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Abstract
Causal inference is becoming an increasingly
important topic in deep learning, with the po-
tential to help with critical deep learning prob-
lems such as model robustness, interpretabil-
ity, and fairness. In addition, causality is natu-
rally widely used in various disciplines of sci-
ence, to discover causal relationships among
variables and estimate causal effects of interest.
In this tutorial, we introduce the fundamentals
of causal discovery and causal effect estima-
tion to the natural language processing (NLP)
audience, provide an overview of causal per-
spectives to NLP problems, and aim to inspire
novel approaches to NLP further. This tuto-
rial is inclusive to a variety of audiences and
is expected to facilitate the community’s de-
velopments in formulating and addressing new,
important NLP problems in light of emerging
causal principles and methodologies.

1 Introduction

Establishing causal relationships is a fundamen-
tal goal of scientific research (Pearl, 2000; Spirtes
et al., 2001). It naturally boils down to questions
of causality when we need to quantify the effec-
tiveness of a vaccine, the persuasive power of a
public health ad, or the impact of a lockdown pol-
icy: How would the treatment (e.g., vaccine) af-
fect the outcome (e.g., infection rates) compared
to a counterfactual world with no treatment? Once
formally identified, the direction and strength of
causal relationships play a key role in the formula-
tion of clinical treatments, public policy, and other
long-standing prescriptive strategies. With such
broad applications, a growing body of literature
focuses on the interplay between NLP and causal
inference (Tan et al., 2014; Wood-Doughty et al.,
2018; Sridhar and Getoor, 2019; Veitch et al., 2020;
Keith et al., 2020; Feder et al., 2021c).

Despite the interdisciplinary interest in causal
inference with text, research in this space seems
to remain scattered across domains without clear

definitions, notations, benchmark datasets, and an
understanding of the state of the art and challenges
that remain. For example, it is unclear how deficien-
cies in NLP methods (such as their inaccuracy with
low-resource languages and their tendency to prop-
agate biases in the data) affect downstream causal
estimates. In addition, hyperparameter selection
and modeling assumptions in NLP are motivated
by accuracy and tractability considerations; how
these choices affect downstream causal estimates
is underexplored.

This tutorial aims to address three questions: (1)
What is causality? (2) How can the causal formu-
lation help improve NLP models? (3) How can
causality help NLP and computational social sci-
ence to discover causal phenomena in our society?

Specifically, we will first introduce the funda-
mentals of causality for the NLP audience, then re-
view research using the causal formulation to help
NLP models (in terms of robustness, fairness, and
interpretability), and finally introduce how causal-
ity can help NLP and computational social science
to discover causal relations behind social phenom-
ena.

2 Tutorial Overview

This introductory tutorial aims to introduce causal-
ity to the NLP research community. While causal-
ity plays a major role in scientific research, it has
only now started to disseminate into the NLP com-
munity. This is why this tutorial will first focus
on providing a generalized introduction to causal-
ity and its importance and relevance to the NLP
community. We will then dive into the intersection
of causality and NLP, and divide it into two dis-
tinct areas: using causal formalisms to make NLP
methods more interpretable, robust and fair, and
discovering causal relations in social phenomena
that involve text variables. Accordingly, we divide
the content of the tutorial into the following three
parts:
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1. Introduction to Causality. We will give a
broad coverage of central concepts, principles, and
technical developments in causal modeling; iden-
tification of causal effects (known as causal effect
estimation); and finding causal relations by ana-
lyzing observational data (known as causal discov-
ery). We will focus on representations and usage
of causal models (Pearl, 2000; Spirtes et al., 2001),
how causality is different from and connected to as-
sociation, and recent machine learning methods for
causal discovery and causal representation learn-
ing (Spirtes et al., 2001; Peters et al., 2017; Spirtes
and Zhang, 2016; Shimizu et al., 2006; Zhang and
Hyvärinen, 2009; Xie et al., 2020, 2022; Huang
et al., 2022; Yao et al., 2022).

Specifically, we will answer the following ques-
tions: How can we define causality? Is causality
an indispensable notion in science and machine
learning? Why do we care about causality? How
can we infer the causal effect of one variable on
another? How can one learn causality from purely
observational data? How can we recover latent
causal variables and their relations?

2. Causality to Help Improve NLP Models. In
this part of the tutorial, we will first motivate the
audience by introducing why and how the causal
perspective helps in a class of machine learning or
AI tasks (Schölkopf et al., 2021; Pearl and Barein-
boim, 2011; Schölkopf et al., 2012; Zhang et al.,
2013, 2020). Briefly, although deep learning mod-
els achieve impressive performance by using cor-
relations for prediction tasks, there are still limita-
tions in their robustness, interpretability and fair-
ness, which could be improved using causality.

With these motivations, we will then extend the
causal formulation to NLP. Here, we will identify
and highlight existing limitations in NLP meth-
ods, and will propose three application areas where
causal ideas might help: interpretability (Guidotti
et al., 2018), robustness (e.g., McCoy et al., 2019)
and fairness (e.g., Zhao et al., 2017). For each
potential application area, we will highlight the
relevance of causal thinking in solving important
open problems in NLP (Feder et al., 2021c; Veitch
et al., 2021; Kilbertus et al., 2017).

3. Causality for NLP and Computational Social
Science. Distinct from how causality can help
improve NLP models in Part 2, we can also see
another important use of NLP: identifying causal
relations for NLP and computational social science.

For example, does there exist gender bias in the
upvotes of online posts (Veitch et al., 2020)? Do
social media opinions affect the strictness of the
COVID-19 social distancing policies (Jin et al.,
2021b)? What are the reasons behind popular
tweets? Many of these social problems involve
text data. For example, online posts, news articles,
scientific papers, conversation records, and many
others are all text variables. If we want to investi-
gate causal questions, such as the effect of certain
contents or features of text on a certain outcome,
then we need to run statistical causal models with
text modeling.

In this part, we will first introduce how to con-
duct text-involved causal effect estimation discov-
ery and causal discovery. Then, we will cover
some real-world examples where we can apply
these methods (Veitch et al., 2020; Feder et al.,
2021b; Jin et al., 2021b; Ding et al., 2022; Keidar
et al., 2022), and finally run through some exercise
questions.

3 Tutorial Outline

For the three-hour tutorial, we will use 2.5 hours to
cover three main topics: introduction of causality,
how causality can help improve NLP models, and
how causality can be applied to NLP and computa-
tional social science. And finally, we will use the
remaining 30 minutes for an interactive exercise
and Q&A.

An outline of the tutorial content is as follows:
1. Introduction to causality (60-min lecture + 5-

min break)
• Motivations: What is causality? Why is

causality helpful for NLP?
• Main content: Basics of causal effect esti-

mation, causal discovery, and causal repre-
sentation learning.

• Example work: Pearl (2000); Feder et al.
(2021b); Xie et al. (2020); Yao et al. (2022).

2. Causality to help improve NLP models (60-
min lecture + 5-min break)
• Motivations: If the goal is to help improve

NLP models, how can causality help? What
are some use case examples?

• Main content: Inspirations from causality to
help a variety of NLP topics: model robust-
ness, domain adaptation, debiasing models,
interpretability, and fairness.

• Example work: Schölkopf et al. (2021);
Feder et al. (2021c); Veitch et al. (2021);
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Jin et al. (2021c); Stolfo et al. (2022); Hup-
kes et al. (2022).

3. Applications of causality for NLP and compu-
tational social science (20-min lecture)
• Motivations: If the goal is to identify causal

phenomena in our society, how can we learn
causality on variables that involve text?

• Main content: Use of SCMs and potential
outcomes for NLP social applications such
as explaining social media behavior, polit-
ical phenomena, effective education, and
gender bias in the research community. We
will also cover cases where causal discov-
ery and inference can help verify linguistic
theories.

• Example work: Veitch et al. (2020); Jin et al.
(2021b); Ding et al. (2022).

4. Interactive exercise (20 min)
• Given a social application of NLP, we will

let the audience draw the causal graph, and
brainstorm interesting research questions.

• Given a fairness question in NLP, we will
let the audience draw the causal graph, and
discuss the causal formulation.

5. Q&A (10 min)

4 Tutorial Breadth

As for the contents of this tutorial, we will mainly
cover beginner-friendly introductory materials of
NLP, from the studies of established causality re-
searchers out of the NLP domain, such as Judea
Pearl, Donald Rubin, Bernhard Schölkopf, Clark
Glymour, and Peter Spirtes. Apart from the
work from these causality researchers, when it
comes to the more specific connection of NLP
and causality, we will cover the research work of
various researchers: Dyanya Sridhar (Mila), Vic-
tor Veitch (University of Chicago), Zach Wood-
Doughty (Northwestern University), Justin Grim-
mer (Stanford), Brandon M. Stewart (Princeton),
Margaret E. Roberts (UCSD), Reid Pryzant (Mi-
crosoft), and many others.

5 Organizing Committee

Zhijing Jin (she/her) is a PhD at Max Planck Insti-
tute and ETH Zürich supervised by Prof Bernhard
Schölkopf. Her research aims to (1) improve NLP
models by connecting NLP with causal inference
(Jin et al., 2021c,b; Ni et al., 2022), and (2) ex-
pand the impact of NLP by promoting NLP for

social good (Jin et al., 2021a; Field et al., 2021;
Gonzalez et al., 2022). She has published at many
NLP and AI venues (e.g., AAAI, ACL, EMNLP,
NAACL, COLING, AISTATS), and NLP for health-
care venues (e.g., AAHPM, JPSM). To foster the
causality research community, she serves as the
Publications Chair for the 1st conference on Causal
Learning and Reasoning (CLeaR) (Schölkopf et al.,
2022). She is also actively involved in AI for social
good, as the organizer of NLP for Positive Impact
Workshop at ACL 2021 (Field et al., 2021) and
EMNLP 2022, and RobustML workshop at ICLR
2021. To support the NLP research community,
she organizes the ACL Year-Round Mentorship
program from 2021.

Amir Feder (he/him) is a postdoc at Columbia
University, working with Prof David Blei. Amir de-
velops methods that integrate causality into natural
language processing to generate more robust and
interpretable models. He is also interested in in-
vestigating and developing linguistically informed
algorithms for predicting and understanding hu-
man behavior. Amir is currently also a visiting
researcher (part time) at Google Research’s Medi-
cal Brain Team, where he works on methods that
leverage causal methodology for medical language
models. He is a co-organizer of the First Work-
shop on Causal Inference and NLP (CI+NLP) at
EMNLP 2021 (Feder et al., 2021a).

Kun Zhang (he/him) is an associate professor at
Carnegie Mellon University and MBZUAI. His
research interests lie in causal discovery and
causality-based learning. He develops methods
for automated causal discovery from various kinds
of data, investigates learning problems including
transfer learning and deep learning from a causal
view, and studies philosophical foundations of cau-
sation and machine learning. He co-authored a
best student paper for the Conference on Uncer-
tainty in Artificial Intelligence (UAI) and a best
finalist paper for the Conference on Computer Vi-
sion and Pattern Recognition (CVPR), and received
the best benchmark award of the 2nd causality
challenge. He has taken essential roles at many
events of causal inference, including the general
and program co-chair of the 1st Conference on
Causal Learning and Reasoning (CLeaR 2022),
program co-chair of the UAI 2022, co-organizer of
the 9th Causal Inference Workshop at UAI 2021,
co-organizer of NeurIPS 2020 Workshop on Causal
Discovery and Causality-Inspired Machine Learn-

19

https://sites.google.com/connect.hku.hk/robustml-2021/home
https://mentorship.aclweb.org


ing, 2020, co-editor of a number of journal special
issues on causality, and many others.

6 Diversity Efforts

Our organizing committee includes both junior
and senior instructors, as well as diverse genders,
racial/ethnic backgrounds, and affiliations across
America, Europe and Asia, which will help make
people from various backgrounds feel more wel-
come to our workshop.

The topic of our workshop is causal inference,
which can serve as a helpful tool for many NLP
tasks, and the methods can scale up to various lan-
guages and domains. In addition, we advertise the
tutorial to diversity-oriented venues (e.g., Widen-
ing NLP, QueerInAI, BlackInAI, WiML).

7 Target Audience & Prerequisites

There is no required audience background. Pre-
ferred knowledge includes the basics of statistics
(e.g., understanding of probability distribution of
single variables, joint probability distributions, and
conditional probability distributions), and the ba-
sics of NLP (e.g., understanding of sentence em-
beddings, and the setup of simple NLP tasks such
as classification).

8 Recommended Reading List

We compiled a recommended reading list of causal-
ity and NLP papers at (Jin, 2021).1 Among the
papers, the top three recommended readings are
Guo et al. (2020), Schölkopf et al. (2021) and Feder
et al. (2021b).

9 Other Information

Tutorial Type: Introductory.
Tutorial Materials: We will make available on
our GitHub (Jin, 2021) all tutorial presentation ma-
terials, including slides, captioned video record-
ings, codes, and the recommended paper list.

10 Ethical Considerations

The theme of the tutorial focuses on introducing the
method of causal inference to NLP. The introduc-
tion materials will stay on the technical side. There
will not be direct links to applications that will raise
ethical concerns. Additionally, since one of the in-
structor’s research background is NLP for social

1https://github.com/zhijing-jin/
Causality4NLP_Papers

good, we will introduce some use cases of NLP
and causal inference for social good applications.
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