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Abstract

Conventional visual relationship detection mod-
els only use the numeric ids of relation labels
for training, but ignore the semantic correlation
between the labels, which leads to severe train-
ing biases and harms the generalization ability
of representations. In this paper, we introduce
compact language information of relation la-
bels for regularizing the representation learn-
ing of visual relations. Specifically, we propose
a simple yet effective visual Relationship pre-
diction framework that transfers natural lan-
guage knowledge learned from Contrastive
Language-Image Pre-training (CLIP) models
to enhance the relationship prediction, termed
as RelCLIP. Benefiting from the powerful
visual-semantic alignment ability of CLIP at
image level, we introduce a novel Relational
Contrastive Learning (RCL) approach that ex-
plores relation-level visual-semantic alignment
via learning to match cross-modal relational
embeddings. By collaboratively learning the
semantic coherence and discrepancy from rela-
tion triplets, the model can generate more dis-
criminative and robust representations. Exper-
imental results on the Visual Genome dataset
show that RelCLIP achieves significant im-
provements over strong baselines under full
(providing accurate labels) and distant supervi-
sion (providing noise labels), demonstrating its
powerful generalization ability in learning rela-
tionship representations. Code will be available
at https://gitee.com/mindspore/models/
tree/master/research/cv/RelCLIP.

1 Introduction

Visual relationship detection needs to predict the re-
lation label between a pair of localized objects (e.g.
“man carrying bag”). Based on such relationships
we can construct a structural representation (i.e.,
scene graph) that regards the visual concepts within
a scene as a whole and could benefit many down-
stream reasoning tasks, such as image retrieval (Qi
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Figure 1: Overview of RelCLIP which adapts Con-
trastive Language-Image Pretraining (CLIP) models to
enhance the visual-semantic alignment for relationship
learning via a novel Relational Contrastive Learning
(RCL) approach. RCL matches the cross-modal re-
lationship embeddings in both subject-predicate and
predicate-object levels and improves relationship dis-
crimination with the help of language information of
relation labels.

et al., 2017; Johnson et al., 2015), vision question
answering (Antol et al., 2015), and visual common-
sense reasoning (Zellers et al., 2019).

Existing visual relationship detection models
(Yao et al., 2021; Guo et al., 2021; Chen et al.,
2019; Zellers et al., 2018) learn relation represen-
tations based on the visual information of object
pairs under the supervision of numeric ids of rela-
tion labels. The learned representations often suffer
from the highly changeful visual appearances of
the instances from the same relation category as
well as the fine-detailed visual difference between
relation classes. As shown in Fig. 1, the representa-
tion of the sample “girl carrying surfboard” is very
close to that of “man riding surfboard” in the visual
embedding space, which may cause undesirable
misclassification of relations.

To alleviate this, we introduce language informa-
tion of relation labels which is more compact than
visual information to capture the semantic correla-
tions among the labels, and regularize the represen-
tation learning of visual relationships via exploring
visual-semantic alignment at relation level. By do-
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ing this, we can learn more robust and discrimina-
tive relationship representations. Specifically, we
propose a Relationship detection framework that
adapts Contrastive Language-Image Pretraining
(CLIP) models (Radford et al., 2021) to enhance
the visual-semantic alignment during relationship
learning, termed as RelCLIP. The CLIP model
is pre-trained on 400 million image-text pairs har-
vested from the Web, and is proved to be good at
image-level visual-semantic alignment. During the
representation learning of CLIP, the objects within
an image are considered to be independent, and it is
difficult to capture the interaction between objects,
e.g., visual relationships, so CLIP models can not
be directly applied to visual relation detection. For
example, as shown in Fig. 2, CLIP features only
focus on individual objects but fail to activate the
area that indicates the relationship between two
objects. In contrast, our RelCLIP can effectively
focus on the interactive regions between objects
that intuitively indicates the relations.

To achieve relation-level visual-semantic align-
ment, we develop a novel Relational Contrastive
Learning (RCL) approach to match the visual
and language embeddings of relationships, since
naively using existing contrastive learning methods
(Chen and He, 2021; He et al., 2020; Xie et al.,
2021; Li et al., 2020) for relationship triplets (e.g.
subject-predicate-object) may cause two severe is-
sues. First, directly comparing the triplets may
lead to trivial comparisons among all possible com-
binations of labels of subject, object and predi-
cate, which is quite inefficient and greatly harms
the robustness of the model. Second, the synony-
mous relationships (e.g., “man riding bike” and
“person riding bike”) and the less informative nega-
tive ones (e.g. “man riding bike” and “bird sitting
on branch”) may be contrasted inappropriately and
inefficiently. To address these issues, our RCL 1)
decouples the triplet level comparison into dual
contrastive objectives which compare the same re-
lation instance in subject-predicate and predicate-
object levels to reduce the amount of comparisons;
2) adopts a new semantic-aware active sampling
strategy that excludes synonymous relationships
and includes informative negative samples accord-
ing to their semantic meaning.

Extensive experiments on the Visual Genome
dataset show that RelCLIP achieves significant
improvements over strong baselines trained using
whether human-annotated labels from full super-
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Figure 2: Grad-CAM visualization of relational activa-
tion. Cross-modal pretraining models (e.g., CLIP) are
powerful in image-level visual-semantic alignment but
fail to capture the relationship between objects. In con-
trast, RelCLIP can activate the interaction area between
objects (e.g., “riding” and “sitting on’’) and achieve
relation-level visual-semantic alignment.

vision or noisy labels from distant supervision,
demonstrating its powerful generalization ability
in learning relationship representations.

2 Related Work

Visual Relationship Detection. Visual Relation-
ship Detection (Li et al., 2017; Zellers et al., 2018;
Lu et al., 2016; Tang et al., 2019) has raised wide
concern in the computer vision community for its
potential benefits that would be brought to down-
stream visual reasoning tasks (Johnson et al., 2018;
Yang et al., 2019; Shi et al., 2019). Early works
tend to detect objects and pairwise relationships
independently, which overlooks the rich visual con-
text and may lead to sub-optimal performance (Lu
et al., 2016; Zhuang et al., 2017; Zhang et al., 2017;
Zhu and Jiang, 2018). Later, many works have ex-
plored the message passing for context propagation
and feature refinement (Xu et al., 2017; Zellers
et al., 2018; Dai et al., 2017). At the same time,
some works also have noticed some connections be-
tween objects and pairwise relationships, and kept
their cooperative relationship (Zhang et al., 2019;
Lietal., 2022). More recently, Yao et al. (Yao et al.,
2021) explores a novel visual distant supervision
that retrieves possible relation labels from com-
monsense knowledge bases for object pairs. Nev-
ertheless, most visual relationship detection works
typically trained the relationship prediction models
under the supervision of numeric ids of predicate
labels, which usually suffer from the highly diverse
visual object appearances of the same predicate. To
break the limitation for better relation detection, we
resort to the learned natural language knowledge
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in cross-modal pre-training models for capturing
rich semantic dependencies among predicates and
objects in this paper.

Cross-modal Pre-training. Recently, there has
been a surging interest in employing cross-modal
pre-training (Su et al., 2020; Chen et al., 2020;
Li et al., 2020, 2019; Tan and Bansal, 2019; Lu
et al., 2019) for improving the performance of
downstream tasks, such as Visual Question An-
swering (VQA) (Antol et al., 2015), Visual Com-
monsense Reasoning (VCR) (Zellers et al., 2019),
and Referring Expression Comprehension (Hamil-
ton et al., 2017). LXMERT (Tan and Bansal, 2019)
and VILBERT (Lu et al., 2019) are two pioneer-
ing works, which rely on two Transformers to en-
code image and text modalities with a third Trans-
former built on top for multi-modal fusion. Unlike
this two-stream architecture, single-stream archi-
tectures where two modalities are directly fused in
the early stage are further designed in some recent
works, such as VL-BERT (Su et al., 2020), Visu-
alBERT (Li et al., 2019), UNITER (Chen et al.,
2020) and Unicoder-VL (Li et al., 2020). Con-
trastive Language-Image Pretraining (CLIP) (Rad-
ford et al., 2021) is a recently proposed cross-modal
pretrained model that uses 400 million image-text
pairs collected from the web. It is shown to have the
outstanding ability for object-level visual-semantic
alignment and improving numerous downstream
tasks. Powered by this, our method adapts the CLIP
model to enhance the relation-level visual-semantic
alignment for learning more discriminative relation-
ship representations.

3 Methodology

3.1 Preliminaries

Problem Setup. Given a scene image I, visual rela-
tionship detection models detect a set of visual rela-
tionships in the form of a triple token (a;, a;, a;),
where a;,a; € A are the class labels of two ob-
jects ¢ and j localized by bounding boxes b; and
bj, and a;; € A" is the class label of the predi-
cate that connects the object pair. For each image
1, we employ the Faster R-CNN framework (Ren
et al., 2015) to extract a set of M object propos-
als B° = {b}i]\il, b; = [.iL‘i, Yi, Wi, hz] with (:L‘i, yi)
being the coordinate of the top left corner and w;
and h; being the width and the height of the bound-
ing box. We take each pair of objects as a relation
proposal b;; = Union(b;, b;) if there is an over-
lap between the object boxes. Union(-, -) denotes

the bounding box of the relationship which is the
joint box of two objects. We can obtain visual rep-
resentations of object and relation proposals via
performing ROI Pooling on spatial feature maps
generated from the visual backbone.

Pre-training Model. RelCLIP adapts a recent
successful cross-modal pretraining model called
Contrastive Language-Image Pre-training (CLIP)
(Radford et al., 2021) to enhance visual-semantic
alignment during relationship learning. CLIP con-
sists of a text encoder 7 (-) and an image encoder
V(+), which are pre-trained on 400 million image-
text pairs harvested from the web. The text encoder
is a Transformer as in (Vaswani et al., 2017). The
base architecture of the image encoder can be either
a Convolutional Neural Network (CNN) (He et al.,
2016) or a Vision Transformer (ViT) (Dosovitskiy
et al., 2021). Considering that relationships are
usually associated with larger image regions than
an object and require much more visual context,
we choose the ViT version as it is good at captur-
ing long-range dependencies within an image. The
pre-trained image-text encoders are integrated in
a plug-and-play manner, and their parameters are
fixed during training.

3.2 Cross-modal Relation Embedding

Visual Embedding. We reshape the final trans-
former states as a 2D spatial feature map V(I)
for image I. We denote the ROI Pooling layer
as fror(+) which takes the image feature maps and
the bounding boxes as the inputs and outputs a
feature vector. Besides, we also introduce object
and relation feature adaptors (denoted as hop;(-)
and Ay (+)) to project the pre-trained visual embed-
dings to the domain of visual relationship detec-
tion. Each adaptor consists of a fully connected
layer and two multi-head attention layers. Given
a pair of objects 7 and j, we calculate the relation
representation v;; € RP as:

vij = hrel([frO1(V(I), bij);i Pijl), (1)

where D, is the dimension of the visual embed-
dings, pj; is position embedding. [-; -] denote fea-
ture concatenation. Similarly, we can get the object
features v; and v; based on boxes b; and b;.

Language Embedding. Existing visual relation-
ship prediction models only use numeric ids of rela-
tion labels, causing severe biases toward the noise
and harming the generalization ability. Here we in-
troduce compact language information of relation
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Figure 3: The model architecture of RelCLIP. Given an image, RelCLIP first extracts vision and language embed-
dings for relationships via adapting fixed cross-modal pre-trained models. Then, the Relational Contrastive Learning
(RCL) decouples each relationship triplet into subject-predicate and predicate-object levels and integrates two
contrastive objectives for comparing the relation samples at the two levels. By doing this, our approach improves

relationship discrimination and model robustness.

labels for regularizing the representation learning
of visual relationships. We adopt the prompt engi-
neering (Radford et al., 2021) to extract language
embeddings of each relationship token (a;, aj;, a;),

a;; € Aj;, as shown in Fig. 3. The resulting
text embeddmg of the relationship is denoted as
ti; € RP:. Similarly, we can get object text em-
beddings t;, t; € RP¢ by filling the sentence tem-
plates using object labels. Dy is the dimension of

the text embedding.

3.3 Relational Contrastive Learning

Conventional contrastive learning methods may en-
counter two serious problems when directly ap-
plied to compare relationship instances. First, the
large quantity of subject-predicate-object combi-
nations will lead to extremely trivial comparisons
thus reducing the efficiency of contrastive learn-
ing. Second, the undesirable comparisons among
synonymous relationships will introduce semantic
ambiguity and harm the robustness of relationship
discrimination. To address these issues, we propose
Relational Contrastive Learning (RCL), which 1)
decouples the triplet level comparison into two tu-
ples for reducing the number of comparisons and 2)
introduces a new semantic-aware active sampling
strategy for excluding synonymous relations and
the less informative ones.

Cross-modal relation embeddings. We decouple

each relation instance into subject-predicate and
predicate-object levels and compare the same in-
stances at both levels, respectively. To generate
embeddings at each level, we exclude the informa-
tion of the subject or object by subtracting their
features alternatively from the feature of the rela-
tionship triplet v;; as

sro__ r
Avi = |[vi;

ro __ r
Avi? = ||vi;

wlwe
- V’iH2WU07

where ||-||, stands for the L2-normalization. W*?,
Wve ¢ RPv*Po are learnable weight matrices.
Similarly, the text embeddings are extracted as:

At = ||t —t
A2 = ||t}

J Hz w,

to 3)
-t Hz W,
where W, Wt ¢ RPt*Dt are learnable weight
matrices. The cross-modal relation embeddings
are extracted at both the subject-predicate and
predicate-object levels as (Av” , ts’”) and (Av]? s

At;?), respectively.

Learnlng Objectives. CLIP is proved to be good
at expressing visual concepts for benefiting object
recognition tasks while still struggling to capture
the semantic relations between objects, as shown in
Fig. 2. RelCLIP takes the advantage of CLIP’s
powerful ability of image-level visual-semantic
alignment and explores relation-level alignment via

4803



RCL. RCL aims to match the cross-modal embed-
dings of relations and pull the samples of the same
relation instance together while pushing the differ-
ent ones away. It maximizes the cosine similarity of
the cross-modal embeddings of N positive pairs in
the batch while minimizing the cosine similarity of
the embeddings of the N2 — N negative pairs. For
mathematical simplicity, we here denote the cross-
modal relation embeddings (v, t) as the inputs of
RCL objectives. We adopt the cross-modal version
of the InfoNCE loss (van den Oord et al., 2018)
which is minimized to lead the encoders to max-
imally preserve the mutual information between
the correctly matched pairs. The image-to-text and
text-to-image contrastive losses are defined as:

exp((Vg, tg)/T)
S exp((vi, tg) /7).

exp((tx, vi)/T)
St exp((tr, v) /7).

where (-, -) represents the cosine similarity between
two vectors. (), is the actively sampled dictionary
that provides informative negative samples for the
positive sample according to their semantic mean-
ing. The cross-modal objective of RCL is then
computed as a weighted combination of the two
losses averaged over all possible image-text pairs
in each mini-batch:

NZZ

where v € [0, 1] is a scalar weight. RCL integrates
two contrastive objectives regarding a same relation
instance at subject-predicate and predicate-object
levels. We instantiate £(v,t) with (Av;7, At
and (Av’? At“’) to form RCL loss:

l](ﬁv%t) — _lo

“)

l,(f_w) = —log

v—>t

L NG

vt

iy
ERCL — ,C(AVST, Atsr) +£(AVT'O’AtTO) ) (6)

~
predicate-object

subject-predicate

Together with Lo, our model is also optimized
by two multi-class cross-entropy losses for object
classification and predicate classification.

Semantic-aware Active Sampling. Given a query
sample k, our method actively constructs its neg-
ative sampling dictionary (J; by ranking the rest
samples according to their semantic meaning (e.g.,
word2vec embeddings (Pennington et al., 2014)).
To exclude the synonymous relationships from the
negative samples, we remove from () the samples

whose similarity scores are higher than a threshold
e. To pay more attention to the most informative
samples, we assign each of the remaining samples
with a weight which is the normalized similarity
score with the query sample. We construct the
sampling dictionaries ;" and Q7" for the dual
contrastive objectives of RCL as:

Qi ={(Avy, At w)ln < whw = (e, eff),
QF = {(Avy, AT w)ln < whw = (e, ef),
)

where 7 is the threshold for excluding the less in-
formative samples, e; and e are word embed-
dings for the word tokens of subject-predicate and
predicate-object for the n-th relation sample.

Our semantic-aware active sampling strategy
constructs dynamic sampling dictionaries for the
same relationship in each of the contrastive ob-
jectives, which further improves the diversity of
negative samples. As is shown in Fig. 4, for the
positive sample “person lying on bed”, the sample
“man lying on grass” will not be selected as a neg-
ative sample at the subject-predicate level. While
in the predicate-object level, it is selected as an
informative negative sample since it is closer to
the positive sample than the other samples in the
semantic space.

3.4 Visual Relationship Detection

Prediction. As is shown in Fig. 3, we regard v;
and v; as the learned object features and classify
them to predict the final labels of the object ¢ and j.
Similarly, the learned relation feature v;; is used to
predict final relation label between object ¢ and ;.
And the corresponding object proposals detected by
RPN are employed as our bounding box prediction.
Supervision. RelCLIP is compatible and effective
when trained with different types of supervision sig-
nals, e.g., full supervision and distant supervision
(Yao et al., 2021). Conventional visual relationship
detection models require full supervision where all
training samples are elaborately annotated. To al-
leviate the burden of manual annotations, distant
supervision is proposed to automatically generate
relation labels from the commonsense knowledge
base. The knowledge contains a huge amount of
relationship triplets parsed from the Conceptual
Caption dataset (Sharma et al., 2018). Given an ob-
ject pair (a;, a;), we can retrieve possible relations
from the knowledge base and get a multi-hot label
for training, as shown in Fig. 3. In RCL, all the
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Figure 4: Illustration of the semantic-aware active sampling strategy of our Relational Contrastive Learning. Given
a relation instance as a query sample, the negative sampling dictionary excludes the synonymous relation samples
and the less informative ones based on their semantic distance to the query samples. Our sampling strategy also
builds different dictionaries for each of the contrastive objectives at subject-predicate and predicate-object.

Models Predicate Classification

Scene Graph Classification Scene Graph Detection

R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100

Distant supervision

EXT 6.64 9.74 10.66 15.16 396 482 425 492 193 3.06 1.66 2.49
KB 30.61 33.48 2098 2325 15.69 1699 11.06 12.53 9.36 10.26 6.56 7.13
KB + EXT 38.21 40.90 2494 2745 17.52 18.85 11.66 12.56 15.84 1831 9.49 11.23
Motif (Zellers et al., 2018) 50.23 53.18 3399 40.62 2490 26.00 16.50 18.03 20.09 22.74 1221 1442
BA-SGG (Guo et al., 2021) 5148 55.19 38.68 4598 23.72 2556 17.29 18.55 22.78 25.50 13.38 15.05
VisualDS (KB) (Yao et al., 2021) 51.54 5453 3693 4197 24.81 26.08 16.13 17.56 22.83 2436 13.48 1445
VisualDS (KB+EXT) (Yao et al., 2021) 53.40 56.54 37.68 4198 26.12 2746 1720 1839 22.10 2424 13.84 15.23
RelCLIP (KB) 54.15 57.06 37.57 4198 26.99 27.89 21.44 2492 22.80 2553 13.03 15.11
RelCLIP (KB+EXT) 55.06 58.46 39.12 4347 27.57 28.41 23.88 2475 24.06 26.70 13.75 15.45
Full supervision

BA-SGG (Guo et al., 2021) 68.04 70.08 47.19 50.52 30.48 3149 16.75 17.71 28.40 33.23 13.35 15.67
VisualDS (Yao et al., 2021) 6793 70.20 52.65 5541 31.14 31.92 23.53 2527 2890 31.25 18.26 20.63
RelCLIP (Ours) 69.95 72.55 56.99 61.21 34.79 35.60 2690 27.89 33.74 36.51 26.64 29.52

Table 1: Comparison with semi, distant and fully supervised visual relationship detection methods on VG dataset.

Method | P@10 P@20 R@50 R@100
RelCLIP (NoRCL) | 3942 37.14 54.37 57.11
RelCLIP (Ours) 4941 46.10 55.06  58.46

Table 2: Human evaluation results (precision @K) on
the PredCls task.

possible labels are fused according to their weights
to form the language embedding. Training mod-
els under distant supervision is more challenging
than full supervision since the retrieved labels may
introduce noise.

4 Experiments

4.1 Settings

Datasets. We evaluate our method on the popular
large-scale Visual Genome (VG) (Krishna et al.,
2017) benchmark including approximately 108k
images. Following previous works (Chen et al.,
2019; Yao et al., 2021), we employ the data split
which contains the most frequent 150 object cate-
gories and 20 well-defined predicates. The refined
predicate schemes defined by Chen ef al. (Chen
et al., 2019) remove synonyms and super-sets from
the 50 predicates in the Visual Genome dataset.

Tasks. We follow three conventional tasks (Zellers
et al., 2018; Chen et al., 2019; Chen et al., 2019;
Yao et al., 2021) to evaluate the proposed SGG
model: 1) Predicate classification (PredCls), which
predicts the predicate labels given a ground truth
set of object boxes and object labels, 2) Scene
graph classification (SGCls), where both the object
classes and the relation type of each object pair are
predicted given the ground-truth object bounding
boxes. 3) Scene graph detection (SGDet), which
only takes the original image as input and sequen-
tially predicts the object bounding boxes, the object
labels and the relationships between object pairs.

Metrics. We use the following metrics which are
under graph constraint to evaluate the performance
of the proposed approach: (1) Recall@K (R@K)
(Lu et al., 2016), which computes the fraction of
relationship hits in the top K confident relationship
predictions, (2) mean Recall@K (mR @K) (Tang
et al., 2019; Chen et al., 2019), which takes the
average R@K of all predicate classes to give a fair
performance measure for both head and tail classes.

Implementation Details. We implement our
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Method ‘ Relational Contrast Level R@50 R@100 mR@50 mR@100
Unary Contrast predicate 54.14  57.50 37.27 41.75
Triple Contrast subject-predicate-object 5459 57.63 37.15 40.09
Dual Contrast (Ours) | subject-predicate, predicate-object | 55.06  58.46 39.12 43.47

Table 3: Ablation studies of the relational contrastive learning on the PredCls task. The results are with graph

constraint on the VG dataset.

Method Pretrain R@50 R@100
VisualDS ImageNetlK | 53.40 56.54
RelCLIP ImageNetlK | 54.08  57.47
RelCLIP (Ours) CLIP 55.06 58.46

Table 4: Ablation of pretraining data.

model using the MindSpore Lite tool (MindSpore).
We train our model with the SGD optimizer for
20,000 iterations with image batch size 12. The
initial learning rate is 0.001. The dimension values
Dy and D, of the cross-modal embeddings are both
set to 512. We use the pre-trained CLIP model that
is publicly available '. The dimension of the visual
and language embeddings Dy and D,, are set to 512.
The sampling threshold e for splitting the positive
and negative samples is set to 0.7.

4.2 Visual Relationship Detection

Compared Baselines. We compare our method
with strong baselines under distant, and full super-
vision. The distant supervised models are trained
using a set of relation candidates retrieved from the
commonsense knowledge collected on Conceptual
Caption (Sharma et al., 2018). The candidates are
image-agnostic and each of them has equal proba-
bility. To further enhance the distant supervision
(KB), VisualDS (Yao et al., 2021) also introduces
an external semantic signal (EXT) which leverages
CLIP models to assign probability scores to the
relation candidate sets regarding the image content.
We adopt two fully supervised methods as strong
baselines, i.e., Motif (Zellers et al., 2018) which
is a widely used scene graph model and BA-SGG
(Guo et al., 2021) is one of the most recent models.
Numerical Results. In Tab. 1, we compare our
approach with existing baselines of visual rela-
tionship detection under different types of super-
vision signals. Our RelCLIP achieves consistent
improvements over prior arts (e.g., VisualDS (Yao
et al., 2021) and BA-SGG (Guo et al., 2021)) on
all sub-tasks under both distant and full supervi-
sion, demonstrating that RelCLIP can learn more
robust and discriminative representations for visual

"https://github.com/openai/CLIP, ViT-B/32

relationships. Though distant supervision provides
many noise labels, RelCLIP can still learns dis-
criminative representations from a small amount
of correctly labeled samples with the help of the
language knowledge of relation labels.

Human Evaluation. Since there are amounts of
unsatisfactory annotations in the VG dataset as
shown in Fig. 5, the Recall metric is insufficient to
comprehensively evaluate the accuracy of predic-
tions. We ask 10 people to evaluate the precision
of our predicted relations. Predictions from 200
images are selected and the results are reported
as mean Precision@ 10 and 20, see Tab. 2. When
comparing with RelCLIP (No RCL), the precision
(P@10/20) of improves nearly 10%, which further
demonstrates the excellent ability of RelCLIP in
recognizing visual relationships.

4.3 Ablation Study

In this section, we evaluate the effectiveness of
the training objectives, sampling strategies, and
pretraining knowledge under the most challenging
setting of distant supervision.

Effect of relational contrastive objectives. We
develop variants of RCL to verify the effective-
ness of dual contrastive objectives. The experi-
mental results on PredCls are presented in Tab. 3.
First, we replace our Dual Contrast objectives with
Unary Contrast which solely contrasts relationship
instances at predicate level and find that the perfor-
mance drops. This is because the Unary Contrast
fails to capture the semantic dependencies between
predicates and objects. Then, we use Triple Con-
trast where relationship instances are contrasted at
subject-predicate-object level. The results on Re-
call and mean Recall are lower than dual contrast,
which indicates that our dual contrast can better
capture the complicated and cluttered dependen-
cies between the predicate and objects.

Effect of pretraining models. We replace Rel-
CLIP’s vision encoder with an ImageNetl1K pre-
trained backbone. As shown in Tab. 4, RelCLIP
achieves higher performance when using the same
pretrained backbone as VisualDS, and the perfor-
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Figure 5: Visual relationship detection examples on VG Dataset. Green boxes and edges are correct predictions,
Orange boxes and edges are missed in our prediction. Blue boxes and edges indicate reasonable predictions from
our model but are not annotated in GT. Best viewed in digital version.

Method R@50 R@100 mR@50 mR@100 Threshold | R@50 R@100 mR@50 mR@100
No Sampling | 52.86  56.19 34.27 36.99 0.3 5298  55.80 35.19 37.91
No Del. Syn. | 53.58  56.71 35.05 37.64 0.5 53.81 56.69 33.84 38.86
No Weight 53.67 56.38 35.82 41.19 0.7 54.15 57.06 37.57 41.98
Ours 54.15 57.06 37.57 41.98 0.9 3223  54.98 34.04 36.63

Table 5: Ablation of our sampling strategy.

mance can be further improved when using CLIP
models, which demonstrates the ability of RelCLIP
in adapting cross-modal pretraining knowledge.

Effect of semantic-aware active sampling. We
build three baselines for validating the effect of our
sampling strategy to construct the effect negative
sampling dictionary. 1) The No Sampling baseline
disables the whole sampling functionality during
model training. 2) The No Del. Syn. baseline pre-
served the synonymous relation instances. 3) The
No weight baseline removes the synonymous rela-
tionships but disables the sample weighting which
suppresses the effect of less informative samples.
Compared with Ours that excludes both the synony-
mous instances and the less informative ones, the
performances of the ablation baselines above drop,
indicating the effectiveness of our semantic-aware
active sampling strategy, see Tab. 5.

Effect of the threshold ¢ of sampling. We set the
threshold value € to 0.3, 0.5, 0.7, and 0.9 for train-
ing RelCLIP models and the results on the PredCls
task are shown in Tab. 6. When the threshold is
set to 0.7, we can obtain the highest performance.
If we use a larger threshold (e.g., 0.9), more syn-
onymous negative samples will be included in the
sampling dictionary and the performance drops. If
we use a smaller threshold (e.g., 0.3 and 0.5), some
informative samples will be removed undesirably
and thus lead to performance drop.

Table 6: Ablation of the threshold e of our sampling.

“carrying” example

rriding v
w/o RCL: carrying X

w RCL WRCL :riding v

w/o RCL: carrying X

Figure 6: Case study of “riding” and “carrying”. RCL
can help the model correctly capture the semantic differ-
ence between visual relationships of “man riding board”
and “man carrying board”.

5 Visualization

Case Study. In Fig. 6, we compare the accuracy of
“riding” of RelCLIP with and without RCL on Re-
call@100. When RCL is disabled, the performance
drops by a significant margin of 5%, and a large
proportion of the “riding” failures are misclassified
as “carrying”. As shown in the two failure cases,
RelCLIP with RCL can well capture the minor dif-
ferences of interactions between man and board via
comparing the similarity and discrepancy across re-
lation instances, thus correctly distinguish “riding”
and “carrying”.

Prediction Examples. We show some visualiza-
tion examples in Fig. 5. Though trained with distant
supervision, RelCLIP can correctly detect relation-
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ships (in green). Surprisingly, numerous reasonable
relationships (in blue) are also predicted by Rel-
CLIP, even though they are missed in the human
annotations, e.g., in Fig. 5(a), “cat sitting on bed"
can be obviously observed by humans, but is not
labeled in GT. Furthermore, we observed that our
failure cases (in orange) are more precise than GTs
from the human perspective, e.g., in Fig. 5(d), the
relationship between “man-3" and “sidewalk” is
more like “walking on” rather than “standing on”.

6 Conclusion

In this work, we develop RelCILP, a simple yet ef-
fective visual relationship detection framework that
successfully adapts cross-modal pre-training for
improving relationship discrimination. To achieve
this, we propose Relational Contrastive Learning
(RCL) that not only enables efficient comparisons
via decoupling triplet-level contrast into subject-
predicate and predicate-object levels, but also en-
sures effective comparisons via a novel semantic-
aware sampling strategy. By collaboratively learn-
ing the semantic coherence and discrepancy from
relationship instances, the model can generate more
discriminative and robust relationship representa-
tions. Our RelCLIP significantly outperforms ex-
isting methods under both full and distant super-
vision, demonstrating the effectiveness and gener-
alization ability of relational contrast powered by
cross-modal pretraining models.

Limitations

The limitations of RelCLIP can be summarized
as follows: First, Relational Contrastive Learn-
ing (RCL) contrasts the visual and language em-
beddings of relationships within each mini-batch,
which makes RCL sensitive to batch size and may
introduce bias into the training of RelCLIP. In our
future work, we will try to introduce a global mem-
ory bank for achieving cross-batch comparison.
Second, RelCLIP can learn visual relationships
under distant supervision without any annotations.
However, the performance gap between distant and
full supervision is still large, because distant super-
vision may inevitably introduce noisy labels. The
quality of distant supervision depends on the com-
monsense knowledge base, so the quality and ca-
pacity of the knowledge base may affect the perfor-
mance of RelCLIP to some extent. Third, RelCLIP
is implemented following the two-stage framework
where the visual relationship detection problem is

decoupled into object detection and relationship
classification. The powerful knowledge of CLIP
is integrated to enhance the discrimination of rela-
tionships, but it is not used to improve the object
detector. So the performance of RelCLIP is still
limited by the accuracy of object detection. In fu-
ture works, we will explore how CLIP models can
be used to simultaneously improve both the object
detector and the relation classifier.
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