are not suitable for all
QA problems. There are cases in which deep neu-
ral networks based on pre-trained language models
can easily make accurate predictions. Employing
the symbolic approach alone would not effectively
solve the problem.

Natural Language Inference with Logical Rea-
soning NLI is a task of predicting the entail-
ment relation between two texts, i.e., premise
and hypothesis. The benchmark datasets for
NLI, such as SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) are widely used.
Pre-trained language models achieve state-of-the-
art performances (Liu et al., 2019).

However, sometimes logical reasoning is also
crucial for NLI (MacCartney and Manning, 2007).
It has been shown that using pre-trained language

models in NLI is sub-optimal when logical reason-
ing is needed, when it involves conjunction (Saha
et al., 2020) and quantitative reasoning (Ravichan-
der et al., 2019). Increasing the size of training
data for fine-tuning cannot effectively address the
issue. There are also rule-based methods to handle
quantitative reasoning (Roy et al., 2015). However,
the results are usually not satisfactory.

Applications of dual-process theory Several re-
search groups have been working on the application
of System 1 and System 2 into machine learning.
For example, (Mittal et al., 2017) take the vector
space model and reasoning in knowledge graphs
as fast thinking and slow thinking, respectively,
and propose a hybrid query processing engine for
search. (Anthony et al., 2017) use a tree search as
an analog of System 2 to strengthen the planning
in sequential decision-making. (Bengio, 2017) pro-
poses a consciousness prior theory for learning
high-level concepts and points out that the Sys-
tem 2 abilities are closely related to consciousness.
In (Chen et al., 2019a), the authors propose an end-
to-end framework including a generative decoder
(fast thinking) and a reasoning module (slow think-
ing) to solve complex tasks.

3 Neural-Symbolic Processor

We describe the proposed framework Neural-
Symbolic Processor (NSP) in this section.

3.1 Overview

Figure 1 shows the architecture of the NSP frame-
work. The framework contains an encoder, several
predictors, several decoders and executors, and a
mixture-of-experts. There are two types of reason-
ing: analogical reasoning and logical reasoning.
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Premise Hypothesis E-Program C-Program Symbolic
Prediction

Sam had 98.0@M1 pennies
in his bank and he spent
93.0@M2 of his pennies.

He has 5.0@N1
pennies now.

diff(M1, M2)=N1 diff(M1, M2)!=N1 Entailment

In a school, there are
542@M1 girls and
387@M2 boys.

928@N1 pupils
are there in that
school.

add(M1,M2)=N1 add(M1,M2)!=N1 Contradiction

Table 2: Two examples of natural language inference requiring numerical reasoning. In our method, the numbers in
the input are attached with special tokens (in orange). The E-programs and C-programs are generated for logical
reasoning, in addition to analogical reasoning. The symbolic predictions are obtained by executions of the programs.

The predictors are for analogical reasoning, and the
executors and decoders are for logical reasoning.
The encoder and the mixture-of-experts are shared.
The framework can be utilized in an NLU task such
as QA and NLI.

The encoder takes a pair of texts as input and
transforms it into a text embedding (intermediate
representation). A predictor takes the embedding
as input and generates a neural prediction. The
prediction can be classification, span extraction,
or sequence tagging. In parallel, a decoder takes
the embedding as input and generates a program.
The executor executes the program and generates a
symbolic prediction. The program can represent a
logical reasoning for the task. Finally, the mixture-
of-experts takes the neural and symbolic predic-
tions and makes a final prediction. Note that the
encoder and each of the decoders form a sequence-
to-sequence model. The encoder, predictors, and
decoders are all assumed to be based on a pre-
trained language model such as BART, RoBERTa,
and BERT.

For example, in the first example of QA in Ta-
ble 1, to give the correct answer, one needs to cal-
culate 53-24 to obtain the result of 29. Employing
neural reasoning alone would not easily accomplish
the task. Using NSP, we attach 53 and 24 with the
special tokens N9 and N10 representing the num-
bers in the pre-processing. We also generate the
program diff(N9, N10) describing the calculation
and obtain the correct result by executing the pro-
gram. This is in parallel with analogical reasoning.

In the first example of NLI in Table 2, to give
the correct answer, one needs to calculate 98-93 to
obtain the result of 5. In our method, we attach the
numbers 98 and 93 with the special tokens M1 and
M2. We also generate the two programs and obtain
the correct result by executing the programs.

3.2 Encoder
The encoder is a Transformer encoder. The output
of the encoder is used for both analogical and logi-
cal reasoning. (By default there is only one encoder.
There can be also two encoders, one for analogical
reasoning and the other for logical reasoning.)

There is a pre-processing before the encoder, in
which the numbers in the input are attached with
special tokens, as shown in Table 1 and Table 2.

3.3 Analogical Reasoning
The system for analogical reasoning predicts the
answers from the input, using the predictors. Each
of the predictors is a task-specific layer from the
encoder. We next give the details in QA and NLI.

QA Task For the QA task, the encoder takes the
passage-question pair as input and outputs [CLS]
and token representations. In our experiments, the
encoder is built on RoBERTa. The predictors take
the representations as input and output neural pre-
dictions. Each predictor deals with one type of
answer: span extraction, sequence labeling, or clas-
sification. It is a standard model for QA.

• Span extraction: The predictor predicts the
answer as a contiguous span in the passage or
in the question. It calculates each token’s be-
ginning/end probability and extracts the span
with the largest probability. The probability
of an answer is defined as the product of the
probabilities of the beginning and end tokens.

• Sequence labeling: The predictor predicts the
answer as non-contiguous spans in the pas-
sage using the token representations. It de-
cides for each token whether or not it belongs
to the answer.

• Classification: The predictor views QA as a
classification problem. It predicts the answer
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E-Program C-Program NLI prediction

True True Invalid
True False Entailment
False True Contradiction
False False Neutral

Table 3: The relation between the outputs of E-Program
and C-Program and the NLI predictions.

as a class label using the [CLS] representation.
For example, the classes can be ten digits 0-9.

NLI Task For the NLI task, the encoder takes
a pair of texts as input (premise and hypothesis).
The predictor makes a three-class classification us-
ing the [CLS] representation, deciding the relation
between the text pair: entailment, neutral and con-
tradiction. It is a standard model for NLI.

3.4 Logical Reasoning

The system for logical reasoning predicts the an-
swers from the input, using the decoders and execu-
tors. A decoder transforms the input into a program
based on the output of the encoder. The correspond-
ing executor then executes the program. If the
generated program is not valid, the executor will
return NULL. In our experiments, the sequence-
to-sequence models are based on BART (Lewis
et al., 2020). Note that the numbers in the input
are attached with special tokens for generating the
programs, and the programs also utilize the spe-
cial tokens. The definitions of functions in the
programs are given in Appendix A. We next give
details in QA and NLI.

QA Task There is only one decoder. The decoder
generates the programs for QA, like those in Ta-
ble 1. For example, the first program diff(N9, N10)
means subtracting N9 from N10 in the input. The
executor takes the program, makes substitutions
N9=53 and N10=24, and then obtains the result of
29.

NLI Task For the NLI task, one program is insuf-
ficient to make a prediction. Therefore, we use two
decoders to generate two programs: an entail pro-
gram (E-Program) and a contradiction program (C-
Program). E-Program becomes true if the premise
entails the hypothesis. C-Program becomes true
if the premise contradicts the hypothesis. Table 3
shows how to make the NLI prediction using the
results of E-Program and C-Program.

For example, the E-Program is diff(M1,M2)=N1
and the C-Program is diff(M1,M2)!=N1 in the first
example in Table 2. The first program predicts true
if the equation of diff(M1-M2) equals N1 holds,
and the second program predicts true if the equa-
tion of diff(M1-M2) equals N1 does not hold. The
executors take the programs, make substitutions
M1=98.0, M2=93.0, and N1=5.0, obtain the results
of true and false, and make the final prediction as
entailment, based on the decision rules in Table 3.

3.5 Mixture-of-Experts

The mixture-of-experts (MoE) (e.g., (Shazeer et al.,
2017)) takes the neural predictions and symbolic
predictions as input and selects the valid prediction
with the highest probability (most likely to be cor-
rect) given by the gating network. The MoE will
not select the logical reasoning result if it is NULL.
The gating network is simply a prediction layer on
the top of the encoder.

3.6 Training

Training has two phases: learning of the neural
networks and learning of the MoE.

In the first phase, the encoder, predictors, and
decoders are trained using the text inputs, programs,
and ground-truth outputs. It is a multi-task learning
with three objectives. The first objective is to make
accurate predictions from the predictors, the second
is to generate correct programs from the decoders,
and the third is to make accurate predictions of
answer types. The answer types indicate which
types the correct answers belong to (classification,
span, program execution, etc.).

In the second phase, the gating network of MoE
is trained using the text inputs and the probabilities
of predictions by answer types.

In the QA task, there are five types of answers
(1) passage span extraction, (2) question span ex-
traction, (3) sequence labeling, (4) number (0-9)
classification, and (5) program execution, respec-
tively corresponding to five analogical or logical
reasoning modules. For each sample i in the train-
ing set, let qi = (qi1, · · · , qin) be the probabilities
of predictions by answer types, where n denotes
the number of answer types (n = 5 here). Let
pi = (pi1, · · · , pin) be the outputs of the gating
network, also by answer types. The parameters of
the gating network are learned by using the text
inputs and minimizing the KL-divergence in pre-
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diction of answer types

L = −
∑

i

1

n

n∑

k=1

[qik log(pik)

+(1− qik) log(1− pik)].

In the NLI task, there are only two types of an-
swers, classification and program execution, re-
spectively. Therefore, we adopt a simple strategy
of selecting the type of predictions with the highest
accuracy in the development dataset.

4 Experiment

4.1 QA Task
4.1.1 Dataset
DROP (Dua et al., 2019) is a dataset suitable for
question answering requiring complex reasoning,
such as multi-span extraction, arithmetic compu-
tation, counting, and multi-step reasoning. DROP
is constructed from Wikipedia by crowd-sourcing,
which contains 77,409 / 9,536 / 9,622 instances in
the training / development / testing split. The train-
ing dataset does not have programs that we need
in NSP. We sample a subset of the training dataset
of DROP, named DROP-subset, containing 32,011
instances, and let human annotators annotate pro-
grams for the instances. (It is too costly to annotate
all DROP data). In addition, we annotate programs
for all data in the development dataset. The detailed
annotation process is described in Appendix B. We
use the development and test datasets of DROP as
offline test and online test sets, respectively. Note
that online test results are obtained from the offi-
cial website, and thus there is no breakdown of the
results.

Following the previous work (Dua et al., 2019),
we adopt two evaluation metrics, Exact Match
(EM) and F1 score, to conduct evaluations.

4.1.2 Baselines
We compare our method with several baselines.
The first baseline is NA-RoBERTa (Numerically-
Aware RoBERTa), which has a similar architecture
to NAQANet (Dua et al., 2019), but uses RoBERTa
as the encoder. NA-RoBERTa can be regarded as
an approximation of using analogical reasoning in
our method.

The other baselines are models previously ap-
plied to DROP: (1) QANet (Yu et al., 2018), a
traditional reading comprehension model combin-
ing convolution and self-attention models. (2)

Method
Offline Test Online Test
EM F1 EM F1

QDGAT 78.25 81.41 78.72 82.11
NA-RoBERTa 78.30 81.61 78.76 82.25
NSP (our method) 80.81 84.01 79.74 83.31

Table 4: The results of our method and baselines trained
on DROP-subset in offline test and online test.

NAQANet (Dua et al., 2019), a model which im-
proves the output of QANet by adding a module
to predict answers through arithmetic computation.
(3) NumNet (Ran et al., 2019), a model which uses
GNN to enhance the embedding of numerical fea-
tures. (4) QDGAT (Chen et al., 2020), a model
which improves NumNet by performing GNN on
a heterogeneous graph. (5) NeRd (Chen et al.,
2019b), a symbolic reasoning model which uses
BERT as encoder and LSTM as a decoder to gen-
erate a program and then executes the program to
produce the answer.

4.1.3 Experimental setting

For analogical reasoning, the encoder of our
method is based on RoBERTa-large. All predic-
tors (span extraction, sequence labeling, number
classification) share the same encoder. We perform
an end-to-end multi-task training for 20 epochs us-
ing the AdamW optimizer (Loshchilov and Hutter,
2018) with a batch size of 16. For the encoder, the
learning rate is 1.5e-5, and the L2 weight decay
is 0.01. For the predictor (prediction layer), the
learning rate is 1e-4, and the L2 weight decay is
5e-5.

For logical reasoning, the sequence-to-sequence
model of our method is based on BART-large. We
train the model for 100 epochs using AdamW, with
a batch size of 16. The learning rate is 1e-5.

4.1.4 Experimental Results

Table 4 shows the experimental results. Our
method of NSP outperforms all baselines, achiev-
ing 84.01 in F1 score and 80.81 in EM in the offline
test. NA-RoBERTa can be regarded as a model
only performing neural reasoning. Our method out-
performs NA-RoBERTa by 2.40 in F1 score and
2.51 in EM. Our method outperforms QDGAT by
2.60 in terms of F1 score and by 2.56 in terms of
EM. Our method also performs better than all base-
lines in the online test. The experimental results
demonstrate the effectiveness of our method.
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Method
Offline Test Online Test
EM F1 EM F1

QANet 27.50 30.44 25.50 28.36
NAQANet 46.20 49.24 44.07 47.01
NumNet 64.92 68.31 64.56 67.97
NeRd 78.55 81.85 78.33 81.71
QDGAT 82.74 85.85 83.23 86.38

Table 5: The results of methods trained on the full
DROP training dataset in offline test and online test.
The results are taken from the original papers.

Table 5 reports the results of existing methods
trained on the full DROP training dataset and eval-
uated in terms of EM and F1 scores in the same
offline test and online test. Except for QDGAT,
the results are lower than NSP trained on DROP-
subset. Note that when trained on DROP-subset,
NSP outperforms QDGAT, as shown in Table 4.

We investigate the performances of our method
of NSP and the baselines on different answer types
in the offline test, as shown in Table 6. Our method
of NSP performs the best on the answers relating
to numbers and dates, demonstrating that NSP is
strong in numerical reasoning compared with the
other methods.

We further investigate the performances of our
method of NSP and the baselines on different
program types, add/diff, max/min, count, and
mul/div/avg, as shown in Table 7. We can observe
that NSP significantly outperforms in terms of F1
(+56.42) in mul/div/avg. It appears that NSP can
generate programs for multiplication, division, and
averaging, as shown in Appendix C, while NA-
RoBERTa and QDGAT do not have the ability. The
F1 of NSP also improves 3.91 and 2.6, respectively,
in add/diff and max/min. The improvements are
also significant. NSP can generate programs to per-
form multi-step addition, subtraction, and max/min
operations, as shown in Appendix C. In contrast,
it is hard for NA-RoBERTa and QDGAT to do so.
The percentage of generated programs with invalid
execution results (NULL) on the DROP-dev dataset
is 0.1%.

4.2 Ablation Study

We conduct an ablation study. Table 8 presents
the results. We compare NSP, and its components
of logical reasoning only and analogical reasoning
only in offline test with answer-types of number,
span(s), and date. The results indicate that NSP per-
forms much better than the two components, indi-

Method Number Span(s) Date Total
QDGAT 80.41 83.90 65.38 81.41
NA-RoBERTa 80.54 84.14 67.36 81.61
NSP (our method) 84.24 84.36 68.49 84.01

Table 6: The results of our method and baselines trained
on DROP-subset and evaluated in terms of F1 on offline
test. Number, span(s) and date are three answer types.

Method add/
diff

max/
min

count mul/
div/avg

Number of cases 4317 282 913 52
QDGAT 81.99 92.15 79.85 4.48
NA-RoBERTa 81.49 92.68 82.15 8.33
NSP (our method) 85.90 95.28 82.91 64.75

Table 7: The results of our method and baselines in
terms of F1 on cases corresponding to different program
types, add/diff, max/min, count, and mul/div/avg.

cating that both components are necessary for NSP.
Analogical reasoning is suitable for the span(s)-
type. On the other hand, logical reasoning is suit-
able for the number and date types.

Table 9 reports the F1 scores of predictors and
decoder of NSP for different answer types. We
observe that the F1 score of NSP, after combining
all components, achieves the highest performances
in the number, span(s), and date types. It indicates
that the components are complementary and that
NSP can successfully ensemble them.

NSP utilizes additional program annotations
compared with the baselines above. For further
comparison, we consider two other alternatives
based on NA-RoBERTa that also use the program
annotations. The first method adds a program
generation sub-task during the training, and only
uses the original neural predictions in the infer-
ence. The second method utilizes programs to
supervise its arithmetic computation, which pre-
dicts each number’s coefficients (+1, -1, 0). In

Method Number Span(s) Date Total
Logical reasoning
only

83.23 5.62 52.08 54.58

Analogical reason-
ing only

27.49 84.39 63.87 48.74

NSP (our method) 84.24 84.36 68.49 84.01

Table 8: Ablation study results on offline test of DROP.
Compare only ensemble logical reasoning module and
only ensemble analogical reasoning module with NSP.
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Method Number Span(s) Date Total
passage span ex-
traction

15.52 78.32 63.87 39.11

question span ex-
traction

0.24 38.18 26.61 14.44

sequence labeling 5.47 58.91 41.07 25.45
classification (0-9) 20.19 0.86 0.30 12.85
program 83.23 5.62 52.08 54.58
NSP (our method) 84.24 84.36 68.49 84.01

Table 9: The results of NSP and its components in terms
of F1 score.

Method Number Span(s) Date Total
NA-RoBERTa 80.54 84.14 67.36 81.61
NA-RoBERTa w/
program generation

79.43 82.90 66.37 80.46

NA-RoBERTa w/
program supervision

81.70 84.18 67.55 82.35

NSP (our method) 84.24 84.36 68.49 84.01

Table 10: Results of different baseline methods utilizing
program annotation.

Table 10, we report the F1 scores of the additional
methods. We observe that NSP still works the
best. NA-RoBERTa with program supervision out-
performs NA-RoBERTa. However, NA-RoBERTa
with program generation performs even worse than
NA-RoBERTa.

For the MoE in NSP, we train a gating network
using text as input. We compare the MoE method
with two alternatives, which respectively take the
probabilities of answer predictions and the proba-
bilities of answer-type predictions as input of the
gating network. Table 11 shows the results. We
observe that using text as input performs the best.

4.3 NLI Task

4.3.1 Dataset
AWPNLI (Ravichander et al., 2019) is a dataset
suitable for NLI requiring reasoning. AWPNLI is
created from arithmetic math problems in which
symbolic processing is needed. AWPNLI is a small
dataset with only 722 instances. We have human
annotators annotate the E-Program and C-Program
for each instance. The annotation process is de-
scribed in Appendix B.

4.3.2 Baselines
We compare our method with neural and rule-
based baselines. For the neural baselines, we

Input of GN Number Span(s) Date Total
answer-prob 82.31 82.13 68.39 82.00
answer-type-prob 82.96 83.62 69.69 82.97
text 84.24 84.36 68.49 84.01

Table 11: Results of different input of gating networks
(GN) in NSP.

use RoBERTa and BART as models for classifi-
cation. The rule-based method Q-REAS proposed
in (Ravichander et al., 2019) is also chosen. The
performances of Q-REAS and two neural mod-
els are taken from the original paper (Ravichander
et al., 2019).

RoBERTa and BART can be viewed as NSP with
only analogical reasoning. We also consider NSP
with only logical reasoning (also based on BART).
The baselines can serve for ablation study.

4.3.3 Experimental Setting
We conduct a ten-fold cross-validation on the AW-
PNLI dataset and report the average and standard
deviation of the results. The sequence-to-sequence
model of our method is fine-tuned by using the in-
put text and the annotated program based on BART.
The predictor model is fine-tuned by using the in-
put text and the ground truth based on RoBERTa.
The optimizer is Adam, and the learning rate is
1e-5. The learning converges in 25k steps.

4.3.4 Results and Discussion
Table 12 shows the results of methods on the AW-
PNLI dataset. We find that our method of NSP is
slightly better than its variant of logical reasoning
only. The accuracies of the two methods are signif-
icantly better than those of the other methods. The
results indicate that our method of NSP is effective
when numerical reasoning is needed in NLI.

Furthermore, we can see that the methods of
RoBERTa and BART are much worse than NSP
and logical reasoning only. The results reported in
previous work under the zero-shot setting are also
significantly lower. We conclude that utilization
of local reasoning capabilities such that of NSP is
necessary for the task.

5 Conclusion

This paper proposes a novel framework for natu-
ral language understanding (NLU), referred to as
Neural-Symbolic Processor (NSP). NSP employs
two types of reasoning, analogical reasoning and
logical reasoning. To ‘understand’ language, ana-
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Model Accuracy

Zero Shot Evaluation
BART-large 42.2*
GPT 50.0*
Rule-based Q-REAS 71.5*

10-fold Cross Validation
RoBERTa 49.85±0.35
BART 49.85±6.28
Logical Reasoning Only 88.05±4.71
NSP (our method) 92.24±4.68

Table 12: The results of NSP and baselines on AWPNLI.
The results with * are taken from the original papers.

logical reasoning is performed by using neural net-
works as usual. In the meantime, logical reasoning
is performed by using neural networks to generate
programs and then using symbolic systems to exe-
cute the programs. Such an architecture is similar
to that of humans, and the two types of reasoning
correspond to System 1 and System 2 respectively
in the human brain. Our approach thus is powerful
in dealing with the challenging problems which
conventional neural-network-only approaches suf-
fer from. We evaluate our approach in two NLU
tasks, QA and NLI. The experiments show that our
method surpasses previous state-of-the-art meth-
ods with remarkable improvements when logical
reasoning is needed.

Limitations

Although NSP outperforms the baselines in both
QA and NLI, there are still complicated cases that
the current NSP cannot effectively deal with.

For the QA task, We conduct an error analysis
of NSP on the DROP dataset. Table 13 provides
three typical categories of hard cases for NSP. The
first type (first example) is related to multi-step
reasoning. Such cases need a deep reasoning path
or many arguments in functions. Another type
(second example) is about the counting of long
strings. Defining a standard for program annota-
tion is hard because different human annotators
may select strings with different lengths. The last
type (third example) is related to complex condi-
tions. The programs of NSP currently use a simple
grammar language, which still cannot represent
complicated conditions in reasoning.

We do not introduce a complicated programming
language, because there is not enough training data
to learn a model for generating complex programs.

We leave this to future work.
We also conduct an error analysis of NSP for the

NLI task. The primary type of errors (hard cases)
is related to redundant numbers in the input texts,
as shown in Table 14. One possible solution would
be to increase the size of training data.
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Passage & Question Prediction

Complicated multi-step computation

Passage: ... In the second quarter@N4, New Orleans re-
gained the lead as QB Drew Brees ( a former Charger )
completed a 12 - yard@N5 TD pass to WR Devery Hen-
derson ( with a failed PAT ) and RB Deuce McAllister
getting a 1 - yard@N6 TD run. San Diego answered as
QB Philip Rivers completed a 12 - yard@N7 TD pass to
RB LaDainian Tomlinson, but the Saints replied with Brees
completing a 30 - yard@N8 TD pass to WR Lance Moore.
The Chargers closed out the half with Rivers completing a
12 - yard@N9 TD pass to TE Antonio Gates. In the third
quarter@N10, New Orleans increased its lead Brees com-
pleting a 1 - yard@N11 TD pass to TE Mark Campbell ...
San Diego tried to rally as Kaeding nailed a 31 - yard@N16
field goal, Rivers completed a 14 - yard@N17 TD pass to
WR Vincent Jackson
Question: How many more yards of touchdown passes did
Drew Brees make than Philip Rivers?

Prediction:
diff(add(N5,N8,N11,N17),add(
N7,N9))
Result: 33
Manual:
diff(add(N5,N11,N8),add(N7,N9,N17))
Ground truth: 5

Counting long strings

Passage: ... They explain that the gap may persist due to
the crack epidemic, the degradation of African - American
family structure, the rise of fraud in the educational system
( especially with respect to No Child Left Behind ), the
decrease in unskilled real wages and employment among
African - Americans due to globalization and minimum
wage increases, differences in parental practices ( such as
breastfeeding or reading to children ), and " environmental
conditions shaped by [ African - Americans ] themselves.
...
Question: How many reasons are cited as causing the per-
sistent gap between white and black IQs?

Prediction: count("crack epi-
demic","the degradation of African -
American family structure","the rise of
fraud in the educational system")"
Result: 3
Manual: count("crack epidemic","the
degradation of African - American
family structure","the rise of fraud in
the educational system ( especially with
respect to No Child Left Behind )","the
decrease in unskilled real wages and
employment among African - Ameri-
cans due to globalization and minimum
wage increases","differences in parental
practices ( such as breastfeeding or
reading to children )","environmental
conditions shaped by [ African -
Americans ] themselves")
Ground truth: 6

Questions with complex conditions

Passage: ... yet the Raiders would answer with kicker
Sebastian Janikowski getting a 33 - yard@N5 and a 30 -
yard@N6 field goal. Houston would tie the game in the
second quarter@N7 with kicker Kris Brown getting a 53 -
yard@N8 and a 24 - yard@N9 field goal. ...
Question: How many field goals did both teams kick in the
first@Q0 half ?

Prediction: count(N5,N6,N8,N9)
Result: 4
Manual: count(N5,N6)
Ground truth: 2

Table 13: Examples of incorrect predictions by NSP in offline test of DROP.
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Premise & Hypothesis Program Result Ground Truth

Disturbance by redundancy numbers

Premise: Melanie picked 7.0@M1
plums and 4.0@M2 oranges from the
orchard and Sam gave her 3.0@M3
plums.
Hypothesis: She has 10.0@N1 plums
now.

Prediction:
E: add(diff(M1,M2),M3)=N1
C: add(M1,M3)!=N1
Manual:
E: add(M1,M3)=N1
C: add(M1,M3)!=N1

neutral entailment

Premise: Sally had 39.0@M1 base-
ball cards , and 9.0@M2 were torn
and Sara bought 24.0@M3 of Sally ’s
baseball cards.
Hypothesis: Sally has 15.0@N1 base-
ball cards now.

Prediction:
E: diff(add(M1,M2),M3)=N1
C: diff(add(M1,M2),M3)!=N1
Manual:
E: diff(M1,M3)=N1
C: diff(M1,M3)!=M1

contradiction entailment

Table 14: Examples of incorrect predictions by NSP on AWPNLI.

Function Arguments Description

add a set of special tokens/programs compute the summation of the terms

diff a pair of special tokens/programs compute the difference of the two terms

max
min

a set of special tokens/programs select the maximum/minimum among the terms

mul
div

a pair of special tokens/programs compute the multiplication/division of the two
terms

avg a set of special tokens/programs compute the average of the terms

count a set of special tokens/programs count the number of the terms

year
month
day

a span in input text convert the span to the corresponding
year/month/day in numerical expression

hour
minute
second

a span in input text convert the span to the corresponding
hour/minute/second in numerical expres-
sion

=
!=

a pair of special tokens/programs return two terms are equal/not equal

Table 15: Description of the functions in the programs.
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A Definition of functions in programs

The functions in programs are provided in Table 15.

B Annotation Process

The annotation team has ten annotators from a com-
mercial company in data annotation. We sign a
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contract with the company and pay the company
for the annotation work at a market price in China.
They are all college graduates with high capabili-
ties in English and math. The required skill is the
capability of understanding the texts in English and
formulating the answering processes into programs.
Both the QA and NLI datasets have the same anno-
tation process. The annotation task is that given in-
put texts with special tokens and the corresponding
labels, the annotator: a) decides whether it needs
logical reasoning to get the answers; b) if yes, la-
bels the corresponding programs; if not, labels a
[NULL]. We first conduct training for the annota-
tors about the annotation rules. Then we separate
the dataset into ten batches. Each annotator labels
one batch of the dataset. We check 15% of samples
in each batch. The whole batch will be relabeled
if annotation accuracy is below 90%. Each data
instance is labeled by only one annotator.

C Examples only NSP can predict correct
results

Table 16 gives examples that only NSP can give
correct results.
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passage question prediction

mul & div & avg operators

... The Dolphins ended the period with kicker
Jay Feely getting a 53 - yard@N6 field goal.
In the second quarter@N7, Miami drew closer
as Feely kicked a 44 - yard@N8 field goal, yet
New York replied with kicker Mike Nugent
getting a 29 - yard@N9 field goal. ...

How many yards long does
the average field goal mea-
sure when only the first@Q0
three@Q1 are taken into ac-
count ?

Prediction:
div(add(N6,N8,N9),Q1)
Result: 42
Ground truth: 42

... Dave Rayner nailed a 23-yard@N5 field
goal ... Green Bay managed to get two@N8
more field goals , as Rayner got a 54-
yarder@N9 and a 46-yarder@N10 to end the
half ... David Akers got a 40-yard@N13 field
goal ...

How many yards long was the
average length across all field
goals scored ?

Prediction:
avg(N5,N9,N10,N13)
Result: 40.75
Ground truth: 40.75

add & diff operators

... Jermichael Finley caught a 20-yard@N6
touchdown pass from Aaron Rodgers ... The
Lions responded with a Calvin Johnson 25-
yard@N10 touchdown pass from Matthew
Stafford ... The Packers then scored a
touchdown when Randall Cobb caught a 22-
yard@N13 pass from Aaron Rodgers ...

How many more yards of
touchdown passes did Aaron
Rodgers throw than Matthew
Stafford ?

Prediction:
diff(add(N6,N13),N10)
Result: 17
Ground truth: 17

... Of 162@N1 cities worldwide, MasterCard
ranked Bangkok as the top destination city
by international visitor arrivals in its Global
Destination Cities Index 2018@N2 ...

How many cities were n’t
ranked the top destination
city by international visitor ar-
rivals in the Global Destina-
tion Cities Index 2018@Q0

Prediction: diff(N1,
count("Bangkok"))
Result: 161
Ground truth: 161

Table 16: Examples of questions related to numerical reasoning on DROP, where only NSP can give correct program
and final results.
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