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Abstract

Recent success of pre-trained language models
(PLMs) has stimulated interest in their ability to
understand and work with numbers. Yet, the nu-
merical reasoning over measurements has not
been formally studied despite their importance.
In this study, we show that PLMs lack the ca-
pability required for reasoning over measure-
ments. Furthermore, we find that a language
model trained on a measurement-rich corpus
shows better performance on understanding
measurements. We propose a simple embed-
ding strategy to better distinguish between num-
bers and units, which leads to a significant im-
provement in the probing tasks.

1 Introduction

The success of pre-trained language models
(PLMs) has led to more research on their ability to
understand commonsense. In this context, numeri-
cal reasoning over text (NRoT) is a NLP model’s
ability to interpret and work with numbers in ei-
ther digit or word form (Spithourakis and Riedel,
2018). Recent studies on NRoT test PLMs to an-
swer questions on numeracy (Wallace et al., 2019),
scalar magnitude comparison (Zhang et al., 2020),
numerical facts (Lin et al., 2020), and math word
problems (Wu et al., 2021).

Despite these efforts, existing works lack an anal-
ysis of the forms in which numbers appear. In par-
ticular, we focus on the case where numbers appear
as a measurement in the context. In most scien-
tific articles, measurements are an integral part of
the context for capturing its appropriate meaning.
For example, the two sentences "40g of Aspirin
is lethal" and "40mg of Aspirin is lethal" contain
the same words except for the unit of measure-
ment (UoM), but the second sentence is incorrect
because of the UoM.

In this work, we examine the measuring skill of
PLMs: the ability to understand the system of mea-
surement and perform numerical reasoning over

measurements. We design three measuring skill
tests (MSTs) and study how many measuring skills
can be acquired. Specifically, UNIT CONVERSION,
REFERENCE RANGE DETECTION, and MEASURE-
MENT COMPARISON require understanding of the
system of measurement, the normal range of the
biomedical entity, and the ability to combine knowl-
edge about the system of measurement and NRoT,
respectively. Table 1 shows an example of each of
the measuring skill tests.

MST results showed that the models struggled
to find the largest (or smallest) value on the list of
measurements and convert the measurement to an-
other unit, while they performed well on other tests.
Compared to other PLMs, BioBERT (Lee et al.,
2020) showed superior performance on UNIT CON-
VERSION and REFERENCE RANGE DETECTION,
which implies that pre-training with measurement-
rich text helps the model understand the system of
measurement. Finally, we speculate that the lack
of skills to distinguish numbers, units, and other
words in the context makes the models fail in some
MSTs. To mitigate this, we introduce scale embed-
ding, which provides the model with the informa-
tion regarding the position and scale of the numbers
in the input text. We show that scale embedding
significantly improves the MST performance of all
PLMs.

2 Measuring Skill Test

In this section, we describe three MSTs to carefully
study the ability of PLMs to understand the system
of measurement and perform numerical reasoning
over the measurements.

2.1 Unit Conversion

This task requires the model to decide whether
the two measurements represent the same quantity.
For example, the model might correctly predict
[MASK] in a sentence, such as "3.5g and 3500mg
are [MASK] value" to be filled with same if it under-
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Task Example Answer Candidates
COMPARISON 1.59mg is [MASK] than 3.8g larger, smaller
ARGMIN/MAX [MASK] value among 0.5mg, 3.4g, 2.8mg is 0.5mg largest, smallest, middle
SORTING sort 0.53mg, 32.54g, 2.8mg in [MASK] order is 0.53mg, 32.54g, 2.8mg increasing, decreasing, random
UNIT CONVERSION 3.5g and 3500mg are [MASK] value same, different
REFERENCE RANGE DETECTION 85mg/dL of Glucose is [MASK] normal, abnormal

Table 1: Examples of measuring skill tests (MSTs). We underline the correct answer for each example.

Task Template
COMPARISON [M] is [MASK] than [M]
ARGMIN/MAX [MASK] value among [LoM] is [M]
SORTING sort [LoM] in [MASK] order is [LoM]
UNIT CONVERSION [M] and [M] are [MASK] value
REFERENCE RANGE DETECTION [M] of [ENT] is [MASK]

Table 2: Templates which we used for data generation.
[M],[LoM], and [ENT] are the placeholder for the mea-
surement, the list of measurements, and the biomedical
entity, respectively.

stands the conversion of units correctly. In general,
it is a convention to combine the unit (e.g., liter,
meter) and its prefix (e.g., kilo, milli) to represent
the numerical value of the measurement within a
range [10−3, 103). Therefore, various unit prefixes
can appear in a single passage, even if the units
are the same. To handle this, UNIT CONVERSION

is essential for complex reasoning over measure-
ments. To succeed in UNIT CONVERSION, we ex-
pect the model to handle the unit and numerical
value jointly, based on an understanding of the sys-
tem of measurement.

2.2 Reference Range Detection
Given a biomedical entity and measurement, this
task requires a model to predict whether the mea-
surement falls within the reference range. Knowl-
edge of the biomedical entity plays a crucial role
in understanding measurements, since the unit is
determined by the biomedical entity. For example,
we measure the hemoglobin level in g/dL. In addi-
tion to understanding UoMs, PLMs must rely on
domain knowledge embedded in their parameters
to solve this task, as context alone does not provide
sufficient clues as to what the reference range is for
the given biomedical entity.

2.3 Measurement Comparison
Given two measurements (or a series of n mea-
surements), the task is to predict the correct re-
lationship between them. We created the syn-
thetic dataset following other well-known NRoT
tasks. Here, we consider three numerical reason-
ing tasks: COMPARISON (Talmor et al., 2020),
ARGMIN/MAX (Wallace et al., 2019), and SORT-

ING (Pal and Baral, 2021), all requiring the model
to compare numbers. Note that each measurement
in this task can have a different unit prefix. For
example, the sample "1.59mg is [MASK] than 3.8g"
containing two different units "mg" and "g" appears
in the COMPARISON dataset. This task assesses the
model’s ability to combine an understanding of
measurements and numerical reasoning skills.

3 Experiments

Probing Setup We formulated MSTs as a Cloze
test (Talmor et al., 2020) to fully utilize the
knowledge captured by masked language modeling
(MLM). Specifically, a PLM received the masked
inputs given in Table 1, and the MLM head output
the probability distribution of the answer candi-
dates for [MASK]. Among the answer candidates,
we chose the one with the highest probability as
the final prediction.

We probed four transformer-based PLMs.
BERT (Devlin et al., 2019) and ALBERT (Lan
et al., 2020) were trained on Wikipedia articles and
Book Corpus. BioBERT (Lee et al., 2020) was
trained on biomedical articles from PubMed ab-
stracts, and BlueBERT (Peng et al., 2020) used
both clinical (MIMIC-III (Johnson et al., 2016))
and biomedical (PubMed abstracts) corpus for pre-
training. We also tested a randomly initialized
transformer encoder (i.e. Scratch) to evaluate the
difficulty of our MSTs. For each model, we did not
update the parameters during training, except for
the MLM head in the last transformer layer. In all
tasks, the models were trained with three random
seeds and we report the mean classification accu-
racy for all the probing tasks. Appendix A provides
further details on training and evaluation.
Data Preparation We manually crafted templates
in Table 2 that contained at most two slots for mea-
surements and [MASK] token for an answer. We
instantiated [M] and [LoM] by sampling the mea-
surement and the list of measurements, respectively.
For measurement sampling, we independently sam-
pled a number and a unit and then combined them.
Specifically, we sampled units from the predefined
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Task
MEASUREMENT COMPARISON

UNIT REF
COMP ARG SORT

Model Notation in ex in ex in ex in ex in ex

ALBERT
Sci 81.2 77.3 60.4 58.0 78.2 76.5 48.6 49.9 71.9 59.9

Deci 81.8 72.1 57.1 50.5 82.5 74.3 61.5 56.2 71.1 61.0

BERT
Sci 73.3 72.4 55.1 52.2 45.6 45.0 52.7 51.2 73.5 64.3

Deci 81.4 77.0 60.9 54.3 54.9 54.5 61.9 59.2 77.2 67.5

BioBERT
Sci 82.7 82.3 55.0 54.4 68.2 69.1 58.7 57.3 81.3 63.7

Deci 90.1 88.0 59.0 57.6 77.3 73.0 73.0 70.5 87.0 64.2

BlueBERT
Sci 77.3 76.3 46.9 46.9 63.6 64.3 53.0 51.3 73.6 65.4

Deci 74.6 73.2 57.0 55.5 73.0 68.0 59.2 57.1 77.1 69.0

Scratch
Sci 50.9 50.8 40.2 37.1 33.3 33.8 52.5 50.7 66.3 60.8

Deci 57.7 51.3 44.3 43.0 33.3 33.7 56.8 53.9 62.6 65.0

Table 3: Test-set results on MSTs. We report the classification accuracy on interpolation (in) and extrapolation (ex)
test dataset. COMP, ARG, SORT, UNIT, and REF are abbreviations of COMPARISON, ARGMIN/MAX, SORTING, UNIT
CONVERSION, and REFERENCE RANGE DETECTION, respectively. Sci and Deci stand for scientific and decimal
notations, respectively.

set in Table 7 which consists of SI units and some
units in MIMIC-III.

The numbers in the training dataset were sam-
pled from [10−2, 102). For evaluation, we con-
structed two evaluation datasets: 1) Interpolation
sampled numbers from the same range as the train-
ing dataset; 2) Extrapolation sampled numbers
from [10−3, 103). Note that we did not consider
the numbers outside the range [10−3, 103), because
many of the unit prefixes are in the power of thou-
sands. Zhang et al. (2020) reported that represent-
ing numbers in scientific notation made it easier
for the language model to capture the scale of num-
bers. Following this observation, we tested two
different number notations: decimal and scientific.
For example, 32.6 can be represented as 32.6 and
3.26E+01 in decimal and scientific notation, respec-
tively. We randomly varied the number of digits
after the decimal point between zero and three, and
the significant digits were maintained after convert-
ing the number notation.

For REFERENCE RANGE DETECTION, we col-
lected biomedical entities from six tables in
MIMIC-III (INPUT, OUTPUT, LAB, PRESCRIP-
TION, PROCEDURE, and CHART) and chose the
subset.

We report the number of samples and the distri-
bution of labels for each MST in Table 8.

4 Results and Analysis

Measuring Skills of PLMs Table 3 shows the re-
sults of MSTs stated in Section 2.

PLMs performed reasonably well on COMPARI-
SON, SORTING, and REFERENCE RANGE DETEC-
TION, but struggled considerably on ARGMIN/MAX

and UNIT CONVERSION tasks. This shows that
some measuring skills are difficult to learn from
an LM objective. Similar to previous NRoT stud-
ies (Wallace et al., 2019; Pal and Baral, 2021),
PLMs often failed to successfully extrapolate to
values outside the training range. Further, in most
cases, MST results got worse when we represented
numbers in scientific notation.

We observed that BioBERT outperformed other
PLMs in UNIT CONVERSION, REFERENCE RANGE

DETECTION, and COMPARISON, and showed com-
parable performance in the rest of the MSTs. Com-
pared to BioBERT, BlueBERT was pre-trained on
a larger volume of biomedical text, but showed
worse performance. This shows that pre-training on
measurement-rich corpora assists the model in ac-
quiring measuring skills, but further training on the
noisy clinical text could harm it when performing
reasoning over measurements. We also found that
ALBERT outperformed its competitors in SORT-
ING even though it performed the same or worse on
other tasks. This may be because ALBERT benefits
from its sentence order prediction (SOP) objective,
which predicts the ordering of two consecutive seg-
ments of text.

Effect of using Different Prompts One can expect
that the choice of prompt has an impact on the re-
sults, and recent studies (Jiang et al., 2020; Petroni
et al., 2019) support this. To see whether the results
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Task
MEASUREMENT COMPARISON

UNIT REF
COMP ARG SORT

Prompt Set Model in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆)

LABEL

ALBERT 78.7 (-3.1) 70.8 (-1.3) 40.9 (-16.2) 33.1 (-17.4) 73.6 (-8.9) 67.2 (-7.1) 55.5 (-6.0) 56.0 (-0.2) 51.1 (-20.0) 36.0 (-25.0)
BERT 73.1 (-8.3) 70.8 (-6.2) 54.0 (-6.9) 50.7 (-3.6) 54.0 (-0.9) 54.3 (-0.2) 56.6 (-5.3) 55.0 (-4.2) 40.3 (-36.9) 13.7 (-53.8)
BioBERT 82.8 (-7.3) 80.2 (-7.8) 56.7 (-2.3) 55.7 (-1.9) 66.4 (-10.9) 62.6 (-10.4) 61.9 (-11.1) 60.4 (-10.1) 69.1 (-17.9) 59.6 (-4.6)
BlueBERT 75.0 (0.4) 69.7 (-3.5) 56.9 (-0.1) 55.3 (-0.2) 70.1 (-2.9) 66.6 (-1.4) 56.4 (-2.8) 54.9 (-2.2) 76.4 (-0.7) 70.6 (1.6)

CONTEXT

ALBERT 67.8 (-14.0) 61.8 (-10.3) 49.1 (-8.0) 43.5 (-7.0) 72.3 (-10.2) 68.2 (-6.1) 50.4 (-11.1) 50.5 (-5.7) 65.8 (-5.3) 56.9 (-4.1)
BERT 70.2 (-11.2) 67.9 (-9.1) 52.4 (-8.5) 47.1 (-7.2) 51.8 (-3.1) 50.6 (-3.9) 56.1 (-5.8) 55.2 (-4.0) 66.4 (-10.8) 63.2 (-4.3)
BioBERT 80.7 (-9.4) 78.4 (-9.6) 58.1 (-0.9) 55.9 (-1.7) 73.6 (-3.7) 69.7 (-3.3) 60.4 (-12.6) 59.3 (-11.2) 75.2 (-11.8) 64.8 (0.6)
BlueBERT 71.5 (-3.1) 65.6 (-7.6) 51.9 (-5.1) 48.5 (-7.0) 60.6 (-12.4) 56.4 (-11.6) 50.7 (-8.5) 50.7 (-6.4) 67.4 (-9.7) 64.9 (-4.1)

UOM

ALBERT 87.9 (6.1) 80.2 (8.1) 71.0 (13.9) 58.8 (8.3) 90.5 (8.0) 85.5 (11.2) 64.2 (2.7) 56.9 (0.7) N/A N/A
BERT 90.0 (8.6) 87.2 (10.2) 69.4 (8.5) 68.2 (13.9) 67.1 (12.2) 63.0 (8.5) 67.2 (5.3) 64.8 (5.6) N/A N/A
BioBERT 96.5 (6.4) 94.8 (6.8) 72.1 (13.1) 69.3 (11.7) 84.0 (6.7) 79.6 (6.6) 82.5 (9.5) 77.9 (7.4) N/A N/A
BlueBERT 88.3 (13.7) 83.8 (10.6) 66.5 (9.5) 63.8 (8.3) 76.5 (3.5) 71.7 (3.7) 66.6 (7.4) 62.4 (5.3) N/A N/A

Table 4: Test-set results on different sets of prompts. We report the classification accuracy and the performance
difference (∆). We obtain ∆ by subtracting the results in Table 3 from this table.

Task
MEASUREMENT COMPARISON

REF
COMP ARG SORT

Model in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆)

ALBERT 87.5 (5.7) 85.3 (13.2) 71.8 (14.7) 68.2 (17.7) 87.3 (4.8) 85.3 (11.0) 65.6 (-5.5) 53.8 (-7.2)
BERT 88.3 (6.9) 86.8 (9.8) 59.3 (-1.6) 60.6 (6.3) 77.5 (22.6) 77.5 (23.0) 69.6 (-7.6) 64.2 (-3.3)
BioBERT 94.7 (4.6) 93.5 (5.5) 70.7 (11.7) 68.3 (10.7) 83.6 (6.3) 82.9 (9.9) 77.6 (-9.4) 65.7 (1.5)
BlueBERT 88.7 (14.1) 86.1 (12.9) 64.8 (7.8) 60.9 (5.4) 75.2 (2.2) 74.2 (6.2) 70.3 (-6.8) 66.0 (-3.0)

Table 5: Test-set results on rule-based conversion experiments. We report the classification accuracy and the
performance difference (∆).

in Table 3 are maintained as the prompt differs, we
trained and evaluated PLMs on three distinct sets
of prompts: CONTEXT, UOM, and LABEL. Specifi-
cally, CONTEXT, UOM, and LABEL examine how
consistent MST results are against various linguis-
tic expressions of prompts, the set of unique UoMs
in the dataset, and the choice of answer candidates,
respectively. Note that we considered answer can-
didates as part of the prompt, since the prompt
determines the set of correct answers.

For CONTEXT, we manually created four addi-
tional templates that have the same meaning as the
original template in Table 2. For UOM, we used
only a subset of units g, l, m, and s, which appear
frequently in the general text. For LABEL, we in-
cluded synonyms of the label as answer candidates.
For example, "less", "smaller", and "lower" are the
answers for the prompt "1.59mg is [MASK] than
3.8mg.". More details of the experiments are in the
Appendix B.

The results with the decimal notation are shown
in Table 4. We can see that the results vary with
the choice of prompt, indicating that PLMs are
indeed sensitive to it. However, we found that
MST performance maintains a similar tendency in
every experiment: BioBERT works well on COM-
PARSION, UNIT CONVERSION, and REFERENCE

RANGE DETECTION, and ALBERT works well on
SORTING.

Rule-based Conversion of Measurements Mea-
surements exhibit a certain pattern, regardless of
the domain, because of a global standard: the In-
ternational System of Units (SI). Thus, we can
manually detect and convert all units in the text
without difficulty. Then, it is natural to wonder if
converting all units based on rules is easier than
making the language model understand the sys-
tem of measurement. To answer this question, we
tested the rule-based conversion that detects mea-
surements with the regular expression and converts
them into a prefix-free form. For example, the sen-
tence "2.5mg is [MASK] than 3.8g" is converted
to "0.0025g is [MASK] than 3.8g" after the rule-
based conversion. We examined the rule-based
conversion on MEASUREMENT COMPARISON and
REFERENCE RANGE DETECTION.

The results with the decimal notation are shown
in Table 5. The rule-based conversion increased
MEASUREMENT COMPARISON performance be-
cause the converted MEASUREMENT COMPARISON

does not require an understanding of unit conver-
sion to solve the problem. However, it can be seen
that almost all models became worse on REFER-
ENCE RANGE DETECTION. This shows that the
knowledge about the reference range is highly cor-
related with the specific UoM. Thus, the rule-based
conversion is a suboptimal choice if we want to
utilize the domain knowledge embedded in PLMs.
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Figure 1: Our scale embedding.

Task
MEASUREMENT COMPARISON

UNIT REF
COMP ARG SORT

Model in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆)

ALBERT 92.9 (11.1) 78.9 (6.8) 73.6 (16.5) 63.5 (13.0) 92.9 (10.4) 86.8 (12.5) 75.7 (14.2) 68.0 (11.8) 83.5 (12.4) 63.9 (2.9)
BERT 95.9 (14.5) 89.0 (12.0) 79.8 (18.9) 75.6 (21.3) 91.7 (36.8) 90.9 (36.4) 87.9 (26.0) 80.2 (21.0) 95.3 (18.1) 62.6 (-4.9)
BioBERT 98.4 (8.3) 93.2 (5.2) 85.9 (26.9) 83.0 (25.4) 94.0 (16.7) 93.0 (20.0) 90.1 (17.1) 85.7 (15.2) 98.4 (11.4) 61.9 (-2.3)
BlueBERT 97.4 (22.8) 88.1 (14.9) 75.9 (18.9) 67.7 (12.2) 91.8 (18.8) 90.3 (22.3) 80.0 (20.8) 76.2 (19.1) 94.3 (17.2) 66.1 (-2.9)
Scratch 70.2 (12.5) 60.3 (9.0) 45.5 (1.2) 44.1 (1.1) 33.2 (-0.1) 33.8 (0.1) 60.3 (3.5) 56.1 (2.2) 69.0 (6.4) 66.3 (1.3)

Table 6: Effect of scale embedding on MSTs. We report the classification accuracy and performance improvement
(∆) after applying scale embedding.

Scale Embedding and its Effect In Section 4, we
observed that none of the PLMs showed a perfect
understanding of each MST. We suspect that such
a gap originates in the deficiency of PLM’s ability
to extract numerical values from measurements
and compare their magnitudes. To this end, we
propose scale embedding, an additional embedding
that provides the model with the information of the
position and scale of numbers in the input text.

As described in Figure 1, we incrementally as-
signed the index to each token from the end to
the beginning of a sentence. If we encounter a
token that is not included in the numerical value,
then we reset the index to zero and keep assigning
the index zero to tokens until another numerical
value appears. We distinguished between numeri-
cal and nonnumerical subwords using the regular
expression. Note that we trained only the scale
embedding and MLM head while freezing other
pre-trained weights of the language model. This
allows us to adapt the model to any numerical rea-
soning tasks simply by plugging a different scale
embedding into them.

Table 6 shows the MST results after the scale
embedding is applied to all models, where we can
see significantly improved test results, even for
ARGMIN/MAX and UNIT CONVERSION.1 Note
that the scale embedding is minimally effective for
Scratch, except for COMPARISON. This shows that
solving our MSTs requires more than just simple
embeddings, and a PLM that understands context
is an essential element.

1The full set of experimental results are shown in Table 13
in the Appendix.

5 Related Works

Over the years, numerical reasoning has been an
active research area. Some works investigate the
numeracy of static word embeddings (Naik et al.,
2019), contextualized language embeddings (Wal-
lace et al., 2019), and multilingual words (John-
son et al., 2020). Wallace et al. (2019) shows
that ELMo, BERT, and GloVe embeddings are
capable of capturing numeracy, but only within
the range of numbers seen during training. Gen-
BERT (Geva et al., 2020), NumGPT (Jin et al.,
2021), and NT5 (Yang et al., 2021) focus on incor-
porating arithmetic skills into pre-trained models.
Another task that deals with numerical quantities is
measurement estimation. VerbPhysics (Forbes and
Choi, 2017) proposes the dataset to compare the
relative scales between the physical attributes of
various objects. DoQ (Elazar et al., 2019) provides
an empirical distribution over possible values of
quantitative attributes. Zhang et al. (2020) tests that
NLP models contain information about the scalar
magnitudes of physical objects. Although previous
studies probed numerical reasoning over numeral
and physical attributes, no attempt has been made
to investigate reasoning over measurements.

6 Conclusion

To the best of our knowledge, our study is the first
to investigate reasoning over measurements. Our
analysis shows that PLMs lack the capability re-
quired for reasoning over measurements. We pro-
posed a scale embedding approach that provides in-
formation on the position and scale of numbers, and
it significantly increases the MST performance.
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Limitations

Our scale embedding can make mistakes when
the unit itself contains numbers (e.g. mg/100ml).
Therefore, scale embedding should not be applied
to UoM containing numbers through exception han-
dling.

Our work will be largely affected by the created
prompts. If the prompt is not obvious for PLMs to
understand, although they have such reasoning abil-
ity, they may not give the correct answer. To miti-
gate this problem, we conducted experiments with
different sets of prompts in Section 4 and showed
that the results maintain their tendency across the
prompts. Despite these efforts, it is still unclear
what the optimal choice of the prompt is. We re-
main this problem as a future work.
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UoM
w/o Prefix w/ Prefix
m m, cm, mm, µm, nm
A A, mA, µA, nA
K K, mK, µK
M M, mM, µM, nM
Eq/l Eq/l, mEq/l, µEq/l, mEq/ml, mEq/µl
g/l g/l, mg/l, µg/l, mg/dl, g/dl, µg/dl, ng/dl, g/ml, mg/ml
IU/l IU/l, IU/ml, mIU/ml, µIU/ml, mIU/l, µIU/l, IU/µl, mIU/µl
U/l U/l, U/ml, U/µl
l/min l/min, dl/min, ml/min, µl/min
#/l #/dl, #/ml, #/µl
k/l k/dl, k/ml, k/µl
l l, dl, ml, µl, nl, pl, fl
g g, mg, µg, ng, pg, fg
s s, ms, µs, ns
m/hr m/hr, cm/hr, mm/hr, µm/hr
l/hr l/hr, dl/hr, ml/hr, µl/hr

Table 7: List of units used for data generation.

A Further Details of Measuring Skill Test

A.1 Data Statistics
Table 8 shows the statistics of MSTs we used for
experiments.

A.2 Training and Evaluation
The BERT configuration of all models is the same
as the base model (L=12, H=768, A=12, Total Pa-
rameters=110M) in (Devlin et al., 2019). Maxi-
mum sequence length is 512.

We trained the model with batch size 256 for 30
epochs. We used the Adam optimizer for training.
The learning rate started from 5e-5 and linearly de-
cayed towards 1e-8. We early stopped the training
when the validation accuracy did not increase for 2
epochs. The batch size for evaluation is 128, and
other settings are the same as training. We found
the optimal hyperparameters using the grid search,
where we evaluated the learning rate [1e-5, 2e-5,
5e-5, 1e-4], batch size [16,32,64,128].

B More Details of Prompt Sets

The results with both decimal and scientific nota-
tion are shown in Table 9.

B.1 LABEL

Inspired by Yuan et al. (2021), we included syn-
onyms as an answer to make the prompt diverse.
We used the website https://www.wordhippo.
com/ to search for synonyms. Among the search
results, we chose two words that match the context.
We report the list of synonyms in Table 10.

B.2 CONTEXT

If the context differs from what PLM saw dur-
ing pre-training, then PLMs will struggle to solve

MSTs even if they understand the measuring
skills. To mitigate this, we prepared four addi-
tional prompts with the same meaning. Additional
prompts are listed in Table 11.

B.3 UOM

In the general domain, some UoMs listed in Ta-
ble 7 rarely appear in the context. For example,
international units per liter (IU/l) is frequently used
in pharmacology, but not in other scientific articles.
Therefore, we can wonder if some rare biomedical
units disrupt the understanding of general domain
PLMs (e.g., BERT and ALBERT). To answer this
question, we replaced all UoMs in the dataset with
the commonly used UoMs: g, l, m, and s.

C Additional Results on Rule-based
Conversion

Table 12 describes the complete set of MST results
after applying rule-based conversion.

D Additional Results on Scale Embedding

Table 13 describes the MST results of scale embed-
ding with decimal and scientific notation.

E Experimental Environment

We trained the models with Google TPU v2-8 and
v3-8. We used PyTorch 1.10.0 (Paszke et al., 2019)
and Huggingface Transformers (Wolf et al., 2020)
4.3.3 for experiments.
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Task Split Number Range # Samples Label Distribution

COMPARISON

train interpolation 299,394 smaller: 0.5, larger: 0.5

valid
interpolation 29,986 smaller: 0.498, larger: 0.502
extrapolation 30,000 smaller: 0.495, larger: 0.505

test
interpolation 29,988 smaller: 0.501, larger: 0.499
extrapolation 30,000 smaller: 0.501, larger: 0.499

ARGMIN/MAX

train interpolation 300,000 smallest:0.333, middle: 0.334, largest: 0.333

valid
interpolation 30,000 smallest:0.333, middle: 0.334, largest: 0.333
extrapolation 30,000 smallest:0.333, middle: 0.334, largest: 0.333

test
interpolation 30,000 smallest:0.332, middle: 0.335, largest: 0.333
extrapolation 30,000 smallest:0.335, middle: 0.332, largest: 0.333

SORTING

train interpolation 300,000 decreasing: 0.333, random: 0.332, increasing: 0.335

valid
extrapolation 30,000 decreasing: 0.333, random: 0.332, increasing: 0.335
extrapolation 30,000 decreasing: 0.337, random: 0.332, increasing: 0.331

test
interpolation 30,000 decreasing: 0.337, random: 0.332, increasing: 0.331
extrapolation 30,000 decreasing: 0.328, random: 0.339, increasing: 0.333

UNIT CONVERSION

train interpolation 259,588 same: 0.489, different: 0.511

valid
interpolation 23,931 same: 0.489, different: 0.511
extrapolation 28,814 same: 0.5, different: 0.5

test
interpolation 23,538 same: 0.483, different: 0.517
extrapolation 28,696 same: 0.498, different: 0.502

REFERENCE RANGE DETECTION

train interpolation 201,061 normal: 0.575, abnormal: 0.425

valid
interpolation 17,111 normal: 0.593, abnormal: 0.407
extrapolation 21,212 normal: 0.618, abnormal: 0.382

test
interpolation 16,948 normal: 0.586, abnormal: 0.414
extrapolation 18,429 normal: 0.659, abnormal: 0.341

Table 8: Statistics of MSTs used for experiments.

Task
MEASUREMENT COMPARISON

UNIT REF
COMP ARG SORT

Prompt Set Model Notation in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆)

LABEL

ALBERT
Sci 77.1 (-4.1) 73.8 (-3.5) 40.5 (-19.9) 34.2 (-23.8) 71.3 (-6.9) 65.6 (-10.9) 54.5 (5.9) 53.0 (3.1) 51.4 (-20.5) 34.6 (-25.3)

Deci 78.7 (-3.1) 70.8 (-1.3) 40.9 (-16.2) 33.1 (-17.4) 73.6 (-8.9) 67.2 (-7.1) 55.5 (-6.0) 56.0 (-0.2) 51.1 (-20.0) 36.0 (-25.0)

BERT
Sci 68.9 (-4.4) 68.7 (-3.7) 42.9 (-12.2) 42.9 (-9.3) 47.3 (1.7) 46.4 (1.4) 53.4 (0.7) 52.2 (1.0) 47.4 (-26.1) 23.0 (-41.3)

Deci 73.1 (-8.3) 70.8 (-6.2) 54.0 (-6.9) 50.7 (-3.6) 54.0 (-0.9) 54.3 (-0.2) 56.6 (-5.3) 55.0 (-4.2) 40.3 (-36.9) 13.7 (-53.8)

BioBERT
Sci 74.0 (-8.7) 73.3 (-9.0) 50.9 (-4.1) 50.8 (-3.6) 61.8 (-6.4) 61.7 (-7.4) 55.8 (-2.9) 54.1 (-3.2) 59.3 (-22.0) 54.3 (-9.4)

Deci 82.8 (-7.3) 80.2 (-7.8) 56.7 (-2.3) 55.7 (-1.9) 66.4 (-10.9) 62.6 (-10.4) 61.9 (-11.1) 60.4 (-10.1) 69.1 (-17.9) 59.6 (-4.6)

BlueBERT
Sci 77.0 (-0.3) 76.3 (0.0) 44.7 (-2.2) 44.3 (-2.6) 64.6 (1.0) 65.1 (0.8) 52.9 (-0.1) 51.3 (0.0) 70.0 (-3.6) 63.8 (-1.6)

Deci 75.0 (0.4) 69.7 (-3.5) 56.9 (-0.1) 55.3 (-0.2) 70.1 (-2.9) 66.6 (-1.4) 56.4 (-2.8) 54.9 (-2.2) 76.4 (-0.7) 70.6 (1.6)

CONTEXT

ALBERT
Sci 68.4 (-12.8) 65.4 (-11.9) 49.3 (-11.1) 48.2 (-9.8) 71.4 (-6.8) 69.2 (-7.3) 49.7 (1.1) 50.0 (0.1) 65.7 (-6.2) 57.2 (-2.7)

Deci 67.8 (-14.0) 61.8 (-10.3) 49.1 (-8.0) 43.5 (-7.0) 72.3 (-10.2) 68.2 (-6.1) 50.4 (-11.1) 50.5 (-5.7) 65.8 (-5.3) 56.9 (-4.1)

BERT
Sci 65.4 (-7.9) 64.5 (-7.9) 46.8 (-8.3) 44.6 (-7.6) 44.6 (-1.0) 43.9 (-1.1) 52.7 (0.0) 52.5 (1.3) 65.4 (-8.1) 58.9 (-5.4)

Deci 70.2 (-11.2) 67.9 (-9.1) 52.4 (-8.5) 47.1 (-7.2) 51.8 (-3.1) 50.6 (-3.9) 56.1 (-5.8) 55.2 (-4.0) 66.4 (-10.8) 63.2 (-4.3)

BioBERT
Sci 74.6 (-8.1) 74.2 (-8.1) 53.3 (-1.7) 52.9 (-1.5) 68.4 (0.2) 67.9 (-1.2) 55.0 (-3.7) 54.7 (-2.6) 70.8 (-10.5) 61.2 (-2.5)

Deci 80.7 (-9.4) 78.4 (-9.6) 58.1 (-0.9) 55.9 (-1.7) 73.6 (-3.7) 69.7 (-3.3) 60.4 (-12.6) 59.3 (-11.2) 75.2 (-11.8) 64.8 (0.6)

BlueBERT
Sci 68.4 (-8.9) 67.1 (-9.2) 40.4 (-6.5) 40.6 (-6.3) 56.8 (-6.8) 56.5 (-7.8) 50.3 (-2.7) 50.2 (-1.1) 66.5 (-7.1) 60.3 (-5.1)

Deci 71.5 (-3.1) 65.6 (-7.6) 51.9 (-5.1) 48.5 (-7.0) 60.6 (-12.4) 56.4 (-11.6) 50.7 (-8.5) 50.7 (-6.4) 67.4 (-9.7) 64.9 (-4.1)

UOM

ALBERT
Sci 92.8 (11.6) 87.2 (9.9) 73.0 (12.6) 68.7 (10.7) 89.0 (10.8) 84.6 (8.1) 60.5 (11.9) 56.1 (6.2) N/A N/A

Deci 87.9 (6.1) 80.2 (8.1) 71.0 (13.9) 58.8 (8.3) 90.5 (8.0) 85.5 (11.2) 64.2 (2.7) 56.9 (0.7) N/A N/A

BERT
Sci 81.5 (8.2) 78.9 (6.5) 60.6 (5.5) 61.8 (9.6) 50.7 (5.1) 49.0 (4.0) 56.5 (3.8) 53.2 (2.0) N/A N/A

Deci 90.0 (8.6) 87.2 (10.2) 69.4 (8.5) 68.2 (13.9) 67.1 (12.2) 63.0 (8.5) 67.2 (5.3) 64.8 (5.6) N/A N/A

BioBERT
Sci 91.3 (8.6) 90.3 (8.0) 53.6 (-1.4) 52.2 (-2.2) 72.7 (4.5) 70.5 (1.4) 66.1 (7.4) 63.2 (5.9) N/A N/A

Deci 96.5 (6.4) 94.8 (6.8) 72.1 (13.1) 69.3 (11.7) 84.0 (6.7) 79.6 (6.6) 82.5 (9.5) 77.9 (7.4) N/A N/A

BlueBERT
Sci 85.8 (8.5) 83.0 (6.7) 57.9 (11.0) 57.3 (10.4) 68.6 (5.0) 69.4 (5.1) 57.2 (4.2) 53.5 (2.2) N/A N/A

Deci 88.3 (13.7) 83.8 (10.6) 66.5 (9.5) 63.8 (8.3) 76.5 (3.5) 71.7 (3.7) 66.6 (7.4) 62.4 (5.3) N/A N/A

Table 9: Test-set results on different sets of prompts. We report the classification accuracy and the performance
difference (∆). We obtain ∆ by subtracting the results in Table 3 from this table.

1790



Task Answer Candidates Synonyms

COMPARISON
larger higher, bigger
smaller lower, less

ARGMIN/MAX

largest biggest, maximum
middle medium, intermediate
smallest lowest, minimum

SORTING

increasing growing, ascending
random unclear, confusing
decreasing reducing, descending

UNIT CONVERSION
same equal, identical
different distinct, unlike

REFERENCE RANGE DETECTION
normal regular, safe
abnormal irregular, lethal

Table 10: Synonyms of the answer candidates we used for LABEL.

Task Template

COMPARISON

[M] is [MASK] than [M]
compared to [M], [M] is [MASK] value
the measurement of control group ([M]) is [MASK] than [M]
comparison: [M], [M], result: [MASK]
[M] [MASK] [M]

ARGMIN/MAX

The [MASK] value among [LoM] is [M]
[M] is the [MASK] value of [LoM]
Among the list of measurements [LoM], the [MASK] value is [M]
argmin,argmax: [LoM], [M], result: [MASK]
[MASK] [LoM] , [M]

SORTING

sort [LoM] in [MASK] order is [LoM]
arranging [LoM] in [MASK] order is [LoM]
[LoM] is obtained by sorting [LoM] in [MASK] order
sort: [LoM], [LoM], result: [MASK]
[LoM] [MASK] [LoM]

UNIT CONVERSION

[M] and [M] are the [MASK] value
convert [M] to [MASK] value, then the result is [M]
compare [M] to [M], the two are the [MASK] value
measurement comparison: [M], [M], result: [MASK]
[M] , [M] [MASK]

REFERENCE RANGE DETECTION

[M] of [ENT] is [MASK]
[M] of [ENT] falls into [MASK] range
The physician decides [M] of [ENT] as [MASK]
reference range: [ENT], [M], result: [MASK]
[ENT] [M] [MASK]

Table 11: Templates for CONTEXT. [M] is the measurement and [LoM] is the list of measurements.
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Task
MEASUREMENT COMPARISON

REF
COMP ARG SORT

Model Notation in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆)

ALBERT
Sci 73.8 (-7.4) 73.0 (-4.3) 54.7 (-5.7) 51.0 (-7.0) 80.4 (2.2) 77.7 (1.2) 71.8 (-0.1) 62.3 (2.4)

Deci 87.5 (5.7) 85.3 (13.2) 71.8 (14.7) 68.2 (17.7) 87.3 (4.8) 85.3 (11.0) 65.6 (-5.5) 53.8 (-7.2)

BERT
Sci 69.2 (-4.1) 68.6 (-3.8) 53.7 (-1.4) 52.4 (0.2) 53.4 (7.8) 53.4 (8.4) 73.2 (-0.3) 63.5 (-0.8)

Deci 88.3 (6.9) 86.8 (9.8) 59.3 (-1.6) 60.6 (6.3) 77.5 (22.6) 77.5 (23.0) 69.6 (-7.6) 64.2 (-3.3)

BioBERT
Sci 80.6 (-2.1) 80.1 (-2.2) 50.4 (-4.6) 47.0 (-7.4) 69.0 (0.8) 68.1 (-1.0) 79.0 (-2.3) 64.3 (0.6)

Deci 94.7 (4.6) 93.5 (5.5) 70.7 (11.7) 68.3 (10.7) 83.6 (6.3) 82.9 (9.9) 77.6 (-9.4) 65.7 (1.5)

BlueBERT
Sci 68.3 (-9.0) 65.8 (-10.5) 40.2 (-6.7) 40.1 (-6.8) 66.9 (3.3) 67.0 (2.7) 74.0 (0.4) 65.0 (-0.4)

Deci 88.7 (14.1) 86.1 (12.9) 64.8 (7.8) 60.9 (5.4) 75.2 (2.2) 74.2 (6.2) 70.3 (-6.8) 66.0 (-3.0)

Scratch
Sci 58.2 (7.3) 54.6 (3.8) 43.0 (2.8) 41.0 (3.9) 33.3 (0.0) 33.7 (-0.1) 64.7 (-1.6) 62.8 (2.0)

Deci 78.8 (21.1) 73.9 (22.6) 43.5 (-0.8) 42.9 (-0.1) 33.2 (-0.1) 33.9 (0.2) 63.6 (1.0) 64.3 (-0.7)

Table 12: Test-set results on rule-based conversion experiments. We report the classification accuracy and the
performance difference.

Task
MEASUREMENT COMPARISON

UNIT REF
COMP ARG SORT

Model Notation in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆) in(∆) ex(∆)

ALBERT
Sci 93.4 (12.2) 86.3 (9.0) 73.2 (12.8) 66.0 (8.0) 92.7 (14.5) 90.1 (13.6) 74.8 (26.2) 61.6 (11.7) 87.0 (15.1) 63.4 (3.5)

Deci 92.9 (11.1) 78.9 (6.8) 73.6 (16.5) 63.5 (13.0) 92.9 (10.4) 86.8 (12.5) 75.7 (14.2) 68.0 (11.8) 83.5 (12.4) 63.9 (2.9)

BERT
Sci 96.4 (23.1) 95.0 (22.6) 80.9 (25.8) 80.5 (28.3) 89.8 (44.2) 89.5 (44.5) 79.9 (27.2) 67.5 (16.3) 92.4 (18.9) 61.9 (-2.4)

Deci 95.9 (14.5) 89.0 (12.0) 79.8 (18.9) 75.6 (21.3) 91.7 (36.8) 90.9 (36.4) 87.9 (26.0) 80.2 (21.0) 95.3 (18.1) 62.6 (-4.9)

BioBERT
Sci 98.3 (15.6) 96.3 (14.0) 81.3 (26.3) 80.7 (26.3) 94.0 (25.8) 93.6 (24.5) 89.3 (30.6) 66.7 (9.4) 96.0 (14.7) 64.7 (1.0)

Deci 98.4 (8.3) 93.2 (5.2) 85.9 (26.9) 83.0 (25.4) 94.0 (16.7) 93.0 (20.0) 90.1 (17.1) 85.7 (15.2) 98.4 (11.4) 61.9 (-2.3)

BlueBERT
Sci 96.0 (18.7) 93.1 (16.8) 76.0 (29.1) 74.9 (28.0) 86.2 (22.6) 85.8 (21.5) 77.4 (24.4) 63.3 (12.0) 91.1 (17.5) 66.7 (1.3)

Deci 97.4 (22.8) 88.1 (14.9) 75.9 (18.9) 67.7 (12.2) 91.8 (18.8) 90.3 (22.3) 80.0 (20.8) 76.2 (19.1) 94.3 (17.2) 66.1 (-2.9)

Scratch
Sci 59.5 (8.6) 57.4 (6.6) 41.4 (1.2) 39.9 (2.8) 33.4 (0.1) 33.8 (0.0) 52.5 (0.0) 50.6 (-0.1) 80.0 (13.7) 61.8 (1.0)

Deci 70.2 (12.5) 60.3 (9.0) 45.5 (1.2) 44.1 (1.1) 33.2 (-0.1) 33.8 (0.1) 60.3 (3.5) 56.1 (2.2) 69.0 (6.4) 66.3 (1.3)

Table 13: Effect of scale embedding on MSTs. We report the classification accuracy and performance improvement
(∆) after applying scale embedding.
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