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Abstract

Pretrained, large, generative language models
(LMs) have had great success in a wide range
of sequence tagging and structured prediction
tasks. Casting a sequence tagging task as a
Seq2Seq one requires deciding the formats of
the input and output sequences. However, we
lack a principled understanding of the trade-
offs associated with these formats (such as
the effect on model accuracy, sequence length,
multilingual generalization, hallucination). In
this paper, we rigorously study different for-
mats one could use for casting input text sen-
tences and their output labels into the input
and target (i.e., output) of a Seq2Seq model.
Along the way, we introduce a new format,
which we show to to be both simpler and
more effective. Additionally the new format
demonstrates significant gains in the multilin-
gual settings – both zero-shot transfer learn-
ing and joint training. Lastly, we find that the
new format is more robust and almost com-
pletely devoid of hallucination – an issue we
find common in existing formats. With well
over a 1000 experiments studying 14 different
formats, over 7 diverse public benchmarks –
including 3 multilingual datasets spanning 7
languages – we believe our findings provide
a strong empirical basis in understanding how
we should tackle sequence tagging tasks.

1 Introduction

The advent of powerful generative language mod-
els (LMs) such as T5 (Raffel et al., 2019) and
mT5 (Xue et al., 2021) have unlocked new op-
portunities. Recent works have shown great suc-
cess applying these models to a wide range of
sequence tagging and structured prediction tasks
(Athiwaratkun et al., 2020; Du et al., 2021; Paolini
et al., 2021). The key to leveraging these models
is to cast the sequence tagging task as a suitable
Seq2Seq task – by transforming the original input
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text and output labels into the input and target
(i.e., output) of a Seq2Seq model.

Slot-filling example from Athiwaratkun et al. (2020)
Input: Add Kent James to the Disney soundtrack

Target: Add [ Kent James | artist ] to the [ Disney | playlist ] soundtrack
SRL example from Paolini et al. (2021) (predicate = "sold")

Input: The luxury auto maker last year [ sold ] 1,214 cars in the U.S.
Target: [ The luxury auto maker |subject ] [ last year | temporal ] sold

[ 1,214 cars | object ] [ in the U.S. | location ]

Table 1: Examples of the TaggedSpans approach used
in current works to transform NLP problems into the
Seq2Seq setting.

While the list of NLP problems tackled in this
manner are diverse – Named Entity Recognition,
Co-reference resolution, Semantic Role Labeling
(SRL), Slot-filling, Entity and Relation extraction
to name a few – the Seq2Seq transformation used
across different works is surprisingly similar (with
slight variants). As seen from the examples in Ta-
ble 1, existing works use the same Seq2Seq trans-
formation – what we refer to as the TaggedSpans
format. More specifically, the target sentence re-
sembles the input sentence, except for tagged deco-
rators surrounding the corresponding token spans.

While exciting results have been achieved using
this format, there has been no principled study un-
derstanding this format choice. Towards that end,
we make the following contributions in this paper:

• Based on rigorous experiments, we de-
rive insights into the performance of the
TaggedSpans format (as well as other
Seq2Seq transformation formats) along dif-
ferent dimensions.

• We propose a new Sentinel-based format
that proves to be not only more effec-
tive (achieving significantly higher accuracy
across all the benchmarks) but also more effi-
cient than the formats used in existing works.

• We perform an in-depth study understand-
ing performance of different formats in the
multilingual learning setting – with the new
Sentinel-based format outperforming other
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formats by upto 30-40% in some settings.
• We demonstrate the robustness of different for-

mats to factors such as model size, sequence
length and decoding strategy.

• Lastly, we show that the existing
TaggedSpans format (as well as other
similar formats) are highly susceptible
to hallucinations (Maynez et al., 2020),
i.e., the proclivity of large LMs adding,
modifying, or deleting input words while
generating the output sequence. While the
TaggedSpans had hallucinated tokens in
over 50% of examples in some settings, the
proposed Sentinel-based format is virtually
hallucination-free (< 0.15% hallucinations).

With well over a 1000 experiments involving 14
different formats, 7 datasets (3 multilingual), we
believe this to be the most comprehensive study on
this topic to-date.

2 Related Work

Several recent papers have shown the strength of
the large Seq2Seq LMs for sequence tagging – in
the context of Named Entity Recognition (Yan
et al., 2021; Qin and Joty, 2022; Paolini et al.,
2021), Slot-Labeling for Semantic Parsing (Krish-
nan et al., 2021; Ahmad et al., 2021; Du et al.,
2021; Athiwaratkun et al., 2020), and Semantic
Role Labeling (Daza and Frank, 2018). Yan et al.
(2021) proposed a general Seq2Seq framework for
NER tasks, both for disjoint spans and nested over-
lapping spans. Ahmad et al. (2021) showed that
Seq2Seq models can significantly outperform the
encoder-only models for slot-filling tasks. Raf-
fel et al. (2019) converted a wide range of se-
quence tagging tasks (e.g., answer span extraction
for Question-Answering) into Seq2Seq problems.
All these methods, however, apply fairly similar
text-to-text formats in that: they (1) prepend the
input with a task prefix and leave rest of it mostly
unchanged and (2) use the TaggedSpans format
(or slight variants) for the target (output) sequence
i.e., copy over input tokens and interlace with the
tags for the associated spans. In this paper, we
systematically evaluate this approach, and demon-
strate its relative strengths and weaknesses across
a large collection of benchmarks.

Recent papers investigated the impact of care-
fully hand-crafted input prompts for large language
models and showed different prompt templates can
significantly change the prediction accuracy, espe-

cially in zero-shot or few-shot settings (Reynolds
and McDonell, 2021; Wang et al., 2021; Zhong
et al., 2021). For example, Zhong et al. (2021)
has demonstrated that different prompts describing
classification labels can have large impact on the
zero-shot classification accuracy. Similar nuances
are likely at play for output sequence formats as
well, but there hasn’t been enough systematic study
to understand the impact of different output format
choices. We present empirical evaluations of dif-
ferent input/output formats for sequence tagging
tasks, and how they impact sequence tagging accu-
racy in English-only, multilingual, and zero-shot
multilingual settings.

3 The Seq2Seq Transformation

Applying pretrained generative models on these se-
quence labeling / structured predictions problems
requires creating the input and target strings from
the original input sentences and labels. The exam-
ples in Table 1 indicate how previous works have
tackled this transformation. In this section, we for-
malize this transformation and consider different
alternatives to the existing TaggedSpans format
in how we can create the input and target strings.
Note that to simplify the exposition, we assume
that the original labels can be represented using the
standard BIO (Begin-Inside-Outside) notation – as
is conventional for most of these tasks.

3.1 The Tagged Spans Format
This is the approach used by existing works for
transforming into a Seq2Seq task. Here the target
sentence is an interlaced amalgamation of the input
and the associated tag labels. Consider the exam-
ple shown in Table 2. Here the "<ARTIST>" tag
precedes the token "Kent" to indicate the start of
an "ARTIST" span, and is closed with the "</>"
marker after the token "James". In other words,
salient token spans are explicitly surrounded by the
associated tags 1

An astute reader may notice that the example
from Table 2 also contains tagged decorators for the
"O" (Outside) class as well unlike existing works.
This was done to simplify exposition and demon-
strate differences from the other formats we study.
While we do discuss dropping these Outside tags
in Sec. 3.4, it is worth noting that in our empirical

1Note that, to simplify exposition of different formats, we
use a slightly different punctuation symbol for the tags than
the square brackets used in the examples in Table 1. This
choice does not affect performance though.
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Format Sample Input & Target
Tagged Spans input: Add Kent James to the Disney soundtrack

target: <O> Add </> <ARTIST> Kent James </> <O> to </> <O> the </> <PLAYLIST> Disney </> <O> soundtrack </>
Input + Tag input: Add Kent James to the Disney soundtrack

target: <O> Add <ARTIST> Kent <I-ARTIST> James <O> to <O> the <PLAYLIST> Disney <O> soundtrack
Tag Only input: Add Kent James to the Disney soundtrack

target: O ARTIST I-ARTIST O O PLAYLIST O
Sentinel + Tag input: <extra_id_0> Add <extra_id_1> Kent <extra_id_2> James <extra_id_3> to <extra_id_4> the <extra_id_5> Disney <extra_id_6> soundtrack

target: <extra_id_0> O <extra_id_1> ARTIST <extra_id_2> I-ARTIST <extra_id_3> O <extra_id_4> O <extra_id_5> PLAYLIST <extra_id_6> O
Extractive input: Add Kent James to the Disney soundtrack

Tagged Spans target: <ARTIST> Kent James <PLAYLIST> Disney
Extractive input: <extra_id_0> Add <extra_id_1> Kent <extra_id_2> James <extra_id_3> to <extra_id_4> the <extra_id_5> Disney <extra_id_6> soundtrack

Sentinel + Tag target: <extra_id_1> ARTIST <extra_id_2> I-ARTIST <extra_id_5> PLAYLIST

Table 2: Example illustrating how the input and target differ across the high-level formats studied here.

analyses we found that having these Outside tag
markers actually helps improve performance for
the TaggedSpans and other formats (Table 5).

Why this format? Given how common this
format is in existing works, one may suspect that
this choice originates from some meticulous study.
However until this paper, there have been no previ-
ous efforts exploring other choices, or understand-
ing the relative benefits & drawbacks of this format.

In particular, one source of concern is the need
to faithfully repeat the input as part of the out-
put, in addition to identifying the correct tags for
the token spans. This makes the learning task sig-
nificantly harder (as evidenced by the diminished
empirical performance observed in Sec. 6). Further-
more this copying of text also makes generalization
in other languages harder (seen in Sec. 7). Addi-
tionally the model is harder to interpret since the
log-likelihood scores are a combination of the gen-
erated input spans and their associated output tags.
Lastly, this copying makes the model susceptible
to hallucinations (in over 50% of examples in some
settings – Sec. 9.2).

3.2 Other Formats

A slight variant of the TaggedSpans format is the
Input + Tag format. As seen from the example
in Table 2, the output here is an interlacing of the
input tokens with the BIO labels i.e., the input
token is preceded by its BIO label. Unfortunately,
this format shares the same drawbacks due to the
need to accurately repeat the input.

To remedy the issues caused by requiring the
input in the target, one solution is to drop the input
tokens altogether. This format – which we call the
Tag-Only format – is the simplest yet as it simply
drops the input tokens from the Input + Tag for-
mat’s target. While this remedies some issues, it
makes the learning problem significantly harder as
the model now needs to also track token indices
implicitly – a task even harder in non-English lan-
guages (as we later demonstrate empirically).

3.3 The proposed Sentinel+Tag Format

To avoid these issues with the aforementioned for-
mats, we would like a format that:

• Avoids having to repeat the input to simplify
decoding and avoid hallucination.

• Allows for easier way of tracking tokens (and
indices) and associating them with their tags.

• Does so in a language-agnostic manner so as
to enable multilingual generalization.

To achieve this, the key insight we had was to
slightly modify the input to simplify tracking tokens.
In particular, we proposed using text-independent,
language-independent Sentinel tokens – see ex-
ample in Table 2. Introducing these sentinels in
the input, allows us to avoid repeating the original
text tokens in the target, and instead use the sen-
tinel tokens2 associated with each input token to
help learn the corresponding BIO tag. By virtue of
the resulting targets being independent of the text
tokens and language-agnostic, the Sentinel+Tag
format can generalize well and be largely immune
to hallucination. Furthermore, unlike the Tag-Only
approach, the learning problem is simplified as the
sentinels help uniquely ground tokens (spans) and
the associate tags. Lastly, while the input is slightly
longer, this is completely offset by the massive re-
duction in output sequence lengths – see Table 13.

While questions may arise about the effect of
imperfect tokenization (e.g. in non-space separated
languages like Thai), our empirical study in Sec-
tion 7 spanning 7 languages aims to answer this.

3.4 Variants and Simplifications

We also investigated further variants of these for-
mats, that simplify the target texts. One such simpli-
fication pertains to the Inside tags. Rather than hav-
ing to produce the complete tag (e.g. "I-ARTIST"),
we also evaluated variants where the target sim-
ply uses the tag "I" regardless of the opened tag.

2In this work we use one sentinel per token. In particular,
the sentinel we used for token number k is <extra_id_k> –
since these are present in the mT5 vocabulary as single tokens.
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Dataset Lang # Train # Valid # Test Token/ex Tagged span/ex % tokens tagged # Tag classes Tag Entropy

mATIS
en 4478 500 893 11.28 3.32 36.50 79 3.888
hi 540 60 893 11.39 3.14 34.21 65 3.823
tr 540 60 715 10.80 3.03 33.32 63 3.847

SNIPS en 13084 700 700 9.00 2.60 51.33 39 4.857
MovieTrivia en 7005 811 1953 20.31 2.95 64.74 12 2.867
Movies en 8722 1019 2441 10.23 2.19 38.65 12 3.145
Restaurant en 6845 789 1516 9.25 2.01 38.02 8 2.809

mTOP

en 15667 2235 2235 7.61 1.71 44.18 74 4.681
de 13424 1815 3549 7.97 1.70 42.73 74 4.613
es 10933 1527 2998 9.01 1.63 42.95 70 4.522
fr 11814 1577 3193 9.03 1.61 39.08 73 4.604
hi 10933 2012 2789 8.28 1.63 38.71 72 4.714
th 10759 1671 2765 9.21 1.58 48.37 73 4.608

mTOD
en 30506 4178 8615 7.26 1.69 43.46 15 2.434
es 3616 1981 3043 7.46 1.55 52.43 11 2.323
th 2154 1235 1692 7.46 1.55 52.43 11 2.323

Table 3: Statistics for the different datasets, including split sizes as well as per-examples averages of to-
kens/example, tagged spans/example. A higher % tokens tagged value indicates more tokens being part of tagged
spans. The number of tag classes and tag entropy indicate the difficulty of identifying a tag for any given span.
Note that the last 5 columns are computing using only the training sets.

When this simplification is used, we refer to it as
Simplified Inside (SI).

Another such simplification pertains to the Out-
side tags. Rather than emitting these tags, we also
evaluated variants where the Outside tag was omit-
ted from the target. Examples for these variants
can be found in Table 17 in the Appendix. We refer
to this simplification as Simplified Outside (SO).

Note that the rest of the paper assumes non-
nested spans for simplicity. However most of these
above mentioned formats can easily support nested
or overlapping spans (Example: By having multi-
ple tags for each opened span after the correspond-
ing token / sentinel in the Tag + Input or Sentinel
+ Tag approaches).

3.5 Formats for Extractive Applications
The approaches discussed so far allowed us to map
the predicted label to the exact span occurrence
in the input string. However in some scenarios
this input-alignment is not necessary. In particu-
lar, for certain tasks and applications we primarily
care about extracting only the labeled tags and as-
sociated phrases. In such cases we can further
simplify the target as seen in the target of the Ex-
tractive Tagged Spans (abbrv. ETS) in Table 2.
This format, which is used in the T5 paper (Raffel
et al., 2019), simply outputs only the labeled spans.
While this simplifies the task, it comes at the cost
of not being able to map spans precisely3 back to
the input for non-extractive tasks.

3While some heuristic matching can be used, it is hard to
do so in a multilingual-friendly manner. Additionally multiple
mentions with different semantic meanings can be problematic
(e.g. “who plays harry potter in the harry potter movies”)

We can analogously define Extractive Sen-
tinel+Tag (abbrv. ES+T) formats for this extrac-
tive setting (see last row of Table 2). Note that,
unlike the existing ETS approaches, the sentinel ap-
proach allows us to precisely map labels back to the
original input token indices and thus can be used
seamlessly for both extractive and non-extractive
tasks. However, to simplify exposition of the paper,
we separate the ES+T and ES+T Simplified (abbrv.
ES+T(S)) – which drops Inside tags (see example
in Table 17) – approaches and only discuss these
with the other extractive formats.

4 Datasets

To gain a comprehensive understanding of how
these different formats perform, we ran experi-
ments on 7 different public datasets – 4 mono-
lingual and 3 multilingual spanning 7 languages
from different language groups. The monolingual
datasets include: SNIPS (Coucke et al., 2018),
MIT Movie Trivia4, MIT Movie corpus, and MIT
Restaurant corpus. The multilingual datasets in-
clude: mATIS (Upadhyay et al., 2018) – a mul-
tilingual generalization of the ATIS dataset(Price,
1990), mTOP (Li et al., 2021), and mTOD (Schus-
ter et al., 2019). These datasets span different do-
mains – such as cinema, dining, travel, dialog . . .
– and contain different kinds of texts – including
queries, reviews, and conversations. For instance,
mATIS, SNIPS, mTOP, and mTOD contain con-
versational queries or dialog-like texts, and involve
slot labelling for semantic parsing. The MIT Movie

4All the MIT datasets were downloaded from
https://groups.csail.mit.edu/sls/downloads/.
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Trivia, MIT Movies, and MIT Restaurants datasets,
on the other hand, are widely used for Named En-
tity Recognition (NER).

As seen from the statistics listed in Table 3, these
datasets tend to have different properties. MIT
Movie Trivia dataset tends to have longer sentences,
longer tagged spans, and more named entities but
fewer number of output tag categories. On the other
hand, mATIS and mTOP have relatively shorter
inputs but contain over 70 different output tags.
The mTOD dataset has shorter inputs and fewer
output categories and is the largest training set
(> 30K for English), making it a relatively eas-
ier task. Finally, the high entropy of tags (as in the
mTOP and SNIPS) indicates a higher degree of dif-
ficulty with fairly ambiguous categories. Together
these datasets provide a broad and diverse collec-
tion of public benchmarks for evaluating different
Seq2Seq formats.

5 Empirical Setting

We studied different input/output formats using the
mT5 pretrained models (Xue et al., 2021), which
have been used to obtain state-of-the-art results
on multiple public benchmarks. In particular, we
used the Base-sized model for the majority of our
experiments as it enabled us to maximize our exper-
imentation given our compute budget, while still
providing for a very powerful initialization. How-
ever, results and trends largely stay the same for
other model sizes as we discussed in Sec 9.

In all cases, we trained these models using the
T5X5 code for 5000 steps – selecting the check-
point with the highest validation set sequence ac-
curacy. As recommended in the T5 paper we used
the default learning rate of 0.001 for all our experi-
ments, and used a batch size of 128. We appended
EOS tokens at the ends of all input and target for-
mats for consistency. Lastly, we used an input
sequence length of 128 and target sequence length
of 256, while also using packing. The impact of
training sequence length on accuracy and speed is
discussed further in Sec 9.

To evaluate the different Seq2Seq formats, we
primarily relied on two metrics:

1. Perfect: This reflects the % of times, an ex-
ample is parsed perfectly i.e., all tagged spans
are identified correctly with the right tag.

2. F1: Using CoNLL style evaluation of tagged
spans, we report Micro F1 (Macro-F1 trends

5https://github.com/google-research/t5x

were consistent with Micro-F1 findings).
One important aspect to note is that the outputs of
all the formats are different. Hence they need to
be evaluated differently. In particular, formats that
repeat the input (Tagged Spans, Input + Tag) are
more prone to hallucination. To try and decouple
this effect where possible, we evaluated the Tagged
Spans and Input + Tag format by checking the
token indices of the tagged spans – rather than
the generated token strings. While this leads to
slightly higher metrics, it allows for a more fair and
hallucination-free evaluation against approaches
like Tag-Only and Sentinel + Tag.

6 Performance on English-benchmarks

The first question we looked to answer was: How
well do these Seq2Seq approaches perform com-
pared with the previous encoder-only approaches?.
To do so, as a baseline we used the previous bench-
mark setting mBERT (Devlin et al., 2019) model
– which is an encoder-only model having a similar
size as the T5 base model’s encoder. We evaluated
the models on the simpler English-only setting to
start with. The results on all 7 English benchmarks
can be found in Table 4. Perhaps unsurprisingly,
we find that the Seq2Seq approaches significantly
outperform the encoder-only mBERT approach on
all datasets. This result is consistent with prior pa-
pers (Ahmad et al., 2021; Raffel et al., 2019). All
but the simplest Tag-Only Seq2Seq format outper-
form the mBERT baseline on all the datasets. This
conclusively demonstrates the value of modeling
these problems using the encoder-decoder models.

The next question we looked to answer was:
How do the different basic formats described in
Sec 3 compare against each other? In particular,
we wanted to understand whether not repeating
the input tokens hurts performance. As seen from
the third to sixth columns in Table 4, the proposed
Sentinel+Tag ends up outperforming all previous
formats. In fact, the Sentinel+Tag outperforms all
the other basic approaches in 6 out of the 7 bench-
marks and is significantly better when averaging
out the results across all runs.

These results also show that while the Tag Only
approach is quite competitive, using either the sen-
tinels or input tokens leads to better results. Ad-
ditionally, we also find that the Input + Tag is
actually marginally better than the more commonly
used Tagged Spans approach (though this gap is
too narrow to be statistically significant).
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Dataset mBERT (and SI) Tag Only Input + Tag Tagged Spans Sentinel + Tag Tag Only (SI) Input + Tag (SI) Sentinel + Tag (SI)
Perfect F1 Perfect F1 Perfect F1 Perfect F1 Perfect F1 Perfect F1 Perfect F1 Perfect F1

mATIS(en) 85.11 93.65 88.17 93.83 88.73 95.40 88.95 95.55 89.81† 95.91† 88.65 94.77 88.76 95.32 90.07† 95.96†
(84.88) (93.25) ± 0.37 ± 0.28 ± 0.46 ± 0.21 ± 0.43 ± 0.16 ± 0.09 ± 0.05 ± 0.78 ± 0.37 ± 0.56 ± 0.34 ± 0.47 ± 0.13

SNIPS 86.57 93.66 85.38 92.24 87.05 94.30 87.14 94.28 90.14† 95.47† 89.10 94.73 87.76 94.47 89.81† 95.53†
(88.29) (94.34) ± 0.54 ± 0.42 ± 0.36 ± 0.20 ± 0.31 ± 0.09 ± 0.70 ± 0.40 ± 0.36 ± 0.28 ± 0.78 ± 0.29 ± 0.07 ± 0.04

MovieTrivia 29.80 64.69 22.65 59.10 39.84 72.58 40.21 72.19 39.43 72.67 34.27 68.41 39.73 72.76 39.85 73.01
(29.60) (64.40) ± 3.20 ± 2.48 ± 0.47 ± 0.20 ± 0.09 ± 0.22 ± 0.68 ± 0.58 ± 0.23 ± 0.25 ± 0.30 ± 0.14 ± 0.58 ± 0.27

Movies 60.59 80.87 71.24 86.79 71.94 87.26 71.42 86.95 73.17 87.79 72.06 87.18 72.12 87.47 72.74 87.56
(61.41) (81.40) ± 0.18 ± 0.06 ± 0.27 ± 0.25 ± 0.36 ± 0.13 ± 0.54 ± 0.34 ± 0.58 ± 0.30 ± 0.02 ± 0.13 ± 0.95 ± 0.48

Restaurant 50.06 70.25 61.28 78.63 62.12 80.14 61.68 79.87 62.53 80.02 61.87 79.38 62.42 80.42 62.93 80.39
(50.79) (71.03) ± 0.19 ± 0.26 ± 0.14 ± 0.19 ± 0.69 ± 0.35 ± 0.65 ± 0.46 ± 0.19 ± 0.07 ± 0.22 ± 0.15 ± 0.30 ± 0.31

mTOP(en) 81.16 88.48 81.98 88.50 84.34 90.80 84.22 90.82 85.58† 91.68† 83.06 89.59 84.88 91.20 86.56† 92.28†
(81.21) (88.69) ± 0.34 ± 0.34 ± 0.45 ± 0.39 ± 0.66 ± 0.46 ± 0.58 ± 0.42 ± 0.48 ± 0.31 ± 0.21 ± 0.06 ± 0.69 ± 0.44

mTOD(en) 92.05 95.71 92.53 95.97 92.39 96.01 92.13 95.90 92.69 96.21 93.09 96.34 92.66 96.17 93.19 96.42
(93.32) (97.12) ± 0.10 ± 0.05 ± 0.07 ± 0.04 ± 0.08 ± 0.08 ± 0.13 ± 0.08 ± 0.06 ± 0.04 ± 0.03 ± 0.01 ± 0.17 ± 0.08

Average 69.33 83.90 71.89 85.01 75.20 88.07 75.11 87.94 76.19† 88.54† 74.59 87.20 75.48 88.26 76.45† 88.73†
(70.05) (84.32) ± 0.25 ± 0.22 ± 0.18 ± 0.11 ± 0.11 ± 0.03 ± 0.19 ± 0.16 ± 0.15 ± 0.11 ± 0.19 ± 0.08 ± 0.26 ± 0.16

Table 4: Results for how the different Seq2Seq formats perform on the English benchmarks. Metrics are averaged
over 3 runs and reported (with standard deviation). mBERT results include both w/o and with Simplified Inside.
The † symbol indicates 99+% significant improvement (per the z-test) against all non-sentinel approaches.

Dataset Input + Tag Tagged Spans Sentinel +
(SI, SO) (SO) Tag (SI, SO)

English-only benchmarks
Average 74.35 74.85 75.68
(∆ vs. non-SO) -1.13 -0.26 -0.77

Multilingual Zero-Shot
Average (non-en) 21.33 21.05 44.76
(∆ vs. non-SO) -15.14 -10.24 -2.35

Multilingual Joint
Average (non-en) 73.27 72.93 79.01
(∆ vs. non-SO) -1.62 0.33 0.23

Table 5: Perfect metric scores for the variant Seq2Seq
formats that modify or drop the Outside tag (along with
the performance difference due to this simplification).

6.1 Do variants & simplifications work?

We next tried to understand performance on mak-
ing tweaks to the formats as discussed in Sec 3.4.
The last 3 columns of Table 4, includes results
for variants that simplify the Inside tag to just "I.
Results for the mBERT baseline with the same sim-
plification are also provided. Overall the Sentinel
+ Tag (SI) resulted in the aggregate best perfor-
mance across all formats on the 7 English bench-
marks. The small gap between SI and non-SI vari-
ants makes sense given the autoregressive nature of
the decoder (that can generate the full Inside tags
by attending to any opened Begin tag that need
to be continued). We should note that the SI vari-
ants have one significiant advantage. As seen in
Table 13, these formats have significantly shorter
target sequences across all datasets, resulting in
faster training and inference.

Another simplification we evaluated involved
the Outside tags. Interestingly, as seen in Table 5,
results worsen when using this simplification – for
all formats – in nearly all settings. This indicates
that these Seq2Seq models find it easier to produce
a consistent prediction for all tokens rather than
having to skip tokens. More details and analysis

for this simplification can be found in Appendix A.

7 Multilingual Capabilities
A major benefit of large LMs is their generaliza-
tion capabilities in the multilingual setting. In this
section, we evaluated the different formats in the
more challenging multilingual setting. Specifically
we ran experiments on 3 benchmarks (spanning 7
different languages) in two different settings:

• Joint Multilingual: Models are trained by
combining data for all languages. The weights
for all languages are equal i.e., the models
see roughly the same number of examples
in all languages. For simplicity, checkpoint
selections happens per-language using that
language’s validation set (though we did not
find this choice to affect results significantly).

• Zero-shot: Here we train the model using
only English data, and evaluate on all lan-
guages. This is the more challenging setting
for evaluating multilingual generalization.

As seen in the results for the zero-shot setting in
Table 6, the findings from the previous section are
only further emphasized with the Sentinel+Tag ap-
proaches significantly outperforming all the other
approaches. For instance, when looking at the
Perfect metrics averaged across all 9 non-English
test sets (2 mATIS, 5 mTOP, 2 mTOD), we find
Sentinel+Tag (SI) format greatly outperforms all
non-sentinel formats with the next best alterna-
tive (Input+Tag) being more than 10.5% absolute
worse (47.1% vs 36.5%, a 30% relative increase
in accuracy). Furthermore it is nearly 16% better
(a 47% increase) than the current standard i.e., –
Tagged Spans (31.3 vs 47.1).

These gains are all the more noteworthy when
compared to the performance of the Tag Only (no
sentinels) and Input+Tag (input token instead of
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Dataset
Tag Only Tag Only (SI) Input + Tag Input + Tag (SI) Tagged Spans Sentinel + Tag Sentinel + Tag (SI)

Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1
mATIS 36.71 52.79 36.97 53.30 38.96 62.62 39.47 63.42 35.58 58.55 43.62† 68.54† 42.49† 66.67†

(3 langs) ± 3.31 ± 4.22 ± 1.09 ± 1.79 ± 1.45 ± 2.14 ± 1.22 ± 1.38 ± 1.10 ± 2.19 ± 1.99 ± 1.89 ± 2.15 ± 2.31
mTOP 43.41 51.48 44.98 53.04 45.60 53.68 46.57 54.81 44.00 54.53 57.14† 69.65† 59.31† 71.22†
(6 langs) ± 1.02 ± 1.06 ± 0.66 ± 0.73 ± 1.01 ± 1.02 ± 0.35 ± 0.26 ± 0.91 ± 0.89 ± 1.06 ± 1.08 ± 0.98 ± 1.34
mTOD 66.42 74.27 67.78 75.42 65.11 73.75 65.55 74.74 58.73 68.71 66.92 76.42† 70.07 78.51†
(3 langs) ± 1.41 ± 1.51 ± 1.08 ± 0.76 ± 1.18 ± 1.01 ± 0.55 ± 0.42 ± 1.84 ± 1.56 ± 1.49 ± 0.94 ± 1.80 ± 1.11
Average 47.49 57.50 48.68 58.70 48.82 60.93 49.54 61.94 45.58 59.08 56.20† 71.07† 57.79† 71.90†

± 1.09 ± 1.31 ± 0.39 ± 0.81 ± 0.37 ± 0.46 ± 0.46 ± 0.33 ± 0.57 ± 0.82 ± 0.95 ± 0.79 ± 1.38 ± 1.40
Average 34.17 45.75 35.51 47.13 35.58 49.89 36.47 51.18 31.29 47.41 45.20† 63.24† 47.11† 64.25†
(non-en) ± 1.27 ± 1.65 ± 0.41 ± 0.98 ± 0.43 ± 0.58 ± 0.63 ± 0.45 ± 0.64 ± 1.03 ± 1.23 ± 1.02 ± 1.73 ± 1.80

Table 6: Multilingual Results in the Zero-shot setting (mean and standard deviation over 3 runs). Detailed (per-
language) results can be found in Table 23 in the Appendix. † is 98% significance against all non-sentinel methods.

Dataset
Tag Only Tag Only (SI) Input + Tag Input + Tag (SI) Tagged Spans Sentinel + Tag Sentinel + Tag (SI)

Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1
mATIS 68.89 82.90 70.13 83.94 71.03 87.22 70.38 86.69 69.14 86.53 73.26† 88.37† 73.43† 88.26†

(3 langs) ± 1.09 ± 0.74 ± 0.46 ± 0.50 ± 0.47 ± 0.39 ± 0.54 ± 0.26 ± 0.21 ± 0.23 ± 1.17 ± 0.37 ± 0.74 ± 0.53
mTOP 69.43 77.31 73.40 81.00 75.21 83.10 76.22 83.90 73.12 82.10 81.23† 88.26† 80.74† 87.85†

(6 langs) ± 0.64 ± 0.58 ± 0.20 ± 0.12 ± 0.31 ± 0.26 ± 0.34 ± 0.24 ± 0.37 ± 0.33 ± 0.23 ± 0.16 ± 0.57 ± 0.42
mTOD 88.81 92.70 89.58 93.38 89.61 93.53 89.63 93.50 89.19 93.30 89.97† 93.72 89.92† 93.64
(3 langs) ± 0.14 ± 0.09 ± 0.26 ± 0.18 ± 0.22 ± 0.17 ± 0.17 ± 0.10 ± 0.22 ± 0.15 ± 0.08 ± 0.07 ± 0.12 ± 0.12
Average 74.14 82.55 76.63 84.83 77.76 86.74 78.11 87.00 76.15 86.01 81.42† 89.65† 81.21† 89.40†

± 0.18 ± 0.13 ± 0.08 ± 0.05 ± 0.09 ± 0.15 ± 0.25 ± 0.14 ± 0.12 ± 0.16 ± 0.38 ± 0.14 ± 0.10 ± 0.10
Average 70.37 79.56 73.22 82.25 74.60 84.56 74.89 84.81 72.60 83.65 78.94† 88.08† 78.78† 87.82†

(non-en) ± 0.21 ± 0.20 ± 0.04 ± 0.05 ± 0.14 ± 0.21 ± 0.32 ± 0.17 ± 0.14 ± 0.20 ± 0.47 ± 0.17 ± 0.10 ± 0.10

Table 7: Multilingual Results in the regular joint multilingual setting (mean and stdev over 3 runs). Detailed
(per-language) results can be found in Appendix (Table 24).† is 99% significance against all non-sentinel methods.

Dataset
Extractive TS Extractive S+T Extractive S+T(S)

Perfect Mic F1 Perfect Mic F1 Perfect Mic F1
mATIS 35.17 57.56 37.62 64.07† 42.17† 67.48†
(3 langs) ± 0.38 ± 0.84 ± 2.87 ± 2.13 ± 0.91 ± 0.66
mTOP 65.43 48.39 80.14† 67.37† 80.81† 68.57†
(6 langs) ± 1.16 ± 1.79 ± 1.00 ± 1.99 ± 1.01 ± 1.18
mTOD 52.85 66.46 60.11† 72.74† 61.47† 73.66†
(3 langs) ± 2.60 ± 2.47 ± 1.05 ± 0.44 ± 0.39 ± 0.26
Average 54.72 55.20 64.50† 67.89† 66.31† 69.57†

± 0.17 ± 0.06 ± 1.48 ± 1.42 ± 0.83 ± 0.82
Average 43.07 42.46 56.34† 59.60† 58.55† 61.64†
(non-en) ± 0.20 ± 0.09 ± 1.74 ± 1.69 ± 1.05 ± 1.04

Table 8: Zero-shot results (mean and stdev over 2 runs)
for extractive methods. Per-language results reported
in Table 20.† indicates 99% significance.

sentinel) approaches. While those two formats have
very similar performance – with Input+Tag be-
ing slightly better than Tag Only – the addition
of the sentinel tokens drastically improves perfor-
mance. Specifically, the language-agnostic and
input-agnostic nature of these sentinel tokens en-
ables the language-agnosticity of the decoder lead-
ing to improved generalization across languages
despite the training data being only English.

As seen in Table 7, these trends largely continue
in the joint multilingual training setting as well. De-
spite the use of training data from all languages, the
Sentinel+Tag formats outperform all non-sentinel
formats by between 4 and 9 pp on the Perfect
metric. We again find a large gap (6.3 pp) to the
current Tagged Spans approach (a 8.7% increase
from 72.6 to 78.9).

A few additional observations: (a) As on English

Dataset
Extractive TS Extractive S+T Extractive S+T(S)

Perfect Mic F1 Perfect Mic F1 Perfect Mic F1
mATIS 70.01 86.66 72.06 87.75 72.94† 88.09†
(3 langs) ± 1.20 ± 0.48 ± 1.08 ± 0.55 ± 0.34 ± 0.31
mTOP 87.78 77.17 90.57† 84.15† 91.89† 86.02†
(6 langs) ± 0.30 ± 0.51 ± 0.87 ± 0.17 ± 0.00 ± 0.80
mTOD 89.02 93.32 87.48 92.36 88.58 92.88†

(3 langs) ± 0.16 ± 0.03 ± 0.70 ± 0.40 ± 0.30 ± 0.24
Average 83.65 83.58 85.17† 87.10† 86.33† 88.26†

± 0.49 ± 0.38 ± 0.53 ± 0.12 ± 0.16 ± 0.54
Average 82.25 80.72 84.11† 85.24† 85.04† 86.40†
(non-en) ± 0.57 ± 0.43 ± 0.42 ± 0.00 ± 0.16 ± 0.71

Table 9: Joint multilingual results (mean and stdev
over 2 runs) for extractive methods. Per-language re-
sults reported in Table 21.† indicates 99% significance.

benchmarks, the Inside simplification slightly im-
proved performance – though the gaps are within
error margins. (b) As seen in Table 5, the Outside
simplification tends to hurt zeroshot performance
significantly for all techniques (c) Tagged Spans
– the current standard in published works – is sig-
nificantly worse than other formats in both settings
and especially in the zero-shot setting.

8 Performance of Extractive methods
As discussed in Sec 3.5, certain applications may
prefer extractive formats. To verify if our findings
extend to these settings we also evaluated these
extractive formats on the same datasets. Tables 8
(zeroshot) and 9 (joint multilingual) summarize the
results. A few key observations:
• The extractive sentinel-based approaches con-

tinue the trend of significantly outperform exist-
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Size
Average (all) [Zero-Shot] Average (non-en) [Zero-Shot] Average (all) [Joint] Average (non-en) [Joint]

T-O I+T TS S+T T-O I+T TS S+T T-O I+T TS S+T T-O I+T TS S+T
Small 44.57 44.96 42.78 46.61† 30.28 30.73 27.96 32.49† 74.53 75.52 73.64 78.55† 71.07 72.25 70.14 75.76†
(300M) ± 0.03 ± 0.00 ± 0.05 ± 0.01 ± 0.07 ± 0.02 ± 0.15 ± 0.01 ± 0.06 ± 0.13 ± 0.29 ± 0.06 ± 0.11 ± 0.20 ± 0.31 ± 0.09
Base 48.68 49.54 45.58 57.79† 35.51 36.47 31.29 47.11† 76.63 78.11 76.15 81.21† 73.22 74.89 72.60 78.78†
(580M) ± 0.39 ± 0.46 ± 0.57 ± 1.38 ± 0.41 ± 0.63 ± 0.64 ± 1.73 ± 0.08 ± 0.25 ± 0.12 ± 0.10 ± 0.04 ± 0.32 ± 0.14 ± 0.10
Large 51.26 50.27 46.15 59.80† 38.96 37.12 31.76 49.74† 79.24 80.03 78.51 81.37† 76.24 77.05 75.13 78.89†
(1.2B) ± 0.55 ± 0.62 ± 0.28 ± 0.89 ± 0.68 ± 0.79 ± 0.41 ± 1.13 ± 0.11 ± 0.19 ± 0.24 ± 0.10 ± 0.15 ± 0.19 ± 0.31 ± 0.14
XL 54.72 59.01 60.27 64.47† 42.86 48.49 50.17 55.70† 82.44 82.63 81.73 84.04† 79.73 79.97 78.80 81.73†
(3.7B) ± 0.32 ± 0.22 ± 0.84 ± 0.08 ± 0.39 ± 0.30 ± 1.18 ± 0.12 ± 0.21 ± 0.07 ± 0.04 ± 0.10 ± 0.30 ± 0.12 ± 0.05 ± 0.10
XXL 53.27 57.32 59.97 65.55 40.95 46.27 49.84 57.36 82.13 82.59 82.20 83.86 79.35 79.91 79.34 81.62

Table 10: Impact of model size (# of params in parentheses) on performance of formats. Averaged Perfect metric
scores are reported over the same 3 benchmarks (12 test sets) as Table 6, on both zero-shot and joint settings. The
4 methods compared are T-O: Tag Only (SI), I+T: Input + Tag (SI), TS: Tagged Spans and S+T: Sentinel + Tag
(SI). Base results are averaged over 3 runs. XL, Large and Small were averaged over 2 runs. Due to compute limits,
XXL (13B params) was run once for 2k steps (since trial runs plateaued there).† indicates 99% significance.

Size
Average (all) [Zero-Shot] Average (non-en) [Zero-Shot] Average (all) [Joint] Average (non-en) [Joint]

T-O I+T TS S+T T-O I+T TS S+T T-O I+T TS S+T T-O I+T TS S+T
Small 29.92 33.88 (2.5) 32.14 0.03 39.14 44.99(3.32) 42.61 0.03 8.90 5.81 (0.88) 6.19 0.00 10.82 7.61 (1.18) 8.10 0.00
Base 29.68 40.60 (4.43) 43.22 0.02 38.87 53.89 (5.91) 57.38 0.02 8.53 5.42 (0.9) 6.10 0.01 10.58 7.06 (1.15) 7.87 0.01
Large 30.60 40.14 (1.9) 47.78 0.07 39.67 53.37 (2.54) 63.48 0.09 8.68 5.04 (0.87) 5.81 0.00 10.71 6.52 (1.21) 7.53 0.00
XL 29.92 24.76 (1.55) 20.39 0.11 39.64 32.96 (2.08) 27.15 0.14 3.20 3.81 (0.66) 4.10 0.01 4.12 5.04 (0.95) 5.42 0.01
XXL 32.81 32.64 (2.16) 21.35 0.68 43.41 43.46 (2.89) 28.34 0.88 4.91 3.71 (0.56) 3.79 0.00 6.38 4.90 (0.75) 4.99 0.00

Table 11: Percentage of examples with hallucinations observed for the different formats / models from Table 10.
For Input+ Tag we also report (in parenthesis) the % of examples with hallucinations in correctly tagged spans.

ing extractive approaches across all metrics.
• When comparing Tables 6 vs 8 and Tables 7 vs 9,

we find that all the Extractive formats improve on
the Perfect metric as opposed to formats which
output labels for the entire input. On further
analysis we find this is due to the simpler (and
shorter length) prediction task in this case.

• However, when we look at the MicroF1 metrics,
we find that extractive models are worse at ex-
tracting the correct labeled spans than models
that simply label every input token. This per-
formance drop is particularly significant for the
existing (TaggedSpans) approach (3-5pp) – vs.
the drop in sentinel models (1.2-2.5pp).

These results may have wider implications on how
we should model extractive tasks and the formats
used there. However we leave this to future work.

9 Robustness & Efficiency

Beyond performance, efficiency and robustness of
a model are equally important factors in practice.
We focus on measuring these in this section.

9.1 Understanding effect of model size
While experiments and results so far used Base
sized models (to maximize experimentation given
compute), we would like to understand how robust
our findings are as we vary model sizes. As seen in
Table 10 (and Table 25), the previously observed
trends are all consistently repeated across all model
sizes. In particular, we still find the Sentinel+Tag
models performing the best across all the datasets

Dataset
Zeroshot Joint

E TS E S+T E S+T(S) E TS E S+T E S+T(S)
mATIS (3 langs) 32.65 0.41 0.17 4.09 0.07 0.06
mTOP (6 langs) 17.68 0.18 0.03 0.56 0.01 0.00
mTOD (3 langs) 24.59 0.12 0.12 0.31 0.11 0.07
Average 23.15 0.22 0.09 1.38 0.05 0.03
Average (non-en) 30.75 0.25 0.10 1.74 0.05 0.03

Table 12: % of examples with hallucinations for differ-
ent extractive formats. Per-dataset results in Table 22.

for both the zero-shot and joint settings. Notably,
zero-shot performance improves significantly for
all datasets as model size increases. Consequently,
the larger models have a smaller gap between zero-
shot and joint settings. Put together, the perfor-
mance of the Sentinel+Tag format is robust across
all model sizes, datasets, and experiment settings.

9.2 Understanding effect of hallucination

One of our key motivations for exploring alter-
native formats, is the prevalence of hallucination.
Hallucination is one of the most notorious prob-
lems plaguing Seq2Seq models and hurting practi-
cal adoption. In particular, we found that models
trained using the Tagged Spans or Input + Tag
formats, often resulted in outputs containing words
that not present in the input (even on English ex-
amples). Even our previous metrics for the Input
+ Tag formats were generous as they glossed over
some hallucinations by comparing (tagged) token
indices rather than the actual texts.

We measured hallucinations for the different for-
mats in a simple, straightforward manner. In par-
ticular, for formats that repeated the input text in
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Format Average / 99%-ile Seq. Len (and variants)
Input Lengths

Original Input 14.8 / 32.6
Sentinel Input 25.2 / 55.8

Target / Output Lengths
Tag Only 23.3 / 70.4 With SI: 15.5 / 34.7
Input + Tag 57.9 / 142.2 With SI: 50.0 / 109.2, SI+SO: 33.8 / 82.3
Tagged Spans 58.3 / 123.4 With SO: 31.3 / 67.9
Sentinel + Tag 33.0 / 90.1 With SI: 25.2 / 54.8, SI+SO: 19.8 / 45.8

Table 13: Sequence length (i.e., the number Sentence-
Piece tokens) statistics (averaged) across datasets for
the different formats studied (Full stats in Table 19).

the output (Tagged Spans and Input + Tag) we
measured how often the generated sentence does
not match the input (i.e., one of the words are either
deleted, inserted or modified). For formats which
do not repeat the input, we counted the number of
tokens and checked if they match – for Tag Only
this was the number of tags produced in the out-
put, whereas for Sentinel + Tag we counted the
generated sentinel tokens.

Table 11 shows how the rate of hallucination
across different model sizes and formats. As noted
earlier, we find that hallucination is highly preva-
lent in the Tagged Spans and Input + Tag formats
due to having to repeat the input – which often
leads to errors. In the zero-shot setting, we find
that nearly a third of all the examples had one
of more hallucinations in most models for these
formats. Furthermore, these hallucinations were
present in both English as well as other languages –
though slightly less common in English. Even in
the joint multilingual setting, we found that about 1
in every 20-25 predictions had some hallucination.
Appendix E contains examples of hallucinations
for different models on these datasets.

On the other hand, the Sentinel + Tag based
models are almost completely devoid of halluci-
nation, with either zero or near zero hallucinated
instances across all model sizes in both settings
across all datasets. This order(s) of magnitude
difference in robustness to hallucination serves as
clear evidence of the sentinel-based approach being
more robust and practical.

Extractive formats: A curious reader may won-
der if the shorter, more succinct extractive formats
still suffer from this issue. The results can be found
in Table 12. We find similar trends here too, with
existing (input-repeating) models having orders of
magnitude more hallucinations than the sentinel-
based formats. Examples of these hallucinations
can be found in Appendix F. Additionally, we also
provide examples of other (non-hallucination) wins
and losses of the sentinel approach in Appendix G.

9.3 Efficiency and effect of sequence length
While running experiments, we observed that Sen-
tinel+Tag and Tag-Only models were much faster
at both training and especially at inference. The
key to this is the sequence lengths of these models
being far shorter than those for models which need
the input to be repeated like the Input+Tag and
Tagged Spans approaches. In particular, as seen in
Table 13, the outputs for the best performing Sen-
tinel+Tag (SI) format are often less than half the
length of those of the current standard – Tagged
Spans. While the sentinel-augmented inputs are
longer (about 10 tokens on average), this difference
was much smaller than the difference in the output
lengths (33 tokens on average). This trend holds
across all datasets, languages and aggregating func-
tions (average, median, 99th percentile ..). Given
the quadratic complexity of sequence length, such
efficient gains are invaluable in practical scenarios.
Consequently even though some simplifications
– like the Simplified Outside variant of the Sen-
tinel+Tag – did not improve performance, being
25-30% the length of current formats can translate
to 10x+ speedup in training and inference.

Additionally, as detailed in Appendix D and Ta-
ble 18 we also verified that the new format is robust
to changes in training sequence lengths.

10 Conclusion

In this paper, we rigorously studied different input
and output sequence formats for casting Sequence
Tagging tasks as Seq2Seq problems. Using experi-
ments across 7 public benchmarks, we found that
the formats of the input and output sequences can
significantly impact performance. To remedy the
shortcomings of the existing formats, we also in-
troduced a new format that uses sentinel tokens.
Along with its variants, this new format proved to
not only be simpler and more computationally ef-
ficient but also more accurate. The sentinel-based
formats significantly outperform all other formats
when it comes to multilingual generalization, with
30+% relative improvement in accuracy. While cur-
rent formats are plagued by hallucination in a large
percentage of examples, the new format rectifies
this issue and is virtually hallucination free.
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12 Limitations

There are two notable limitations we would like
to discuss of our work – specifically the proposed
sentinel-based approach.

A Need for additional preprocessing and
post-processing: The sentinel approach re-
quires that sentinel tokens be inserted into the
input, so as to simplify decoding (i.e., enable
the model to skip generating the original input
tokens). While this leads a to host of gains as
mentioned in the paper, it would be remiss of
us to not point out that this approach comes
with a drawback. Namely, the need for ad-
ditional pre- and post-processing. Inserting
the sentinels into the input required some (po-
tentially lightweight) tokenization or lexing
of the input sentence. While this may not be
an issue for English and other popularly stud-
ied languages, this can be non-trivial for non-
space separated languages like Thai and Lao
or agglutinative languages like Finnish and
German. While we tried to study the impact of
this in Appendix B and found no performance
loss, we should note that this is a function of
the quality of the pre-processing tokenizer /
lexer. If tokens are often accidentally split
across tag boundaries by this pre-processing
step, then this may hurt performance. With-
out a more detailed study on these languages
(which is somewhat challenged by availabil-
ity of suitable datasets in these languages),
it is hard to quantify the effect this need for
pre-processing may require in general.

From a practical viewpoint, this pre-
processing also adds an additional (albeit
likely lightweight) step before the model, and
potentially an additional post-processing step
(joining input tokens and predicted tags) based
on the output data format required by down-
stream steps. While we found the computa-
tion savings from the sentinel format more
than enough to counteract any additional pre-
processing, this is a function of application
and specific system specifications and hence
worth noting for practitioners.

B Efficiency for long texts on (short) extrac-
tive tasks: Due to the insertion of the sentinel
tags we increase the sequence length of our
inputs (by about 10 tokens on average in our
studied datasets per Table 10). This is more

than made up for by the larger decrease in out-
put sequence length on the datasets we studied.
However, for extractive tasks we can simply
only output extracted spans and their associ-
ated tasks. In our running example (Table 2),
this may perhaps look like: "ARTIST: Kent
James, PLAYLIST: Disney". While a non-
sentinel approach for such an output still suf-
fers many of same issues as the non-sentinel
formats studied in our work (namely lower
performance, worse multilingual generaliza-
tion, frequent hallucination ..) the efficiency
gains from the sentinel approach are far less
clear. In particular, when we have such an
extractive task with long inputs (think 500+
sequence length) but very short output (i.e.,
very few extractions), then the sentinel ap-
proach would likely be slower (at training and
inference) than a non-sentinel extractive out-
put format.

While this is not a problem setting we work on
or focused on in this paper, we fully recognize
that a non-trivial fraction of the community
may have interest in such a setting. Hence we
find this important to point out.

13 Ethics and Responsible NLP

This paper tried to provide empirical insights into
how sequence tagging NLP tasks should be han-
dled in the Seq2Seq regime given the increased
prevalence of such pretrained models. Along the
way it proposed a new Sentinel-based approach
to the problem. Given the nature of the work and
findings, we could not think of any explicit risks as-
sociated with this work or the new format. Instead
we could postulate about potential benefits these
new Sentinel-based formats could bring about with
wider adoption:

• Better multilingual generalization: Our re-
sults demonstrate the potential to improve
performance of common NLP tasks for low-
resource languages (in addition to gains on
high-resource languages).

• More trustworthy NLP models: By nearly
entirely eliminating hallucinations, the new
format has promise to increase fidelity of NLP
models.

• Reducing compute: As discussed in Sec-
tion 9.3, the new approach could potentially
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lead to an order of magnitude reduction in
training / inference time versus the current
status quo for these problems. Furthermore,
given concerns surrounding massive compute
models, we verified our findings (like in-
creased multilinguality and near-zero hallu-
cination) hold true for even the "Small" and
"Base" sized pretrained mT5 models (see Ta-
bles 10 and 11).

• Possible benefits to privacy: While not dis-
cussed in detail in the paper, one notable ben-
efit of adding the sentinel tokens is that the
output of the model no longer contains any
input token. This is very amenable to privacy-
preserving / privacy-focused NLP applications
and potentially unlocks new opportunities for
these kinds of models in more privacy sensi-
tive settings.
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A Experiments with Other Format
Variants

In addition to the four primary formats and their
variants with Simplified-Inside tags, we show ex-
amples of several other variants that we studied in
Table 17.

For example, we experimented with the
Simplified-Output (SO) variant, which omits all
the Outside tags. The results in Table 14 shows that
the models do not benefit from skipping any tokens
or tags. While these variants result in shorter output
sequences (and therefore more efficient computa-
tion), the accuracy of these methods were lower
than that of the Sentinel + Tag (and its Simplified-
Inside variant) as shown in Table 14.

Dataset Input + Tag Tagged Spans Sentinel +
(SI, SO) (SO) Tag (SI, SO)

mATIS(en) 88.80 89.03 90.15
SNIPS 88.71 88.14 90.43
MovieTrivia 37.33 37.63 35.59
Movies 70.95 71.61 71.08
Restaurant 59.50 60.82 62.80
mTOP(en) 82.65 84.09 86.34
mTOD(en) 92.50 92.61 93.36
Average 74.35 74.85 75.68
(∆ vs. non-SO) -1.13 -0.26 -0.77

Table 14: Per-dataset Perfect metric scores for the vari-
ant formats that modify or drop the Outside tag.

B Sentinels in complex languages

In languages like Thai and Lao, sentences can of-
ten be composed of just one or two "words" i.e.,
because unlike English their words are not sepa-
rated by spaces. Similarly agglutinative languages
like Finnish (and to a far lesser extent German) may
join multiple affixes / morphemes to form very long
"words".

This brings up the question of how we should
insert sentinels for inputs in these languages, since
we may be actually altering the underlying token
representations. For example, say our input was
the German phrase schweres werkzeug (heavy
tool) and assume it was tokenized as "schweres"
+ "werk" + "zeug". When we create the sentinel
input, we could either use: "<S> schweres <S>
werk <S> zeug" or as "<S> schweres <S> werk
<S>zeug" (with "<S>" representing the sentinel to-
kens). The two texts would be tokenized differently
by the SentencePiece model (SPM) due to the lack
of a space between the sentinel and "zeug" – since

SPM treats continued tokens differently than word
starts.

To understand if these models are robust to
that we ran experiments on the German and Thai
datasets. As seen in Table 15, while there are slight
differences, the models are quite robust to the tok-
enization and how / where the sentinels tokens are
introduced – another evidence of the robustness of
the sentinel based approach.

Dataset
Space inserted No space

No SI SI No SI SI
Zeroshot

mTOP(de) 60.27 ± 1.40 65.15 ± 0.88 60.66 ± 1.77 62.89 ± 1.63
mTOP(th) 43.30 ± 0.75 43.45 ± 1.16 44.41 ± 1.45 44.61 ± 2.58

Joint Multilingual
mTOP(de) 79.47 ± 0.45 78.77 ± 0.47 78.44 ± 0.66 77.77 ± 0.48
mTOP(th) 77.58 ± 0.14 77.32 ± 0.84 76.19 ± 0.61 75.36 ± 0.64

Table 15: Scores for the Perfect metric with and with-
out spaces added pre-tokenization of the input of the
Sentinel + Tag approaches.

C Robustness of decoder distribution

While the results so far have focused on the top-1
prediction, in many applications we want a robust
and meaningful top-K prediction set. Thus we in-
vestigated the robustness of the decoder’s output
distribution. Table 16 shows the % of the test exam-
ples whose top-K predictions (produced via beam
search with K = 5) include the ground-truth label.

Method mATIS(en) SNIPS MovieTrivia Movies Restaurant
Tag Only 92.16 96.71 47.47 88.82 85.03
Input + Tag 90.03 96.29 48.85 90.45 86.61
Tagged Spans 88.24 96.86 69.53 88.24 87.40
Sentinel + Tag 93.84 98.29 67.95 90.82 86.28

Simplified Inside Based Formats
Tag Only (SI) 92.39 96.57 62.98 89.88 84.23
Input + Tag (SI) 91.94 97.14 66.72 90.66 87.34
Sentinel + Tag (SI) 94.40 98.71 72.20 90.78 87.53

Table 16: % of examples with any of the top-5 predic-
tions containing the ground-truth label.

As expected, the observed scores are signifi-
cantly higher than the perfect accuracy scores (for
the Top-1) seen in Table 4. Also, consistent with
previous results, the Sentinel + Tag (SI) performed
the best on average. In general, this analysis en-
courages us to think about how we could leverage
these instances (where the correct prediction is in
the top-K but not the top-1) to further improve
performance. We leave this for future work.
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Format Sample Target
Simplified Inside Based Formats

Tag Only (SI) target: O ARTIST I O O PLAYLIST O
Tag + Input (SI) target: <O> Add <ARTIST> Kent <I> James <O> to <O> the <PLAYLIST> Disney <O> soundtrack
Sentinel + Tag (SI) target: <extra_id_0> O <extra_id_1> ARTIST <extra_id_2> I <extra_id_3> O <extra_id_4> O <extra_id_5> PLAYLIST <extra_id_6> O

Simplified Outside Based Formats
Tag + Input (SI, SO) target: Add <ARTIST> Kent <I> James to the <PLAYLIST> Disney soundtrack
Tagged Spans (SO) target: Add <ARTIST> Kent James </> to the <PLAYLIST> Disney </> soundtrack
Sentinel + Tag (SI, SO) target: <extra_id_0> <extra_id_1> ARTIST <extra_id_2> I <extra_id_3> <extra_id_4> <extra_id_5> PLAYLIST <extra_id_6>

Extractive Sentinel + Tag (ES+T) Based Formats
ES+T target: <extra_id_1> ARTIST <extra_id_2> I-ARTIST <extra_id_5> PLAYLIST
ES+T (Simplified) target: <extra_id_1> ARTIST <extra_id_2> <extra_id_5> PLAYLIST

Table 17: Examples for other format variants we studied. For all the non-sentinel approaches, examples, the input is
the original input utterance "Add Kent James to the Disney soundtrack". For sentinel-based approaches, the input
is "<extra_id_0> Add <extra_id_1> Kent <extra_id_2> James <extra_id_3> to <extra_id_4> the <extra_id_5>
Disney <extra_id_6> soundtrack".

Size
Average (all) [ZS] Average (non-en) [ZS] Average (all) [J] Average (non-en) [J]

T-O I+T TS S+T T-O I+T TS S+T T-O I+T TS S+T T-O I+T TS S+T
In: 128 Out: 256 48.68 49.54 45.58 57.79 35.51 36.47 31.29 47.11 76.63 78.11 76.15 81.21 73.22 74.89 72.60 78.78
In: 128 Out: 128 48.79 49.55 46.15 55.35 35.59 36.65 32.26 44.21 75.95 75.08 75.22 79.89 72.51 71.83 71.69 77.22
In: 64 Out: 64 47.01 48.52 45.23 54.89 33.84 35.91 32.06 43.82 72.91 74.92 71.11 79.95 69.45 71.96 67.66 77.61

Table 18: Results demonstrating impact of changing training (input and output / target) sequence lengths for Base
models in a similar setup as Table 10.

Format mATIS SNIPS MovieTrivia Movies Restaurant mTOP mTOD
en hi tr en de es fr hi th en es th

Input Formats
Original Input 16 / 37 24 / 54 20 / 42 12 / 26 28 / 56 13 / 32 12 / 27 9 / 23 11 / 28 12 / 31 13 / 33 15 / 37 10 / 24 9 / 20 11 / 24 13 / 28
Sentinel Input 28 / 61 36 / 83 31 / 64 21 / 44 49 / 95 24 / 55 21 / 48 17 / 43 20 / 51 23 / 56 23 / 56 24 / 58 24 / 60 16 / 34 19 / 40 21 / 44
Sentinel Input (NoSpace) 17 / 41 19 / 49 22 / 54 23 / 54 24 / 57 20 / 49

Target Formats
Tag Only 31 / 76 30 / 76 28 / 68 20 / 54 50 / 120 18 / 49 14 / 38 19 / 74 19 / 79 22 / 85 21 / 83 19 / 72 25 / 91 14 / 47 17 / 55 18 / 59
Tag Only (SI) 26 / 59 26 / 59 24 / 53 13 / 28 21 / 42 13 / 32 10 / 22 12 / 33 13 / 33 13 / 32 13 / 33 13 / 33 13 / 32 10 / 22 10 / 21 10 / 21
Input + Tag 71 / 157 78 / 177 70 / 156 50 / 111 120 / 249 52 / 124 46 / 103 43 / 129 47 / 144 53 / 159 53 / 154 51 / 144 58 / 167 37 / 89 43 / 104 47 / 108
Input + Tag (SI) 66 / 144 74 / 161 67 / 148 43 / 87 91 / 176 47 / 108 41 / 92 37 / 86 40 / 98 45 / 106 45 / 104 45 / 105 47 / 111 33 / 67 36 / 75 39 / 79
Input + Tag (SI, SO) 45 / 101 51 / 116 45 / 103 29 / 64 69 / 145 28 / 67 24 / 55 24 / 70 26 / 80 29 / 87 29 / 83 30 / 83 32 / 91 21 / 50 25 / 61 26 / 61
Tagged Spans 85 / 187 93 / 202 85 / 194 50 / 108 80 / 167 58 / 138 52 / 117 44 / 90 47 / 100 51 / 102 54 / 111 53 / 109 51 / 103 40 / 81 39 / 80 43 / 86
Tagged Spans (SO) 49 / 109 55 / 120 49 / 111 29 / 59 44 / 82 27 / 65 24 / 47 22 / 54 25 / 60 26 / 58 26 / 60 28 / 65 27 / 61 20 / 49 21 / 43 22 / 44
Sentinel + Tag 42 / 98 41 / 99 38 / 90 29 / 70 71 / 156 29 / 71 23 / 57 26 / 91 27 / 98 31 / 105 30 / 103 27 / 90 34 / 113 21 / 60 24 / 69 26 / 72
Sentinel + Tag (SI) 38 / 83 37 / 82 35 / 74 22 / 45 42 / 82 23 / 55 19 / 43 20 / 47 21 / 50 22 / 52 22 / 52 21 / 50 23 / 53 17 / 35 17 / 37 18 / 37
Sentinel + Tag (SI, SO) 30 / 68 29 / 70 28 / 63 18 / 37 34 / 69 17 / 41 13 / 30 16 / 42 16 / 43 17 / 45 17 / 44 16 / 42 18 / 46 13 / 30 14 / 32 14 / 31
Extractive Sentinel + Tag 28 / 74 26 / 75 24 / 67 20 / 59 56 / 145 16 / 48 12 / 40 18 / 83 18 / 84 21 / 93 19 / 91 17 / 79 25 / 102 13 / 52 17 / 64 17 / 65
Extractive Sentinel + Tag (S) 22 / 55 21 / 52 20 / 51 11 / 26 17 / 36 9 / 24 6 / 15 10 / 31 10 / 32 10 / 29 9 / 28 9 / 31 10 / 30 7 / 23 8 / 21 7 / 20

Table 19: Detailed per-dataset / language statistics for the Mean and 99%th percentile of sequence length (i.e., the
number SentencePiece tokens) for the different input and target formats studied.

D Effect of Sequence Length on
Performance

The results in Table 18 help us understand the
robustness of different formats to changes in se-
quence lengths. In general, we found that that all
the formats were fairly robust to reductions in train-
ing sequence length, with previous trends among
formats holding, In most cases, the performance
dropped by about 1-2pp, with the biggest drop ob-
served for the Tagged Spans approach on the Joint
setting (about -5pp across metrics). Thus we can
conclude that while setting more appropriate se-
quence lengths can increase performance, failure
to do so does not hurt performance significantly.

E Illustrative Hallucination Examples

Section 9.2 discussed the increased robustness of
the Sentinel+Tag model.

To help understand what hallucinations would

look like, we provide some examples below us-
ing the running example of "Add Kent James to
the Disney soundtrack". The expected Target (us-
ing the Tagged Spans format) is "<O> Add </>
<ARTIST> Kent James </> <O> to </> <O> the </>
<PLAYLIST> Disney </> <O> soundtrack </>".

Examples of predictions containing hallucina-
tions would be:

• "<O> Add </> <ARTIST> Kent Jackson </>
<O> to </> <O> the </> <PLAYLIST> Disney
</> <O> soundtrack </>" changes the name
of the artist from "Kent James" to "Kent Jack-
son".

• "<O> Add </> <ARTIST> Kent James </>
<O> to </> <O> the </> <O> soundtrack </>"
drops the "Disney" token altogether.

• "<O> Add </> <ARTIST> Kent James </>
<O> to </> <O> the </> <PLAYLIST> Walt

11869



Dataset Language
Extractive TS Extractive S+T Extractive S+T(S)

Perfect Mic F1 Perfect Mic F1 Perfect Mic F1

mATIS
en 89.59 95.60 88.13 95.39 89.03 95.59

± 0.11 ± 0.03 ± 1.12 ± 0.35 ± 0.11 ± 0.01
hi 7.39 30.33 22.28 57.60 32.87 63.70

± 0.90 ± 2.70 ± 6.72 ± 3.06 ± 2.30 ± 1.50
tr 8.53 46.74 2.45 39.23 4.62 43.16

± 0.14 ± 0.20 ± 0.77 ± 2.99 ± 0.56 ± 0.47

mTOD
en 92.23 96.07 91.62 95.72 91.45 95.64

± 0.34 ± 0.16 ± 0.59 ± 0.32 ± 0.06 ± 0.01
es 45.20 60.74 59.00 72.16 62.72 75.57

± 5.64 ± 4.97 ± 1.00 ± 2.16 ± 1.50 ± 0.99
th 21.10 42.58 29.70 50.36 30.23 49.76

± 1.83 ± 2.29 ± 4.76 ± 1.15 ± 0.27 ± 0.20

mTOP

en 87.22 88.60 87.24 87.20 88.36 88.88
± 0.19 ± 0.17 ± 1.63 ± 1.81 ± 0.72 ± 0.47

de 73.68 59.91 80.70 71.28 81.50 73.29
± 1.01 ± 2.37 ± 1.55 ± 3.60 ± 1.93 ± 2.06

es 83.79 55.52 89.39 68.70 89.44 69.26
± 0.43 ± 1.48 ± 0.13 ± 1.76 ± 0.78 ± 2.71

fr 63.14 51.49 80.02 64.05 81.01 67.29
± 1.85 ± 3.27 ± 1.47 ± 3.15 ± 1.39 ± 2.08

hi 44.25 33.24 43.64 32.02 44.69 34.16
± 1.47 ± 3.25 ± 1.22 ± 1.64 ± 1.27 ± 2.13

th 40.52 1.58 99.86 80.95 99.84 78.57
± 1.97 ± 0.19 ± 0.00 ± 0.00 ± 0.02 ± 2.38

Average 54.72 55.20 64.50 67.89 66.31 69.57
± 0.17 ± 0.06 ± 1.48 ± 1.42 ± 0.83 ± 0.82

Average 43.07 42.46 56.34 59.60 58.55 61.64
(non-en) ± 0.20 ± 0.09 ± 1.74 ± 1.69 ± 1.05 ± 1.04

Table 20: Detailed per-language extractive results for
Zero-shot setting (mean and stdev over 2 runs).

Dataset Language
Extractive TS Extractive S+T Extractive S+T(S)

Perfect Mic F1 Perfect Mic F1 Perfect Mic F1

mATIS
en 89.42 95.71 87.23 94.98 89.25 95.65

± 0.06 ± 0.10 ± 1.57 ± 0.43 ± 0.34 ± 0.12
hi 58.17 81.21 64.95 84.39 65.73 84.62

± 2.74 ± 1.38 ± 0.90 ± 0.45 ± 1.46 ± 1.00
tr 62.45 83.07 63.99 83.88 63.85 84.00

± 0.91 ± 0.16 ± 0.77 ± 0.76 ± 0.77 ± 0.21

mTOD
en 91.46 95.69 90.08 94.85 91.06 95.31

± 0.15 ± 0.09 ± 0.64 ± 0.38 ± 0.15 ± 0.08
es 84.60 89.89 83.96 89.58 84.97 90.04

± 0.18 ± 0.07 ± 0.43 ± 0.31 ± 0.35 ± 0.15
th 90.99 94.36 88.39 92.66 89.72 93.31

± 0.15 ± 0.05 ± 1.03 ± 0.50 ± 0.41 ± 0.49

mTOP

en 82.66 85.07 87.76 88.24 90.24 90.56
± 0.70 ± 0.69 ± 1.64 ± 1.40 ± 0.05 ± 0.09

de 87.31 83.61 90.73 86.71 92.05 88.85
± 0.38 ± 0.66 ± 0.87 ± 1.20 ± 0.08 ± 0.08

es 92.43 81.57 94.31 84.41 95.15 86.47
± 0.00 ± 0.31 ± 0.72 ± 1.73 ± 0.15 ± 0.40

fr 87.97 82.09 89.59 83.05 90.82 84.89
± 0.25 ± 0.42 ± 0.92 ± 1.18 ± 0.19 ± 0.47

hi 77.02 79.40 81.19 82.42 83.24 84.42
± 0.47 ± 0.55 ± 1.13 ± 1.16 ± 0.13 ± 0.00

th 99.29 51.29 99.86 80.07 99.86 80.95
± 0.02 ± 0.44 ± 0.04 ± 5.65 ± 0.04 ± 4.76

Average 83.65 83.58 85.17 87.10 86.33 88.26
± 0.49 ± 0.38 ± 0.53 ± 0.12 ± 0.16 ± 0.54

Average 82.25 80.72 84.11 85.24 85.04 86.40
(non-en) ± 0.57 ± 0.43 ± 0.42 ± 0.00 ± 0.16 ± 0.71

Table 21: Per-language extractive results for joint
multilingual setting (mean and stdev over 2 runs).

Disney </> <O> soundtrack </>" adds a spu-
rious token "Walt".

The above examples can also be trivially modi-
fied for the Input + Tag format. In particular, the
first example of the above three hallucinations is
also an example of why the metrics for the Input +
Tag format (as in Table 23 and Table 24) may be
a tad generous. Since the token indices would not

Dataset Lang
Zeroshot Joint

E TS E S+T E S+T(S) E TS E S+T E S+T(S)

mATIS
en 0.56 0.11 0.00 0.34 0.00 0.11

± 0.11 ± 0.11 ± 0.00 ± 0.00 ± 0.00 ± 0.11
hi 79.84 0.62 0.17 9.69 0.06 0.00

± 3.47 ± 0.39 ± 0.06 ± 1.06 ± 0.06 ± 0.00
tr 17.55 0.49 0.35 2.24 0.14 0.07

± 1.89 ± 0.49 ± 0.21 ± 0.14 ± 0.00 ± 0.07

mTOD
en 0.04 0.01 0.01 0.03 0.11 0.00

± 0.03 ± 0.01 ± 0.01 ± 0.01 ± 0.02 ± 0.00
es 33.21 0.00 0.02 0.20 0.00 0.00

± 5.44 ± 0.00 ± 0.02 ± 0.03 ± 0.00 ± 0.00
th 40.51 0.35 0.33 0.71 0.21 0.21

± 0.38 ± 0.24 ± 0.15 ± 0.12 ± 0.03 ± 0.03

mTOP

en 0.49 0.27 0.09 0.57 0.00 0.00
± 0.15 ± 0.23 ± 0.02 ± 0.36 ± 0.00 ± 0.00

de 9.85 0.39 0.03 0.23 0.00 0.00
± 0.97 ± 0.25 ± 0.03 ± 0.08 ± 0.00 ± 0.00

es 5.44 0.17 0.00 0.22 0.03 0.00
± 0.40 ± 0.13 ± 0.00 ± 0.12 ± 0.03 ± 0.00

fr 9.10 0.25 0.03 0.17 0.02 0.00
± 1.46 ± 0.22 ± 0.00 ± 0.08 ± 0.02 ± 0.00

hi 14.34 0.02 0.00 2.17 0.00 0.00
± 1.43 ± 0.02 ± 0.00 ± 0.05 ± 0.00 ± 0.00

th 66.89 0.00 0.00 0.02 0.00 0.00
± 0.60 ± 0.00 ± 0.00 ± 0.02 ± 0.00 ± 0.00

Average 23.15 0.22 0.09 1.38 0.05 0.03
± 0.61 ± 0.16 ± 0.01 ± 0.16 ± 0.01 ± 0.02

Average 30.75 0.25 0.10 1.74 0.05 0.03
(non-en) ± 0.84 ± 0.19 ± 0.01 ± 0.18 ± 0.01 ± 0.01

Table 22: % of hallucination per dataset (mean and
stdev over 2 runs) for extractive formats.

have caught the hallucination in the generated to-
ken text ("Kent Jackson" instead of "Kent James"),
the model’s performance drops when looking at the
actual text as shown in the metrics in parentheses
in Table 11.

F Real Hallucination Examples (for
Extractive formats)

To help us understand the kinds of hallucinations
we observe in these models, below are different
sets of examples of hallucinations we see in the
different formats. While these examples are for the
shorter (more succinct) extractive formats they are
also indicative of the hallucinations we see for the
longer formats that label every input token. Note
though that the ordering is not indicative of the
prevalence of the different types of hallucinations
but largely for the sake of exposition.

F.1 (Extractive) Tagged Spans
Incorrectly copied or added or modified words
/ phrases: This is fairly common even on English
datasets.

Dataset: ATIS
Input: what is mci
Label: <airport_code> mci
Prediction: <airport_code> mco
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Dataset Language
Tag Only Tag Only (SI) Input + Tag Input + Tag (SI) Tagged Spans Sentinel + Tag Sentinel + Tag (SI)

Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1

mATIS
en 87.83 93.84 88.39 94.27 88.84 95.40 88.69 95.36 88.99 95.54 89.32 95.71 89.77 95.87

± 1.42 ± 0.90 ± 0.67 ± 0.74 ± 0.28 ± 0.17 ± 0.33 ± 0.16 ± 0.71 ± 0.19 ± 0.11 ± 0.08 ± 0.45 ± 0.18
hi 18.07 32.70 18.03 33.19 22.58 50.30 24.30 52.03 6.79 34.38 34.68 66.33 33.26 64.85

± 7.22 ± 9.43 ± 1.74 ± 3.26 ± 3.59 ± 5.50 ± 3.61 ± 3.83 ± 2.61 ± 5.87 ± 3.85 ± 1.96 ± 5.69 ± 5.04
tr 4.24 31.85 4.48 32.44 5.45 42.15 5.41 42.86 10.96 45.73 6.85 43.58 4.43 39.30

± 1.45 ± 2.70 ± 1.05 ± 1.86 ± 0.64 ± 0.80 ± 0.40 ± 0.46 ± 1.83 ± 2.62 ± 2.36 ± 3.82 ± 0.54 ± 1.92

mTOP

en 81.98 88.50 83.06 89.59 84.34 90.80 84.88 91.20 84.22 90.82 85.58 91.68 86.56 92.28
± 0.34 ± 0.34 ± 0.48 ± 0.31 ± 0.45 ± 0.39 ± 0.21 ± 0.06 ± 0.66 ± 0.46 ± 0.58 ± 0.42 ± 0.69 ± 0.44

de 51.56 65.79 52.99 66.80 57.16 71.24 59.36 73.10 50.00 64.54 60.27 75.10 65.15 77.40
± 0.86 ± 0.87 ± 0.75 ± 0.54 ± 1.49 ± 1.35 ± 0.21 ± 0.09 ± 1.73 ± 1.46 ± 1.40 ± 0.70 ± 0.88 ± 0.77

es 45.55 51.48 48.52 54.72 42.46 50.86 42.14 50.38 51.09 61.93 62.74 73.90 63.30 74.30
± 1.50 ± 1.49 ± 0.82 ± 0.81 ± 2.82 ± 2.36 ± 0.78 ± 0.20 ± 0.63 ± 0.48 ± 0.97 ± 1.47 ± 1.27 ± 1.64

fr 44.43 50.32 46.96 53.81 53.00 61.95 54.49 64.27 52.01 63.95 60.51 72.68 62.88 74.47
± 2.10 ± 2.17 ± 2.21 ± 2.73 ± 0.99 ± 0.90 ± 0.57 ± 0.28 ± 0.90 ± 0.91 ± 1.96 ± 1.80 ± 0.81 ± 1.06

hi 22.51 33.95 23.15 34.40 27.30 40.00 29.15 42.54 24.87 38.96 30.42 45.73 34.52 49.98
± 1.22 ± 1.28 ± 0.65 ± 0.56 ± 1.16 ± 1.54 ± 1.33 ± 1.48 ± 1.80 ± 1.86 ± 1.07 ± 2.07 ± 2.72 ± 4.47

th 14.44 18.81 15.20 18.88 9.36 7.26 9.40 7.36 1.81 6.95 43.30 58.82 43.45 58.87
± 0.51 ± 0.34 ± 0.62 ± 0.52 ± 0.09 ± 0.37 ± 0.13 ± 0.47 ± 0.08 ± 0.34 ± 0.75 ± 0.57 ± 1.16 ± 0.69

mTOD
en 92.53 95.97 93.09 96.34 92.39 96.01 92.66 96.17 92.13 95.90 92.69 96.21 93.19 96.42

± 0.10 ± 0.05 ± 0.06 ± 0.04 ± 0.07 ± 0.04 ± 0.03 ± 0.01 ± 0.08 ± 0.08 ± 0.13 ± 0.08 ± 0.17 ± 0.08
es 63.49 74.72 65.39 76.20 62.92 76.60 61.47 76.23 51.27 67.04 63.62 76.85 70.58 81.34

± 4.60 ± 4.95 ± 3.87 ± 2.84 ± 2.27 ± 1.23 ± 0.84 ± 0.15 ± 4.03 ± 2.97 ± 3.58 ± 2.04 ± 3.73 ± 1.60
th 43.22 52.12 44.86 53.72 40.01 48.64 42.51 51.81 32.80 43.20 44.44 56.20 46.43 57.77

± 1.19 ± 0.77 ± 0.68 ± 0.85 ± 1.27 ± 1.80 ± 1.32 ± 1.12 ± 1.57 ± 2.08 ± 1.02 ± 0.75 ± 1.98 ± 1.92
Average 47.49 57.50 48.68 58.70 48.82 60.93 49.54 61.94 45.58 59.08 56.20 71.07 57.79 71.90

± 1.09 ± 1.31 ± 0.39 ± 0.81 ± 0.37 ± 0.46 ± 0.46 ± 0.33 ± 0.57 ± 0.82 ± 0.95 ± 0.79 ± 1.38 ± 1.40
Average 34.17 45.75 35.51 47.13 35.58 49.89 36.47 51.18 31.29 47.41 45.20 63.24 47.11 64.25
(non-en) ± 1.27 ± 1.65 ± 0.41 ± 0.98 ± 0.43 ± 0.58 ± 0.63 ± 0.45 ± 0.64 ± 1.03 ± 1.23 ± 1.02 ± 1.73 ± 1.80

Table 23: Detailed per-language results for Zero-shot setting (mean and standard deviation over 3 runs).

Dataset Language
Tag Only Tag Only (SI) Input + Tag Input + Tag (SI) Tagged Spans Sentinel + Tag Sentinel + Tag (SI)

Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1 Perfect Mic F1

mATIS
en 87.61 93.63 87.94 93.89 88.99 95.48 89.36 95.58 88.80 95.50 89.29 95.67 89.10 95.67

± 0.35 ± 0.23 ± 0.59 ± 0.40 ± 0.65 ± 0.33 ± 0.33 ± 0.10 ± 0.24 ± 0.08 ± 0.14 ± 0.07 ± 0.32 ± 0.08
hi 59.35 78.17 62.08 79.55 61.81 82.56 61.55 82.53 59.43 81.93 64.28 84.29 67.23 85.26

± 2.31 ± 1.44 ± 0.98 ± 1.08 ± 0.55 ± 0.82 ± 1.16 ± 0.42 ± 0.92 ± 0.40 ± 2.63 ± 1.16 ± 0.78 ± 0.88
tr 59.72 76.91 60.37 78.37 62.28 83.61 60.23 81.97 59.21 82.16 66.20 85.15 63.96 83.84

± 1.05 ± 0.57 ± 0.69 ± 0.15 ± 0.35 ± 0.19 ± 0.80 ± 0.55 ± 0.54 ± 0.71 ± 1.23 ± 0.25 ± 1.14 ± 0.65

mTOP

en 77.51 85.55 80.76 88.04 81.41 88.83 82.44 89.55 80.60 88.44 84.99 91.47 84.25 90.91
± 0.36 ± 0.13 ± 0.38 ± 0.23 ± 0.20 ± 0.25 ± 0.28 ± 0.22 ± 0.21 ± 0.16 ± 0.23 ± 0.15 ± 0.54 ± 0.35

de 72.61 81.72 75.93 84.61 75.92 85.15 76.16 85.48 73.97 83.71 79.47 87.77 78.77 87.39
± 0.77 ± 0.65 ± 0.07 ± 0.02 ± 0.19 ± 0.20 ± 0.23 ± 0.06 ± 0.91 ± 0.73 ± 0.45 ± 0.27 ± 0.47 ± 0.40

es 75.68 82.21 79.79 85.86 82.00 88.06 82.38 88.35 80.98 87.46 84.63 90.15 84.20 89.85
± 1.08 ± 0.77 ± 0.36 ± 0.34 ± 0.18 ± 0.07 ± 0.46 ± 0.35 ± 0.30 ± 0.30 ± 0.23 ± 0.18 ± 0.43 ± 0.29

fr 75.16 82.06 78.31 84.92 80.01 86.56 80.45 86.95 78.66 85.48 83.10 88.85 82.52 88.47
± 0.14 ± 0.16 ± 0.27 ± 0.19 ± 0.35 ± 0.30 ± 0.04 ± 0.11 ± 0.21 ± 0.20 ± 0.18 ± 0.19 ± 0.65 ± 0.38

hi 69.38 78.58 72.56 81.52 72.68 81.90 74.36 83.22 69.38 79.38 77.64 86.15 77.35 85.50
± 0.41 ± 0.43 ± 0.18 ± 0.12 ± 0.21 ± 0.20 ± 0.34 ± 0.29 ± 0.19 ± 0.19 ± 0.40 ± 0.22 ± 0.72 ± 0.66

th 46.24 53.73 53.09 61.03 59.24 68.12 61.51 69.84 55.15 68.16 77.58 85.18 77.32 84.98
± 1.53 ± 1.88 ± 0.09 ± 0.15 ± 1.08 ± 0.98 ± 1.03 ± 0.58 ± 0.67 ± 0.55 ± 0.14 ± 0.03 ± 0.84 ± 0.59

mTOD
en 91.30 95.40 91.89 95.76 91.37 95.49 91.55 95.57 91.00 95.30 92.30 95.98 92.11 95.84

± 0.12 ± 0.06 ± 0.20 ± 0.12 ± 0.17 ± 0.11 ± 0.03 ± 0.04 ± 0.21 ± 0.11 ± 0.26 ± 0.14 ± 0.12 ± 0.08
es 84.63 89.43 85.55 90.27 86.19 90.72 86.07 90.67 85.29 90.28 85.77 90.53 85.77 90.59

± 0.09 ± 0.06 ± 0.45 ± 0.37 ± 0.31 ± 0.25 ± 0.26 ± 0.08 ± 0.36 ± 0.33 ± 0.15 ± 0.10 ± 0.19 ± 0.17
th 90.50 93.26 91.31 94.10 91.27 94.36 91.27 94.26 91.29 94.32 91.82 94.64 91.88 94.49

± 0.48 ± 0.38 ± 0.22 ± 0.12 ± 0.31 ± 0.25 ± 0.32 ± 0.18 ± 0.24 ± 0.22 ± 0.22 ± 0.12 ± 0.23 ± 0.12
Average 74.14 82.55 76.63 84.83 77.76 86.74 78.11 87.00 76.15 86.01 81.42 89.65 81.21 89.40

± 0.18 ± 0.13 ± 0.08 ± 0.05 ± 0.09 ± 0.15 ± 0.25 ± 0.14 ± 0.12 ± 0.16 ± 0.38 ± 0.14 ± 0.10 ± 0.10
Average 70.37 79.56 73.22 82.25 74.60 84.56 74.89 84.81 72.60 83.65 78.94 88.08 78.78 87.82
(non-en) ± 0.21 ± 0.20 ± 0.04 ± 0.05 ± 0.14 ± 0.21 ± 0.32 ± 0.17 ± 0.14 ± 0.20 ± 0.47 ± 0.17 ± 0.10 ± 0.10

Table 24: Detailed per-language results for the regular joint multilingual setting (mean and standard deviation
over 3 runs).

Dataset: mTOP
Input: High and low temps please
Label:
Prediction: <DATE_TIME> High and low
<METHOD_TIMER> time

Dataset: mTOD
Input: add title ’ trash day ’ to 8a alarm
Label: <datetime> to 8a

Prediction: <datetime> today <datetime> to 8a

Dataset: SNIPS
Input: name a science fiction film from 1961
Label: <GENRE> science fiction <YEAR> 1961
Prediction: <GENRE> science fiction <YEAR>
1960

Arbitrarily hallucinated words / phrases:
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Size
Average (all) [Zero-Shot] Average (non-en) [Zero-Shot] Average (all) [Joint] Average (non-en) [Joint]

T-O I+T TS S+T T-O I+T TS S+T T-O I+T TS S+T T-O I+T TS S+T
Small 55.60 57.84 56.74 62.65† 43.15 45.93 44.55 52.09† 83.06 85.04 84.03 87.53† 80.36 82.66 81.49 85.72†
(300M) ± 0.13 ± 0.19 ± 0.04 ± 0.11 ± 0.15 ± 0.26 ± 0.00 ± 0.16 ± 0.09 ± 0.15 ± 0.16 ± 0.09 ± 0.10 ± 0.19 ± 0.17 ± 0.11
Base 58.70 61.94 59.08 71.90† 47.13 51.18 47.41 64.25† 84.83 87.00 86.01 89.40† 82.25 84.81 83.65 87.82†
(580M) ± 0.81 ± 0.33 ± 0.82 ± 1.40 ± 0.98 ± 0.45 ± 1.03 ± 1.80 ± 0.05 ± 0.14 ± 0.16 ± 0.10 ± 0.05 ± 0.17 ± 0.20 ± 0.10
Large 59.96 61.10 58.65 73.25† 48.94 49.88 46.67 66.07† 86.78 88.36 87.73 89.28† 84.58 86.42 85.54 87.62†
(1.2B) ± 0.59 ± 1.29 ± 0.46 ± 0.85 ± 0.68 ± 1.70 ± 0.61 ± 1.09 ± 0.10 ± 0.13 ± 0.09 ± 0.07 ± 0.13 ± 0.14 ± 0.10 ± 0.14
XL 63.10 70.64 72.75 77.96† 52.50 62.44 65.23 72.18† 89.39 90.06 89.77 91.20† 87.50 88.31 87.94 89.79†
(3.7B) ± 0.55 ± 0.16 ± 0.84 ± 0.10 ± 0.72 ± 0.20 ± 1.13 ± 0.12 ± 0.21 ± 0.07 ± 0.04 ± 0.10 ± 0.13 ± 0.08 ± 0.07 ± 0.12
XXL 61.34 68.66 73.12 78.27 50.16 59.76 65.72 72.69 89.06 90.11 90.13 91.21 87.04 88.38 88.36 89.84

Table 25: Impact of model size (# of params in parentheses) on performance of formats. Averaged MicroF1 scores
are reported over the same 3 benchmarks (12 test sets) as Table 6, on both zero-shot and joint settings. The 4
methods compared are T-O: Tag Only (SI), I+T: Input + Tag (SI), TS: Tagged Spans and S+T: Sentinel + Tag (SI).
Base results are averaged over 3 runs. XL, Large and Small were averaged over 2 runs. Due to compute limits,
XXL (13B params) was run once for 2k steps (since trial runs plateaued there).† indicates 99% significance.

Input: Will the temps be freezing tonight
Target: <WEATHER_ATTRIBUTE> freezing <DATE_TIME> tonight

E TS: <DATE_TIME> tonight
Sentinel Target = E S+T(S): <extra_id_4> WEATHER_ATTRIBUTE <extra_id_5> DATE_TIME

Input: tonights projected low
Target: <DATE_TIME> tonights

E TS: <MUSIC_ALBUM_TITLE> tonights projected low
Sentinel Target = E S+T(S): <extra_id_0> DATE_TIME

Input: what are some ways to cook chicken in the crock pot
Target: <RECIPES_INCLUDED_INGREDIENT> chicken <RECIPES_COOKING_METHOD> crock pot

E TS: <RECIPES_DISH> chicken in the crock pot
Sentinel Target = E S+T(S): <extra_id_6> RECIPES_INCLUDED_INGREDIENT <extra_id_9> RECIPES_COOKING_METHOD <extra_id_10>

Input: What is a low carb food
Target: <RECIPES_QUALIFIER_NUTRITION> low <RECIPES_TYPE_NUTRITION> carb
E TS: <RECIPES_QUALIFIER_NUTRITION> low <RECIPES_TYPE_NUTRITION> carb

Sentinel Target = E S+T(S): <extra_id_3> RECIPES_QUALIFIER_NUTRITION <extra_id_4> RECIPES_TYPE_NUTRITION
Input: Read the top story on CNN.com

Target: <NEWS_REFERENCE> top <NEWS_TYPE> story <NEWS_SOURCE> CNN.com
E TS:

Sentinel Target = E S+T(S): <extra_id_2> NEWS_REFERENCE <extra_id_3> NEWS_TYPE <extra_id_5> NEWS_SOURCE
Input: set timer for 28 minutes for cake to be done

Target: <METHOD_TIMER> timer <DATE_TIME> for 28 minutes
E TS: <METHOD_TIMER> timer <DATE_TIME> for 28 minutes <TIMER_NAME> cake

Sentinel Target = E S+T(S): <extra_id_1> METHOD_TIMER <extra_id_2> DATE_TIME <extra_id_3> <extra_id_4>
Input: what is the latest new york post headlines

Target: <DATE_TIME> latest <NEWS_SOURCE> new york post <NEWS_TYPE> headlines
E TS: <DATE_TIME> latest <NEWS_TOPIC> new york post <NEWS_TYPE> headlines

Sentinel Target = E S+T(S): <extra_id_3> DATE_TIME <extra_id_4> NEWS_SOURCE <extra_id_5> <extra_id_6> <extra_id_7> NEWS_TYPE

Table 26: Examples of wins for Extractive Sentinel+Tag (S) vs the Extractive TaggedSpans on mTOP.

Worryingly, this is very common in all languages
(including English).

Dataset: ATIS
Input: list airports
Label:
Prediction: <city_name> dallas

Dataset: mTOD
Input: will it pour ?
Label: <weather/attribute> pour
Prediction: <weather/attribute> para

Dataset: mTOD
Input: set reoccurring alarms
Label:
Prediction: <reminder/noun> reminders

Translated words / phrases: An interesting
pattern we observe on some non-English datasets
is where a word is accidentally translated or
transliterated.

Dataset: mTOD
Input: apagar todas mi alarmas hoy
Label: <datetime> hoy
Prediction: <datetime> today

Dataset: mTOP
Input: Wie hoch ist die Temperatur
Label:
Prediction: <RECIPES_ATTRIBUTE> tempera-
ture

11872



Input: are there clear skies tonight
Target = E TS: <WEATHER_ATTRIBUTE> clear <DATE_TIME> tonight

Sentinel Target: <extra_id_2> WEATHER_ATTRIBUTE <extra_id_4> DATE_TIME
E S+T(S): <extra_id_3> WEATHER_ATTRIBUTE <extra_id_4> DATE_TIME

Input: Can you play metal radio from Spotify for me
Target = E TS: <MUSIC_GENRE> metal <MUSIC_TYPE> radio <MUSIC_PROVIDER_NAME> Spotify

Sentinel Target: <extra_id_3> MUSIC_GENRE <extra_id_4> MUSIC_TYPE <extra_id_6> MUSIC_PROVIDER_NAME
E S+T(S): <extra_id_3> MUSIC_PLAYLIST_TITLE <extra_id_4> MUSIC_TYPE <extra_id_6> MUSIC_PROVIDER_NAME

Input: Are there any severe weather advisories for the Pacific Northwest
Target = E TS: <LOCATION> Pacific Northwest

Sentinel Target: <extra_id_8> LOCATION <extra_id_9>
E S+T(S): <extra_id_7> LOCATION <extra_id_8> <extra_id_9>

Input: Any science related news
Target = E TS: <NEWS_CATEGORY> science <NEWS_TYPE> news

Sentinel Target: <extra_id_1> NEWS_CATEGORY <extra_id_3> NEWS_TYPE
E S+T(S): <extra_id_1> NEWS_CATEGORY <extra_id_2> <extra_id_3> NEWS_TYPE

Input: i want the current headlines across US
Target = E TS: <DATE_TIME> the current <NEWS_TYPE> headlines <NEWS_TOPIC> US

Sentinel Target: <extra_id_2> DATE_TIME <extra_id_3> <extra_id_4> NEWS_TYPE <extra_id_6> NEWS_TOPIC
E S+T(S): <extra_id_3> DATE_TIME <extra_id_4> NEWS_TYPE <extra_id_6> NEWS_TOPIC

Input: is there an update on the news story about Bill Clinton
Target = E TS: <NEWS_TYPE> update <NEWS_TYPE> news story <NEWS_TOPIC> Bill Clinton

Sentinel Target: <extra_id_3> NEWS_TYPE <extra_id_6> NEWS_TYPE <extra_id_7> <extra_id_9> NEWS_TOPIC <extra_id_10>
E S+T(S): <extra_id_3> NEWS_TYPE <extra_id_6> NEWS_TYPE <extra_id_7> <extra_id_9> NEWS_TOPIC <extra_id_10>

Table 27: Examples of losses for Extractive Sentinel+Tag (S) vs the Extractive TaggedSpans on mTOP.

Dataset: mTOP
Input: quel est le pourcentage de chances de pluie
pour aujourd’hui
Label: <WEATHER_ATTRIBUTE> pluie
<DATE_TIME> pour aujourd’hui
Prediction: <WEATHER_ATTRIBUTE> rainie
<DATE_TIME> aujourd’hui

F.2 (Extractive) Sentinel+Tag approach

Extra token / tag: The most frequent (albeit rare)
observed is where an extra token is added to the
output.

Dataset: mTOP
Input: <extra_id_0> Set
Label: <
Prediction: <extra_id_1> METHOD_TIMER

Dataset: mTOP
Input: <extra_id_0> Invite
Label:
Prediction: <extra_id_1> CONTACT_ADDED

Wrong sentinel number: Occasionally (and
somewhat surprisingly) the model copies the
wrong sentinel token index.

Dataset: mTOP
Input: <extra_id_0> get <extra_id_1> events <ex-
tra_id_2> I’m <extra_id_3> going <extra_id_4> to

Label: <extra_id_2>
USER_ATTENDEE_EVENT
Prediction: <extra_id_5>
USER_ATTENDEE_EVENT

Model expects further tokenization: Some-
times the models expects the input to have been
tokenized more than it was

Dataset: MIT-Movies
Input: <extra_id_0> who <extra_id_1> stars
<extra_id_2> in <extra_id_3> the <extra_id_4>
movie <extra_id_5> titled <extra_id_6> hap-
pythankyoumoreplease
Label: <extra_id_6> TITLE
Prediction: <extra_id_6> TITLE <extra_id_7>
<extra_id_8>

G Examples of Wins and Losses

To help give a sense of the wins and losses we ob-
served using the sentinel approach, we compared
the Sentinel+Tag approach vs the current stan-
dard TaggedSpans approach on the largest dataset:
mTOP. To make this analysis easier, we analyzed
the extractive versions of the models as they are
more succinct. The examples are provided in Ta-
bles 26 and 27.

In general we find that the sentinel model seems
to be generally better at identifying and labeling
the spans in the text. However we also find exam-
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ples where occasionally the sentinel model adds
or shortens a multi-word span (e.g. "Pacific North-
west" extended to "the Pacific Northwest", "sci-
ence" extended to "science related", "the current"
shortened to "current").
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