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Abstract

We present DualNER, a simple and effective
framework to make full use of both annotated
source language corpus and unlabeled target
language text for zero-shot cross-lingual named
entity recognition (NER). In particular, we com-
bine two complementary learning paradigms of
NER, i.e., sequence labeling and span predic-
tion, into a unified multi-task framework. After
obtaining a sufficient NER model trained on
the source data, we further train it on the tar-
get data in a dual-teaching manner, in which
the pseudo-labels for one task are constructed
from the prediction of the other task. More-
over, based on the span prediction, an entity-
aware regularization is proposed to enhance
the intrinsic cross-lingual alignment between
the same entities in different languages. Ex-
periments and analysis demonstrate the effec-
tiveness of our DualNER. Code is available at
https://github.com/lemon0830/dualNER.

1 Introduction

Aiming at classifying entities in un-structured text
into pre-defined categories, named entity recog-
nition (NER) is an indispensable component for
various downstream neural language processing ap-
plications such as information retrieval (Banerjee
et al., 2019) and question answering (Fabbri et al.,
2020). Current supervised methods have achieved
great success with sufficient manually labeled data,
but the fact remains that most of the annotated data
are constructed for high-resource languages like
English and Chinese, posing a big challenge to low-
resource scenarios (Mayhew et al., 2017; Bari et al.,
2021).

To address this issue, zero-shot cross-lingual
NER is proposed to transfer knowledge of NER
from high-resource languages to low-resource lan-
guages. The knowledge can be acquired in either
of the following two ways: 1) from aligned cross-
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lingual word representations or multilingual pre-
trained encoder fine-tuned on high-resource lan-
guages (Conneau et al., 2020; Bari et al., 2021). 2)
from translated target language data with label pro-
jection (Mayhew et al., 2017; Jain et al., 2019; Liu
et al., 2021). These two kinds of methods can be
unified into a knowledge distillation (KD) frame-
work, to further improve the cross-lingual NER per-
formance (Wu et al., 2020; Fu et al., 2022). Though
widely used, the transfer process still suffers from
poor translation quality, label projection error and
over-fitting of large-scale multilingual language
models.

In this paper, we present a simple and effective
framework, named DualNER, alleviating the above
problems from a different angle. We combine
two popular complementary learning paradigms
of NER, sequence labeling and span prediction,
into a single framework. Specifically, we first
train a teacher NER model by jointly exploiting se-
quence labeling and span prediction with the anno-
tated source language corpus. Unlike the previous
KD-based methods that produce pseudo labels for
the corresponding paradigms, we propose a dual-
teaching strategy to make the two paradigms com-
plement each other. More concretely, the model
prediction for sequence labeling is used to con-
struct the pseudo-labels for span prediction and
vice versa. Furthermore, we propose a multilingual
entity-aware regularization forcing same entities in
different languages to have similar representations.
By doing this, the trained model is able to leverage
the intrinsic cross-lingual alignment across differ-
ent languages to enhance the cross-lingual transfer
ability.

Experiments and analysis conducted on
XTREME for 40 target languages well validate the
effectiveness of DualNER .
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Figure 1: The overall framework of DualNER. SL de-
notes Sequence Labeling and SP denotes Span Predic-
tion.

2 Framework

Recently, the dominate paradigm for NER shifts
from sequence labeling (Ma and Hovy, 2016; Lam-
ple et al., 2016; Devlin et al., 2019; Xia et al., 2019;
Luo et al., 2020; Lin et al., 2020) to span-level pre-
diction (Jiang et al., 2020; Ouchi et al., 2020; Li
et al., 2020; Xue et al., 2020; Fu et al., 2021). We
combine these two formulations into a unified mul-
titask framework for complementarity. As shown
in Figure 1, our DualNER consists of three major
modules: Token Representation Layer, Sequence
Labeling Layer, and Span Prediction Layer.

2.1 Model

Given an example of training data (X, Yy,),
where X={z1,x;,...,z,} is the input sequence
and Yg,={y1, ¥i,..-,yn} is the corresponding la-
bel (e.g., “B-ORG”, “I-PER”, “O”) sequence, we
can extract the start and end index sequence,
Ysiare and Y, 4, as reference for span prediction,
and convert the training instance to a quadruple
(X7 szlaa }/;tarta Yvend)-

Token Representation Layer. For the in-
put sequence X, we use a multilingual pre-
trained language models (PLM), e.g., XLM-
R, to obtain the contextualized representations
H={hy,....;hi, ..., hp}.

Sequence Labeling Layer. Formally, we stack a
softmax classifier layer on H, and the objective of
sequence labeling is

Tsia = _log(Psla(Y;la|H;97 98[(1))7 (D

where 0 and 0y, denote the parameters of PLM
and the classifier respectively.

Span Prediction Layer. For the formulation of
span prediction, we adopt two (C' + 1)-class classi-
fiers, where C denotes the number of NER entities
(e.g., LOC, PER, ORG, 3 entities in XTREME-
40 dataset), and one is used to predict whether
each token is the start of an entity, and the other is
used to predict whether each token is the end. For-
mally, given the representations H and two label
sequences Yot and Y4 of length n, the losses
for start and end index predictions are defined as:

jstart = _log<Pstart(Ytsta7‘t‘H§ ‘9; estafrt)) 2)
jend = _log(Pend(Y;nd‘HQ (9, eend))- 3)

2.2 Training

To achieve zero-shot cross-language NER, we
adopt a two-stage training strategy.

Stage 1: Multitask Learning. At the first stage,
we fine-tune a multilingual pre-trained model on
the labeled source language data in a multi-task
manner:

T =T+ Tsart + Tend: “)

Stage 2: Dual-teaching. At the stage two, we
focus on generating pseudo labels for both labeled
and unlabeled data with the trained NER model
gt¢a. In particular, the pseudo labels for the se-
quence labeling task are converted by the model
prediction for the span prediction task, and vice
versa. Specifically, based on the predictions Py,
Psiore and P, 4 of an input sequence X*¢ (or
X''r9), we construct the pseudo labels for sequence
labeling and span prediction as follows:

}/;la = Sequential(Pstarty Pend) (5)
}A/starb Y/end = EXtraCtSpan(PSla)a (6)

where Sequential and ExtractSpan are the corre-
sponding transformation between sequence labels
and span labels.

As a result, X°™ is paired with six label
sequences (Y57, Vi, Yiars, Vire, Ve, Vare),
and X9 is paired with three pseudo label se-
quences Y9, V119, and Y!"9}. Using the con-
structed data, we train a student model 65t* initial-

ized with 6%® with the following objective:
T = 0.5 T7UXTE Ve, Yagare Yend) (1)
+0.55% JT(XT Y5 Vi, YD)
jtrg — jtrg(Xtrg’ Ytrg Ytrg }}trg)' (8)

sla » ~ start> ~ end
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Method en af ar bg bn de el es eu fa fi fr he hl hu id it ja jv
CLA 84.5 81.4 64.2 83.2 78.3 81.2 81.5 71.6 79.0 67.0 68.9 80.9 80.1 58.0 74.1 82.0 61.0 82.4 28.0 612
SPAN 85.6 81.7 64.2 84.6 71.3 81.9 81.9 74.3 76.6 66.4 61.2 822 80.3 549 75.1 81.4 56.8 82.4 31.9 59.0
MLT 85.4 83.5 62.5 84.1 78.0 80.9 82.9 80.5 68.3 62.6 82.4 81.6 61.2 74.8 82.5 55.8 82.4 299 63.9
DualNER

+TRG7rans 85.7 83.2 65.6 84.1 80.3 82.8 80.9 74.5 82.6 61.7 67.3 82.7 82.1 66.3 71.7 823 68.1 83.9 52.8 68.3
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Method ka kk ko ml mr ms my nl ru sW ta te th tl tr ur vi yo zh
CLA 71.7 59.9 60.6 65.7 68.5 71.1 51.8 85.4 83.3 72.0 71.6 61.5 57.1 0.01 75.0 83.8 782 76.6 36.4 35.0
SPAN 71.2 60.2 57.8 64.2 70.1 733 439 86.2 83.8 73.6 V2 60.0 515 0.02 78.0 85.7 75.1 80.3 56.2 38.9
MLT 74.7 56.1 61.6 68.5 67.9 72.1 46.2 86.0 74.2 72.8 61.3 54.1 0.02 76.3 84.6 75.6 78.1 43.8 36.7
DualNER

+TRG7rans 78.6 56.1 69.3 72.6 71.5 72.1 68.6 86.3 85.0 72.4 733 66.2 56.5 0.05 80.6 83.2 80.2 83.1 42.3 555

+TRGgota 79.0 51.5 74.2 753 68.6 74.0 66.0 86.7 86.5 80.4 71.4 73.6 62.4 0.08 76.9 859 87.5 82.3 429 573

Table 1: Experimental results on the test sets of XTREME-40 NER. We highlight better results between CLA
and SPAN with |gray and highlight best results among all methods with pink .

Furthermore, in order to strengthen the corre-
lation of the same entities across languages, we
present an entity-aware regularization term. We
illustrate an example in Appendix A. More con-
cretely, for the j-th entity, we extract the start token
and the end token by applying argmax to the dis-
tributions Pgtqrt and P, 4, and obtain its represen-
tation r; by concatenating the representations of
the two tokens. We use a mean square error (MSE)
loss to pull the representations of the same entities
across different languages together:

(Tm - rq)Za

1 1
Tmse = =G TR] 2o
C IR
= (Tm,rq)ERc,;m#q
9
where C' is the number of NER entities and R,. is
the representation set of the c-th entity in a mini-
batch.

The overall training objective is defined as:

T =T+ T" +a- Tnse, (10)

where « is a hyper-parameter to balance the ef-
fect of MSE loss. During training, we update the
teacher NER model 6%“® using the better student
model 6% based on the validation performance.
At inference time, we only use the prediction of
Span Prediction Layer.

3 Experiments & Analysis
3.1 Setup

The proposed method is evaluated on the cross-
lingual NER dataset from the XTREME-40 bench-
mark (Hu et al., 2020). Named entities in
Wikipedia are annotated with LOC, PER, and ORG
tags in BOI-2 format. We try two types of unla-
beled target language data: Natural Language
Text, the target language text in the training set of
XTREME-40; and Translation Text (Fang et al.,
2021). We take XLM-R-base (Conneau et al.,
2020) and InfoXLM-large (Chi et al., 2021) as our
backbones, and set o as 0.5. Detailed experimental
setups are shown in Appendix B. We use entity-
level F1-score of all language development sets to
choose the best checkpoint, and report the F1-score
on each test set of each language.

3.2 Main Result

We compare DualNER to the following baselines:
1) FILTER (Fang et al., 2021), which feeds paired
language input into PLM and is trained with self-
teaching; 2) CLA, which formulates NER as a se-
quence labeling problem; 3) SPAN, which formu-
lates NER as a span prediction problem; and 4)
MLT, the model trained after our Stage 1. Besides,
we name DualNER trained on unlabeled target nat-
ural language text as DualNER+TRG g4, While
denote DualNER trained on target language trans-
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Model F1

MLT 61.53+0.53
DualNER+TRGgoiq  68.64+0.06
W/0 Tmse 68.054+0.49
w/ selfKL 65.18+0.65
w/o TRG 62.17+0.52

Table 2: Ablation Study. We run 3 times with different
random seeds and report mean and standard deviation
on all the validation sets.

lation text as DualNER+TRG ;4.

Table 1 reports the zero-shot cross-lingual NER
results. The conclusions are as follows: 1) CLA and
SPAN have no obvious advantages over each other.
2) DualNER significantly outperforms the base-
lines on almost all of the languages, demonstrating
the effectiveness of our proposed method. 3) Di-
rectly combining CLA and SPAN into a multitask
learning framework (i.e., MLT) fails to achieve con-
sistent improvement. This observation shows that
the gain of DualNER entirely comes from the pro-
posed dual-teaching training strategy, rather than
the usage of multitask learning. 4) As expected, us-
ing natural language text (i.e., DualINER+TRG g iq)
achieves better performance compared to transla-
tion text (i.e., DualNER+TRG,qys), SINCe trans-
lations possibly lose the idiomatic expressions of
some entities.

3.3 Ablation Study

To analyze the impact of different components of
DualNER, we investigate the following three vari-
ants: 1) DualNER w/0 Jse, removing the entity-
aware regularization; 2) DualNER w/ selfKL, where
Dual-teaching is replaced by Self-teaching with KL
loss at the Stage 2. 3) DualNER w/o TRG, where
we only use the source language data in the Stage 2.
We take XLLM-R.sc as the backbone. The results
are listed in Table 2. Compared with DualNER
w/ selfKL, DualNER obtains a significant improve-
ment of 3.46 points, validating our motivation in
making use of complementarity of different task
paradigms of NER. The degradation of DualNER
w/0 Jmse and DualNER w/o TRG confirm the in-
trinsic cross-lingual alignment and the importance
of task-related target language information.

3.4 Visualization

We choose English, Korean, and Arabic, which
comes from different language families, and vi-
sualize the entity representations r in Eq. 9 with

:
fany
L g
3 (5= X
A" 2 A e.ote = &
'y EAAL
A kS
Yy
.
+ LOCen .
ORG-en
PER-en *
LOC+o . x
ORG-ko 3 ot o
PER-ko %
e LOCar ‘
* ORG-ar

A PER-ar Lk, L

Figure 2: The visualization of the entity representations
in different languages, where the triangle-shaped, circle-
shaped, and pentagonal-shaped(blue) points denote lo-
cation, organization, and person entities, respectively.
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Figure 3: Effect of Source Language Corpus Size. We
report F1-score on all the validation sets.

hypertools (Heusser et al., 2017). As shown in Fig-
ure 2, the representations of different entities in
the same language are clearly distributed in differ-
ent regions, while the representations of the same
entity across different languages are concentrated.

3.5 Effect of Source Language Corpus Size

In this experiment, we study the impact of anno-
tated source language corpus size on DualNER
by sampling different percentages of annotated
source language corpus for the Stage 1. Mean-
while, we remove the labels of the remaining source
data, and mix it with the unlabeled target lan-
guage text for the Stage 2. Figure 3 shows the
comparison between Dual/NER and MLT. Surpris-
ingly, DualNER trained with only 20% of anno-
tated source data achieves better performance than
MLT trained using complete data, demonstrating
the data-efficiency of our proposed method.

4 Conclusion

In this paper, we propose a simple and effective
dual-teaching framework, coined DualNER, for
zero-shot cross-lingual named entity recognition.
In particular, DualNER makes full use of the ex-
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changeability of the labels in span prediction and
sequence labeling, and generates abundant pseudo
data for available labeled and unlabeled data. Ex-
periments and analysis validate the effectiveness of
our DualNER.

5 Limitations

The performance of DualNER relies on the capa-
bility of cross-lingual transfer of multilingual pre-
trained models. In practice, for an adequate qual-
ity of the pseudo-labels generated in the stage 2,
it is necessary to ensure that the NER model has
acquired certain ability to conduct cross-lingual
transfer in the stage 1.
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A Example of Entity-aware
Regularization

‘Steve Jobs was the co-founder of Apple,
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Figure 4: Entity-aware Regularization.

Figure 4 illustrates an example of entity-aware
regularization.

B Settings for Different Pretrained
Models

In this paper, we fine-tuned different pretrained
models including XLM-R-base and InfoXLM-
large. We evaluate the model each 250 steps. The
batch size, training epoch, warmup steps and learn-
ing rate in two-stage training are list in Table 3.
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Model Batch Size Epoch Warmup Ir
Stage 1

XLM-Rpgse 128 8 2e-5

InfoXLM;arge 128 8 2e-5
Stage 2

XLM-Rpgse 500 8 2e-5

InfoXLM;arge 128 8 2e-5

Table 3: Hyper-parameters settings for different pre-

trained models.
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