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Abstract

Heterogeneous Information Network (HIN) is
essential to study complicated networks con-
taining multiple edge types and node types.
Meta-path, a sequence of node types and edge
types, is the core technique to embed HINs.
Since manually curating meta-paths is time-
consuming, there is a pressing need to develop
automated meta-path generation approaches.
Existing meta-path generation approaches can-
not fully exploit the rich textual information in
HINS, such as node names and edge type names.
To address this problem, we propose MetaFill,
a text-infilling-based approach for meta-path
generation. The key idea of MetaFill is to for-
mulate meta-path identification problem as a
word sequence infilling problem, which can
be advanced by Pretrained Language Models
(PLMs). We observed the superior performance
of MetaFill against existing meta-path gen-
eration methods and graph embedding meth-
ods that do not leverage meta-paths in both
link prediction and node classification on two
real-world HIN datasets. We further demon-
strated how MetaFill can accurately classify
edges in the zero-shot setting, where existing
approaches cannot generate any meta-paths.
MetaFill exploits PLMs to generate meta-paths
for graph embedding, opening up new avenues
for language model applications in graph anal-
ysis.!

1 Introduction

Heterogeneous Information Network (HIN) is an
effective framework to model complicated real-
world network data (Sun et al., 2011; Wang et al.,
2019; Dong et al., 2017; Shi et al., 2016; Yang
et al., 2020; Fu et al., 2017; Yun et al., 2019; Hu
et al., 2020). In contrast to a conventional net-
work (Tang et al., 2015; Grover and Leskovec,
2016; Perozzi et al., 2014; Hamilton et al., 2017;
*Corresponding author

'Our code is available at https://github.com/zequnl/
MetaFill

Kipf and Welling, 2016; Velickovi¢ et al., 2018),
HIN supports multiple node types and edge types,
thus facilitating the integrative analysis of multi-
ple datasets (Chen et al., 2012; Himmelstein and
Baranzini, 2015; Zhao et al., 2020). One of the
most important applications on HIN is to discover
interactions between different node types by fram-
ing it as a link prediction problem (Fu et al., 2020;
Zhang et al., 2014; Cao et al., 2017). Link predic-
tion is particularly challenging on heterogeneous
and long-distance node pairs, which often do not
share any neighbors, thus presenting substantial
false-negative predictions by conventional network-
based approaches (Shi et al., 2014; Fu et al., 2016;
Daud et al., 2020).

HIN exploits meta-paths to address link pre-
diction, especially for heterogeneous and long-
distance node pairs. A meta-path is a sequence of
node types and edge types. A good meta-path often
consists of paths that frequently appear in a HIN,
thus guiding the HIN to focus on these important
paths in a large network. Since manually curating
meta-paths requires domain expertise, automated
meta-path generation approaches have become es-
sential for link prediction on HINs (Yang et al.,
2018; Wan et al., 2020; Shi and Weninger, 2014a;
Meng et al., 2015; Wang et al., 2018; Deng et al.,
2021; Wei et al., 2018; Zhong et al., 2020; Ning
et al., 2021). Despite their sophisticated design to
leverage the network topological features, existing
approaches largely overlook the rich textual infor-
mation on nodes and edges. In fact, real-world
HINSs contain rich textual information (Yang et al.,
2022; Liu et al., 2022; Xu and Wang, 2022), such
as node name, node type name and edge type name,
which are often the key evidence for human experts
to curate meta-paths.

In this paper, we propose to identify meta-paths
using pretrained language models (PLMs) (Ken-
ton and Toutanova, 2019; Radford et al., 2019; Liu
et al., 2019; Beltagy et al., 2019; Gu et al., 2020) in
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order to explicitly utilize the rich textual informa-
tion in HINs. The key idea of our method MetaFill
is to form the meta-path identification problem as
a text infilling problem (Zhu et al., 2019). In effect,
this converts a graph-based approach to an NLP
problem, enabling us to enjoy a variety of new
techniques developed along with PLMs. Specifi-
cally, MetaFill samples many paths from the HIN
according to the PLM-based probability for a word
sequence consisting of node names and edge type
names on that path, then aggregates these paths
into meta-paths by a novel context-aware node type
classifier.

We evaluated our method on two large-scale
HINs and observed substantial improvement on
link predictions compared to existing meta-path
generation approaches under two meta-path-based
link prediction frameworks. Furthermore, we
found that the improvement of our method is larger
with the decreasing of training data size, indicating
the ability of compensating data sparsity using tex-
tual information. In addition to link prediction, our
method also achieved prominent results on node
classification. Collectively, we demonstrate how
language model can be used to accurately gener-
ate meta-paths on HINs, opening up new venues
for heterogeneous graph analysis using language
models.

2 Preliminaries

Heterogeneous information network (HIN) is a net-
work that contains multiple node types and edge
types (Shi et al., 2016; Yang et al., 2020). Let
G = (V,&) be aHIN, where V = {v;} is the set of
nodes and £ = {e;} C V x Vis the set of edges.
Each node v € V is associated with a node type
a € A. Each edge e € £ is associated with an edge
typer € R.

There are three kinds of textual information in
most HINs. 1) Node name: the textual description
of a node v (e.g., breast cancer). 2) Node type
name: the textual description of a node type a
(e.g., disease). 3) Edge type name: the textual
description of an edge type r (e.g., treated by).
Some HINs might also have edge names. While we
do not consider edge names in this paper, they can
be easily incorporated into our framework. Most
of the conventional HIN embedding approaches do
not fully exploit this rich textual information. We
aim to use language models to incorporate textual
information into HIN modeling.
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Figure 1: Hypothesis validation. Pretrained language
model can be used to predict node name similarity (a)
and connectivity (b).

Meta-path is one of the most effective techniques
for embedding HINs through explicitly modeling
heterogeneous and long-distance semantic similar-
ity (Dong et al., 2017; Wang et al., 2019; Fu et al.,
2020). An [—hop meta-path 2 is defined as a se-
quence aj Dy g 2 e LN ajy+1, where a; is
a node type and 7; is an edge type. Each meta-
path could have many path instances on a HIN. Let
P=uv Ly ﬂ)le. Then P is a path
instance of (2, if a; is the node type of v; and r;
is the edge type of e;. HIN embedding is often
performed through repeatedly sampling a path in
the graph and then optimizing the embedding of
each node along this path. Meta-paths could be
used to record prior knowledge and then encourage
the sampling process to focus on the path that is an
instance of curated meta-paths.

3 Hypothesis Validation

Our hypothesis is that PLMs can be used to identify
important meta-paths based on the textual informa-
tion along each path. Since PLMs have shown
to contain a great amount of real-world knowl-
edge (Petroni et al., 2019), they might also be
used to extract meta-paths similar to expert cura-
tions. We sought to validate this hypothesis using
a widely-used HIN dataset NELL(Mitchell et al.,
2018). In particular, we randomly sampled 1000
2-hop paths in NELL. For each path, we calcu-
lated a PLM-based similarity score, a name-based
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similarity score and a connectivity-based similarity
score. The PLM-based similarity score concate-
nated node names and edge type names along a
given path as a word sequence and then obtained
a probability for this sequence using GPT-2. The
name-based similarity score calculated the textual
similarity between the node names of the starting
node and the end node using GPT-2 embeddings.
The connectivity-based similarity score is 1 if two
nodes are connected and O otherwise.

We first compared PLM-based similarity score
and name-based similarity score and observed a
substantial agreement of Spearman correlation 0.31
(Fig. 1 a). This indicates that PLM is able to find
nodes with similar node names. Next, we found
that PLM-based similarity score is also highly pre-
dictive of the connectivity-based similarity score
(Fig. 1 b), demonstrating the possibility to predict
missing links using a PLM. Collectively, the lan-
guage model probability of a path is predictive of
nodes similarity and connectivity, suggesting the
opportunity to find meta-paths using PLMs.

4 Methodology

The key idea of our approach is to form meta-path
identification as a text infilling problem (Zhu et al.,
2019) and then exploit PLMs to fill in the node
names and edge type names that best reflect the
graph information. These word sequences then
form paths on the HIN and are then aggregated
into meta-paths using a context-aware node type
classifier (Fig. 2).

4.1 Sampling paths through text infilling

To sample a path, we first sample two connected
nodes vj, and v; from the HIN. For notation sim-
plicity, we denote vy, and v; as the associated node
name on vy, and v;. We then sample an [-hop path
from vy, to v; by using the following templates:

vy, [MASKE] MASKY]. It [MASKZ] [MASKY ] It - - [MASKE] vy,

where [MASK;E ] is the edge type name mask for the
t-th edge and [MASKY] is the node name mask for
the ¢-th node. vy, and v; guide the model to fill in
the edge type name for [MASK? ] and node name for
[MASKZV ]. To fill in [MASKiE ], we initialize it with a
common edge type "relates to" and then update it
iteratively according to the nearby [MASKZV_I].

We fill in [MASKZV] based on two intuitions. First,
the node name that is filled in by the language
model is preferred to be an existing node in the

Apple headquarter in

STRVAIIEBS) 24" [MASK] 'l ©5(IMASK] 22 (Fhe USS:!
Stevejobs M‘» Apple heachrterin [MASK] locate in The US.

found headquarter in
—_—

Steve Jobs ——  Apple locate in

Cupertino——> The U.S.

Output: meta-path v

Personfoung Company headquarter in Cit)’ locate in Country

Figure 2: Flowchart of MetaFill. MetaFill leverages
two GPT-2 to sample paths from heterogeneous infor-
mation network. One GPT-2 fills in the masked node
name and is fine-tuned using the HIN. The other GPT-2
classifies the node type for the filled token. These paths
are then aggregated into meta-paths.

HIN. Second, the type of node ¢ should form a valid
path connecting [MASK!” ;] and [MASK} ] through
[MASKZE ] and [MASKﬁl]. For example, for path
[breast cancer][is treated by] [MASK"], we need to
fill in a drug name rather than a disease name. For
the first intuition, we propose to fine-tune the PLM
using the HIN. For the second intuition, we pro-
pose to train a context-aware node type classifier
to predict the node type on-the-fly.

4.2 Fine-tuning the PLM using the HIN

We fine-tune the PLM using the HIN to increase the
probability that the infilled text is a valid node name
in the HIN. Let e be an edge in the HIN. v, and v,
be the node names of the two nodes connected by
e, and r be the edge type name of e. We construct
four templates as:

vy, relates to [MASK],
[MASK] relates to vy,
vp, T [MASK],
[MASK] r vy.

The first two templates are edge-type-agnostic tem-
plates and the last two templates are edge-type-
specific templates.

We follow (Donahue et al., 2020) to use GPT-2
to infill this template. GPT-2 takes the concatenated
x[SEP]y as input, where x is the masked template
and y is the target tokens. For each template, we
define x as the masked sentence templates and y
as the correct word tokens. All edges in the HIN
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are used to fine-tune the PLM. We decide to use
"relates to" in the first two templates in order to
make the model be compatible with the initializa-
tion using "relates to" in the previous path sampling
infilling.

4.3 Context-aware node type classifier

For the second intuition, we propose to train a
context-aware node type classifier. First, despite
fine-tuning the HIN using a PLM, the infilled node
name is still not guaranteed to be the name of an
existing node in the HIN. Second, even if the in-
filled node name is in the HIN, it might have an
ambiguous node type (e.g., apple as a fruit or a
company). Therefore, we need a node type classi-
fier to obtain its node type according to the nearby
edge type names and node names. To this end, we
train a GPT-2-based classifier which can predict a
node type given the textual content.

Specifically, for node v;, we calculate its node
feature embedding as:

Let &; be all the edges that connect v;. Let e € &;
connect v; and v;. Let a be the edge type of e. We
calculate a context feature embedding h, as:

h, = GPT(vj [SEP] a [SEP] v;). 2)

A context-aware node type classifier is then trained
using h; and h, as:

¢ e = Softmax(W (h;||h.) + by),

B Z Z Z a; o[k logci k], 4

v, €V e€&; keK

where W1 and by are trainable parameters. c; .
is a predicted vector of node types on node v; ac-
cording to edge e. a;. is the observed one-hot
vector of node types on node v;. K is the number
of node types. We fine-tune GPT-2 while training
this classifier.

To better fine-tune GPT-2, we further introduce
a similar task of neighbour node type prediction,
which predicts the node type of the neighbor v;:

cj = Softmax(Ws(h;||he) + b2),

ZZZaje | logc;lk], “)

vi€Vee&; ke K

ngh =

where W and by are trainable parameters. a; . is
the observed one-hot vector of node types on node
(S

J

The final loss function is:

Enode =L+ A*Cngha (5)

where A is a hyperparameter.

4.4 Meta-path induction

We can now sample many paths using text infill-
ing. Each time, we first sample a valid edge type
for [MASK{E ] and [MASKF ]. Then we start the text
infilling from vy, to v;. When a node name is filled
in, node type classifier is used to predict the node
type based on this node name, the previous node
name and the previous edge type name. This node
type is then used to guide the sampling for the next
edge type in order to maintain a valid path on the
path.

We sample paths of a variety of length. After
many paths are sampled, we will use the node type
classifier to convert each path to a meta-path. We
then rank all meta-paths by the frequency and select
the most frequent ¢ paths. For a fair comparison,
we set g to the number of meta-paths that compari-
son approaches have generated in our experiments.

4.5 Meta-path-based predictions

After obtaining meta-paths, we can apply them
to meta-path-based graph embedding frameworks
(Dong et al., 2017; Wang et al., 2019). These frame-
works take a heterogeneous graph G and ¢ gener-
ated meta-paths as inputs, and then output an em-
bedding vector e for each node. The learned node
embeddings can be used for link prediction and
node classification.

Link prediction. To classify edges into edge
type r, the loss function is defined as:

L=— Z loga(ez»ev)

(u,v)EE,
T
€y - ei/) )

where o(-) is the sigmoid function, e, is the
learned node embedding for node u, E, is the node
pairs with edge type r, .~ is the set of negative
node pairs.

Node classification. The loss function for node
classification is the cross entropy loss:

log o (— ©

Zy = SoftmaX(Wgev + bs),

Z Z c]log z,[c ™

veVr c=1
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where V', is the set of nodes that have labels, C'
is the number of classes, e, is the learned node
embedding for node v, z’,, is the ground-truth label
vector and z, is the predicted probability vector,
and W3 and bs are trainable parameters.

5 Results

5.1 Experimental setup

Datasets and tasks. We evaluated our method
on two text-rich HINs, HeteroGraphine and NELL
(Mitchell et al., 2018). HeteroGraphine is a biomed-
ical HIN constructed based on expert-curated
biomedical ontology collection (Liu et al., 2021a).
We combined ontologies from five subdisciplines,
including "uberon", "pato", "cteno", "ceph" and
"ro", and treated each subdiscipline as a node type.
There could be edges between the same node type
and between two different node types. Hetero-
Graphine consists of 17,317 nodes, 41,329 edges,
5 node types and 118 edge types. NELL is a HIN
extracted from internet web text. We follow Wan
et al. (2020) to remove the triples with the relation
"generalizations", which correspond to redundant
node type information. NELL consists of 77,455
nodes, 384,275 edges, 281 node types and 830
edge types. Given the large number of node types
and edge types in both datasets, manually curating
meta-paths is hard, necessitating automated meta-
path generation approaches.

We studied both link prediction and node classifi-
cation. For link prediction task, we chose to predict
edge type "develops from" in HeteroGraphine and
chose to predict "competes with" in NELL, follow-
ing previous work (Wan et al., 2020). The ratio
of positive edges is 50%. Since NELL does not
have node labels, we studied node classification on
HeteroGraphine only. We used the "subset" infor-
mation in each ontology as the label and evaluate
node classification on uberon and pato. Subset la-
bels can be regarded as the scientific field for each
node. uberon has 6 classes and pato has 7 classes.

Comparison approaches. We compared our
method with five meta-path generation methods.
Discrmetapath (Shi and Weninger, 2014a) is a
searching-based method, which prioritizes meta-
paths that can separate a path from its sibling paths.
GTN (Yun et al., 2019) and HGT (Hu et al., 2020)
are attention-based methods. They don’t explicitly
output meta-path, but meta-paths could be induced
from the combination of edge attention scores. Au-
toPath (Yang et al., 2018) and MPDRL (Wan et al.,

2020) are reinforcement learning-based (RL-based)
methods which train an agent to traverse on the
graph. Discrmetapath, MPDRL and Autopath did
not use textual information. We aim to assess the
importance of using textual information by com-
paring MetaFill to them. GTN and HGT explic-
itly considered the textual information by pooling
PLM-based word embeddings. We aim to examine
the effectiveness of text infilling against simple em-
bedding pooling by comparing MetaFill to them.
We further implemented a variant of our model
MetaFill w/o fine-tuning to investigate the impact
of fine-tuning the PLM using HIN. We did not re-
port the meta-path generation results of GTN on
both datasets because it cannot generate any valid
meta-paths there, and did not report the results of
HGT on NELL because it cannot scale to such a
schema-rich HIN.

Meta-path-based link prediction framework.
Our method and the comparison approaches can
automatically generate meta-paths. We then fed
these meta-paths to a meta-path-based HIN embed-
ding framework. We evaluated two widely-used
frameworks: Metapath2Vec (Dong et al., 2017)
and HAN (Wang et al., 2019). Each of them pro-
vides us the node embeddings, which are then used
for link prediction and node classification. Metap-
ath2Vec formalizes meta-path-based random walks
and then leverages a skip-gram model to optimize
node embeddings. HAN aggregates node features
from meta-path-based neighbors to get node em-
beddings.

Comparison approaches that do not use meta-
paths. We also compared to methods that do not
use meta-paths to demonstrate the importance of
meta-path. For link prediction, we compared our
method to heterogeneous graph neural network em-
bedding GTN (Yun et al., 2019). For node classi-
fication, we compared our method to multi-layer
perceptron (MLP), homogeneous graph neural net-
work embedding GraphSAGE (Hamilton et al.,
2017), and heterogeneous graph neural network em-
bedding GTN. We used AUC and AP to evaluate
link prediction. We used micro-F1 and macro-F1
to evaluate node classification. More implementa-
tion details can be found in Appendix A.2.

5.2 Improved performance on link prediction

We summarized the performance on link prediction
in Table 1. We found that our method obtained
the best results on both datasets under both meta-
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HeteroGraphine NELL
Method AUC AP | AUC_ AP
GTN 0.6352  0.6558 - -
Metapath2Vec
Discrmetapath 0.5425  0.5711 | 0.4899 0.5596
HGT 0.5322  0.5869 - -
AutoPath 0.5158 0.5723 | 0.5420 0.6120
MPDRL 0.4833 0.5188 | 0.5133 0.5949
MetaFill w/o fine-tuning  0.6412  0.7148 | 0.5162  0.5905
MetaFill 0.6598 0.7189 | 0.5597 0.6239
HAN
Discrmetapath 0.7621  0.7901 | 0.5448 0.5652
HGT 0.7690  0.7932 - -
AutoPath 0.7556  0.7824 | 0.5582 0.5695
MPDRL 0.7323  0.7685 | 0.5423 0.5604
MetaFill w/o fine-tuning  0.7904  0.8155 | 0.5708 0.5833
MetaFill 0.7985 0.8214 | 0.5764 0.5913

Table 1: Link prediction performance on two HIN
datasets (HeteroGraphine, NELL). Metapath2vec and
HAN are two meta-path-based link prediction frame-
works. GTN is not a meta-path based approach.

path-based link prediction frameworks. For exam-
ple, MetaFill obtained at least 22% AP improve-
ment against other meta-path generation methods
on HeteroGraphine under Metapath2Vec frame-
work. MetaFill also outperformed GTN by 22%
AUC under HAN framework, indicating the im-
portance of using meta-paths to model HINs. Un-
der HAN framework, other meta-path generation
approaches are also better than GTN, again ne-
cessitating the generation and utilization of meta-
paths. We noticed that Metapath2Vec is in general
worse than HAN, partially due to HAN’s explic-
itly aggregation of neighbor features. Importantly,
HGT considering textual information performed
substantailly better than those do not consider tex-
tual information (e.g., Discrmetapath, AutoPath,
MPDRL), confirming the benefits of incorporating
textual information into HIN modeling. Finally,
we observed decreased performance by our vari-
ant, where the PLM is not fine-tuned using the
HIN, indicating how fine-tuning can ease the text
infilling procedure and later derive more accurate
meta-paths. Despite having a less superior per-
formance, this variant is still better than all other
comparison approaches on both datasets, reassur-
ing the effectiveness of using text infilling to find
meta-paths.

5.3 Improved performance on node
classification

We next investigated the performance of our
method on node classification. Since all of the
meta-path generation comparison approaches ex-
cept HGT are designed for link prediction task, we

only compared to HGT and two other non-meta-
path-based approaches GraphSAGE and GTN. We
found that our method achieved the best perfor-
mance under both the framework of Metapath2Vec
and HAN (Table. 2). For example, the micro-F1
and macro-F1 of our model are 6.7% and 6.3%
higher than HGT on pato under HAN framework.
The performance of HAN is also in general better
than non-meta-path-based approaches, especially
on macro-F1, again demonstrating the effectiveness
of meta-paths on HIN embedding. The superior
performance of MetaFill on both link prediction
and node classification collectively proves the effec-
tiveness of using text filling to generate meta-paths.

5.4 Connectivity in HIN improves PL.Ms

We further visualized the embedding space of GPT-
2 before and after fine-tuning to understand the
superior performance of our method on node clas-
sification (Fig. 3). We observed that the quality of
GPT-2 embedding improved substantially after fine-
tuning on the HIN. In particular, we calculated the
word embeddings of node names for nodes whose
type is among "website", "clothing" and "disease".
GPT-2 without fine-tuning didn’t show a visible
pattern for these nodes. In contrast, both GPT-2
fine-tuned using HIN and GPT-2 fine-tuned using
context-aware node type classifier presented a clear
pattern for these three node types. In summary,
the HIN provides valuable information about the
node names and node types for the language model
during the fine-tuning. While PLMs facilitate the
HIN embedding, the rich connectivity information
in the HIN also improves the word embedding of
PLMs.

5.5 Consistent improvement using fewer
training data

We next investigated the performance of our
method and comparison approaches using fewer
training data. On both datasets, we randomly sam-
pled 25%/50%/75% of node pairs in the original
training data, and then used them to find meta-paths.
We first noticed that the performance of comparison
approaches dropped substantially when there are
fewer training data points, indicating that they re-
quire enough training data to derive accurate meta-
paths Fig. 4. In contrast, our method demonstrated
a stable performance when fewer training data was
provided. We attributed this superior performance
to MetaFill’s ability to exploit the rich textual infor-
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Data Metrics Non-meta-path-based Metapath2Vec-based HAN-based
MLP  GraphSAGE  GTN HGT MetaFill HGT  MetaFill
pato micro-F1 | 0.5309 0.5855 0.5890 | 0.3734 0.4032 0.5747  0.6107
macro-F1 | 0.2099 0.1236 0.1242 | 0.3068 0.3177 0.3073  0.3266
uberon micro-F1 | 0.5679 0.5377 0.5692 | 0.3178 0.4038 0.5586  0.5760
macro-F1 | 0.2907 0.1794 0.2914 | 0.2897 0.3485 0.3405  0.3591

Table 2: Node classification performance on pato and uberon. Non-meta-path-based are methods that do not use
meta-paths. HAN and Metapath2Vec are two meta-path-based embedding framework.

a b

Website
GPT-2 without fine-tuning

Clothing
GPT-2 fine-tuned using HIN

Cc
Disease
GPT-2 fine-tuned for type classification

t-SNE 2
t-SNE 2

t-SNE 2

t-SNE 1

t-SNE 1

t-SNE 1

Figure 3: t-SNE plots visualizing the embedding space of GPT-2 without fine-tuning (a), GPT-2 fine-tuned by HIN
(b), and GPT-2 fine-tuned by context-aware node type classifier (¢). The fine-tuned GPT-2 present more visible

patterns for three classes.

mation from the HIN, again confirming the impor-
tance of using text infilling to identify meta-paths.

5.6 Zero-shot link prediction

Our method is also able to perform link predic-
tion in the zero-shot setting. Here, we aim to clas-
sify edges into the edge type "develops from". To
study the zero-shot setting, we held-out all edges
belong to this edge type in the training data. To do
the link prediction, we first fed "[MASK] develops
from [MASK]" into the fine-tuned GPT-2 to generate
many pseudo training node pairs. These pairs are
then used by MetaFill to generate meta-paths. We
observed a desirable performance on both Meta-
path2Vec (AUC=0.6567, AP=0.7068) and HAN
(AUC=0.7733, AP=0.8024) (Fig. 4c). Notably,
these results are only slightly worse than the su-
pervised learning setting (Fig. 4), highlighting the
strong applicability of our method.

5.7 A case study of the generated meta-paths

Finally, we presented a case study for the link
prediction task on HeteroGraphine to examine
the meta-paths generated by MetaFill. For a test
edge (ceratobranchial 5 tooth, develops from, tooth
enamel organ), our model generated the following

meta-path:

has developmental contribution from

is a
uberon — uberon uberon.

This meta-path helps the meta-path-based frame-
work found the following path:

ceratobranchial 5 tooth ﬂ) calcareous tooth

has developmental contribution from

tooth enamel organ,

which enables us to correctly predict this edge.
None of the comparison approaches identify this
meta-path. Thus, they cannot correctly predict this
edge. uberon represents biological structures in
anatomy. This meta-path conforms the domain
knowledge that a biological structure v; is more
likely to develop from another structure v; if its
parent node has developmental contribution from
vj, indicating the consistency between the meta-
paths generated by our model and those curated by
domain experts.

6 Related Work

Automatic meta-path selection and identification
are emerging research problems due to their impor-
tance in modeling HIN. Searching-based methods
enumerate all the meta-paths (Wang et al., 2018;
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Figure 4: Evaluation on the low-resource setting. a,b, Performance on HeteroGraphine using fewer training data,
evaluated by AUC (a) and AP (b). ¢, AUROC curve of zero-shot prediction using MetaFill (AUC=0.7733).

Deng et al., 2021; Wei et al., 2018) or expand
meta-paths iteratively with searching algorithm
such as greedy tree (Meng et al., 2015; Cao et al.,
2016; Zheng et al., 2017), k-shortest path (Shi and
Weninger, 2014b) and A* (Zhu et al., 2018), and
rank them by some pre-defined metrics. Reinforce-
ment learning-based methods train an agent to walk
on the graph and induce meta-paths from the tra-
jectories (Ning et al., 2021; Wan et al., 2020; Yang
et al., 2018; Zhong et al., 2020). Attention -based
methods use the attention score of edges (Yun et al.,
2019; Hu et al., 2020; Wang et al., 2020b) or meta-
paths (Li et al., 2021; Hu et al., 2018; Zhang and
Zhu, 2021; Liang and Liu, 2020) in GNN with at-
tention mechanism to evaluate the importance of
meta-paths. Compared to searching-based methods,
our approach can leverage not only the graph struc-
ture but also the textual information. In contrast
to RL-based methods and attention-based methods,
our approach avoid the information loss caused by
pooling the textual content into a node embedding
vector, and more effectively utilize the knowledge
in PLMs.

Language models have been used to build and
complement knowledge bases (AlKhamissi et al.,
2022). Previous works extract knowledge from
PLMs for fact probing (Petroni et al., 2019; Davi-
son et al., 2019; Jiang et al., 2020b,a; Adolphs et al.,
2021; Zhong et al., 2021; Qin and Eisner, 2021;
Kassner et al., 2021; Shin et al., 2020; Dhingra
etal., 2021; Liu et al., 2021b; Sung et al., 2021), se-
mantic probing (Gao et al., 2021; Shin et al., 2020;
Beloucif and Biemann, 2021), reasoning (Talmor
et al., 2020; Gao et al., 2022), planning (Huang
et al., 2022) and knowledge graph construction
(Yao et al., 2019; Wang et al., 2020a). The key dif-

ference between our work and these studies is that
we aim at finding meta-paths rather than a specific
path or edge in the knowledge graph. Aggregat-
ing paths into meta-paths is non-trivial due to the
potential invalid paths and ambiguous node types.
Our ablation study that showed the importance of
fine-tuning PLMs using HIN also confirmed this.
To the best of our knowledge, our work is the first
application of language models for meta-path gen-
eration.

7 Conclusion and Future Work

In this paper, we have proposed a novel text-
infilling-based meta-path generation method. The
key idea of our method is to form meta-path gener-
ation as a text infilling problem and sample impor-
tant paths from a HIN by using PLMs to generate
sequences of node names and edge type names. We
have evaluated our method on two datasets under
two meta-path-based HIN embedding frameworks,
and obtained the best performance on node clas-
sification and link prediction. The improvement
of our method is also consistent in low-resource
settings. In addition, we found that fine-tuning the
PLM using a HIN can further improve word em-
beddings, again indicating how our method creates
an synergistic effort between HINs and PLMs.

To the best of our knowledge, our method is the
first attempt to apply PLMs to meta-path genera-
tion. Since PLMs are constructed on large-scale
real-word text corpus, they often contain rich real-
world knowledge. We envision that our method
will motivate future research in investigating how
PLMs can be used to advance other graph analysis
problems.

5117



Acknowledgement

This paper is partially supported by National Key
Research and Development Program of China with
Grant No. 2018AAA0101902 and the National
Natural Science Foundation of China (NSFC Grant
Numbers 62106008 and 62276002).

Limitations

We currently have identified three limitations for
our paper. First, the edge type names and node
names are generated greedily for computational
efficiency, introducing accumulative errors. We
plan to implement beam search to alleviate this
problem in the future. Second, we only generate
meta-paths to connect positive connected pairs but
overlook the difference between positive and nega-
tive pairs. We plan to exploit contrastive learning
techniques to maximize the probability of meta-
paths that connect positive pairs, while minimizing
the probability of meta-paths that connect negative
pairs. Finally, our method has currently only been
applied to link prediction and node classification.
It is also important to evaluate other graph-based
tasks such as node clustering, graph-to-text genera-
tion, to thoroughly evaluate our method.
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A Appendix
A.1 Name-based Score for Hypothesis
Validation

For a path we calculate the text similarity between

its head node vy, and tail node v;:
m(v, 1) 1

sim(vp,v) = —————

1+ [len — ed]

where e, and e; are the GPT-2 embeddings of the
head node name and tail node name, || - || is the
Euclidean distance.

A.2 Implementation Details

Metapath2Vec and HAN For Metapath2vec, the
walk length is 1 on HeteroGraphine and 10 on
NELL. For HAN, we use bag-of-words vector as
the initialization of node embeddings. The dimen-
sion of node embeddings are both set to 128 for fair
comparison and the learning rates are both 0.001.
We follow the other hyperparameter settings in the
orginal papers.

Link prediction and node classification We
use dot product score to do link prediction after
getting node embeddings. For node classification,
we train HAN with the cross entropy loss function
end-to-end. Since Metapath2Vec cannot do node
classification directly, we train a 1-layer MLP clas-
sifier on top of the node embedding vectors. 12.5%
of the training data are randomly sampled as the
validation set for early stopping.

Our meta-path generation method We follow
the settings in (Donahue et al., 2020) to fine-tune
the GPT-2 for text-infilling, and fine-tune based on
their fine-tuned model. The context-aware node
type classifier is trained using early stopping and
the training data and validation data are 4:1, A is
set to 1. We sample paths from 1-hop to 4-hop.
Note that for 1-hop paths, no node name needs to
be infilled, we only randomly sample an edge to
connect vy, to v¢. We run the generation process
of each node pair 10 times since there could be
more than one paths connecting two nodes. To re-
duce the computaional cost, we sample connected
nodes from a subset of the large-scale HIN. For link
prediction task, the subset is the training positive
edges. For node classification task, the subset is
nodes with similar labels (The label similarity is
calculated by the cosine similarity of the muti-hot
label vector). For link prediction task, we select
top-8 meta-paths for HeteroGraphine and top-23
meta-paths for NELL on all the competing methods
for a fair comparison. For node classification task,
we select top-6 meta-paths. All experiments are
carried out on NVIDIA GeForce RTX 3090. We
use 2 GPUs for finetuning and 1 GPU for infilling.
The finetuning stage need 1 day and the infilling
stage can be finished within 2 hours.

Baselines For GTN, we set the number of layers
to 3 for link prediction task and set the layers for
node classification task to 2, in order to adapt to
the scale of the dataset. The learning rates for these
two tasks are 5e-4 and 5e-6. All the other hyper
parameters are same with the original official code.
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For HGT, in link prediction task, we set the layers
of HGT to 4 and the depth and width of sampling to
6 and 128 respectively. The batch size is set to 256.
As to node classification task, we set the layers of
HGT to 3 and the depth and width of sampling to
3 and 64. The batch size for node classification is
64. The choices of these parameters are also for the
scale of datasets. The corresponding learning rate
for these two tasks are le-3 and le-6. AutoPath
and MPDRL are only used in the link prediction
task. We just follow the official implementations
without changing of hyperparameters. MLP use
Bag of Words of nodes’ names as the features for
nodes to do node classification. We use three layers
of MLP and use Tanh as the activation function. We
set learning rate to le-3. For GraphSAGE, we also
follow the official implementation. We set learning
rate to le-1.
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