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Abstract

Machine learning models are prone to overfit-
ting their training (source) domains, which is
commonly believed to be the reason why they
falter in novel target domains. Here we exam-
ine the contrasting view that multi-source do-
main generalization (DG) is first and foremost a
problem of mitigating source domain underfit-
ting: models not adequately learning the signal
already present in their multi-domain training
data. Experiments on a reading comprehension
DG benchmark show that as a model learns its
source domains better—using familiar meth-
ods such as knowledge distillation (KD) from
a bigger model—its zero-shot out-of-domain
utility improves at an even faster pace. Im-
proved source domain learning also demon-
strates superior out-of-domain generalization
over three popular existing DG approaches
that aim to limit overfitting. Our implemen-
tation of KD-based domain generalization is
available via PrimeQA at: https://ibm.biz/
domain-generalization-with-kd.

1 Introduction

Domain generalization (DG) seeks to train mod-
els on a small number of source domains in a
way that maximizes their zero-shot out-of-domain
(OOD) utility (Blanchard et al., 2011; Muandet
et al., 2013). Many existing DG methods are rooted
in the premise that weak generalization under do-
main shift occurs due to “source domain over-
fitting”: the learning of spurious source domain
correlations, i.e., noise, that are unrelated to the
core learning task, and are therefore unlikely to
be present in novel target domains. The popular
domain-invariant learning (DIL) paradigm, for ex-
ample, proposes to limit overfitting by imposing
some form of cross-domain regularization on the
empirical risk minimization (ERM) process over
labeled multi-domain training data (Wang et al.,
2021; Zhou et al., 2021).

We argue in this paper that this emphasis on
not fitting the noise minimizes the importance of
actually learning the signal present in the source
domains, i.e., not underfitting them, for DG. Un-
derfitting occurs when a trained model, due to in-
adequacies in its capacity or the training procedure,
fails to learn training set patterns that are truly rep-
resentative of the task. In a recent study of DG in
computer vision, Gulrajani and Lopez-Paz (2021)
find that large models with sufficiently high ca-
pacity can demonstrate strong OOD generalization
even with ordinary ERM training—without the need
for DIL—when properly configured. Here we ask
a very similar question, but (a) in the NLP context
of question answering (QA), and (b) for relatively
small models that are more prone to underfitting,
e.g., a BERT-base QA model (Devlin et al., 2019).
Concretely, we investigate if enabling smaller QA

models to learn their source domains better also
improves their generalization to new domains and
how the results compare to DIL.

This formulation essentially views OOD gener-
alization in low-capacity models as a natural ex-
tension of the more familiar and arguably simpler
problem of in-domain generalization in a multi-
domain setting. A key advantage of such an ap-
proach is that familiar supervised learning methods
such as knowledge distillation (KD) (Hinton et al.,
2014)—which was specifically designed for the
very purpose of training small yet high-accuracy
models—can now be leveraged for DG. KD gener-
ally provides stronger source domain supervision
than ERM by minimizing a surrogate risk, which uti-
lizes the soft predictions of a larger teacher model
(e.g., a BERT-large QA model) as the learning tar-
gets for the smaller model being trained, now called
the student. Additionally, synthesized input in large
quantities has been found to further enhance the
performance of KD (Chen et al., 2020; Liang et al.,
2021). Here we extend the application of these
methods to DG for QA.
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We evaluate our methods on a multi-dataset read-
ing comprehension benchmark (Fisch et al., 2019)
and compare their accuracy with three popular DIL

approaches: domain adversarial training (Ganin
et al., 2016; Lee et al., 2019), episodic training (Li
et al., 2019)—for which we propose a novel variant
suitable for deep transformer models—and meta
learning (Finn et al., 2017; Li et al., 2018). We
also design experiments to answer more targeted
questions such as: (1) Are the improvements more
prominent on in-domain validation data than on
OOD test instances, which could be indicative of
weak generalization? (2) Do the proposed methods
falter on input cases where domain-invariant ap-
proaches thrive, potentially indicating weakness on
extremely distant test cases? In all these different
evaluations, our methods exhibit far superior DG

than the three existing methods, whereas the latter
only marginally outperform ERM.

While more experiments on additional tasks,
datasets and baselines are needed before a firm
conclusion can be reached on the superiority of
the proposed formulation of DG over DIL (or vice
versa), our findings do point to a need for a better
understanding of optimal source domain learning
as an approach to DG. A primary goal of this paper
is to motivate future explorations of this important
research question.

2 Methodology

This section describes the proposed KD-based DG

approaches as we apply them to the problem of
reading comprehension.

2.1 The Reading Comprehension Task

Given a question q and a passage p that answers
q, reading comprehension (RC) outputs the answer
a. In extractive RC, which is the form used in our
experiments, a is assumed to be a subtext of p; the
goal is therefore to locate a in p.

2.2 Multi-Dataset Knowledge Distillation

For improved multi-domain training, we rely on
knowledge distillation (KD), which naturally trains
small yet highly accurate models by leveraging
the predictions of a larger teacher model. We first
train a single multi-domain teacher using ERM on
labeled data from all source domains. We follow
standard RC training procedure for this step, which
separately trains an answer start and an end predic-
tor, as described in (Devlin et al., 2019).

The knowledge of this teacher is then distilled
into a smaller student model—equal in size with
the baselines—by minimizing the following MSE

loss on the same set of training examples:

LKD = kzs(x) � zt(x)/T k2
2 (1)

where zs(x) and zt(x) are the logits computed for
an input question-passage pair x by the student
and the teacher, respectively; T is the temperature.
Two separate KD losses are again minimized per
training example, one for the start and the other for
the end of the answer.

2.3 Augmenting KD with Synthetic Questions

To facilitate the distillation of further knowledge
from the teacher, we synthesize additional ques-
tions using a sequence-to-sequence model. An
encoder-decoder language model (Lewis et al.,
2020; Raffel et al., 2020) is first fine-tuned for each
source domain, where question-passage pairs from
the corresponding dataset constitute the training ex-
amples: the passage is the source and the question
is the target. Note that we use the teacher’s soft
answer predictions as targets during KD (Eq. 1),
and therefore do not need to provide any answers
as part of the synthetic data.

Sultan et al. (2020) demonstrate that sampling-
based generation, e.g., with a top-p top-k sam-
pler, produces more useful synthetic training data
than deterministic approaches like greedy or beam
search decoding. Moreover, Chen et al. (2020) find
that (a) large amounts of diverse synthetic data
can be more effective at supporting KD than typi-
cally smaller amounts of human-labeled gold exam-
ples, and (b) leveraging both in a two-stage process
yields the best results. We incorporate these sugges-
tions into our work by sampling examples from our
generators and performing KD with first synthetic
and then gold training data. Unlike those earlier
studies, however, we apply the above procedure to
the multi-source DG problem.

3 Experiments

Here we describe the baseline DIL approaches our
proposed methods are evaluated against, our exper-
imental setup and results.

3.1 Baselines

We select three existing DIL methods as baselines
on account of their recency, popularity and general
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applicability to different machine learning prob-
lems. Each of these methods imposes additional
requirements on top of ERM to incorporate domain
invariance into the trained models.

For domain-adversarial training (Ganin et al.,
2016), that added requirement is for the model
to learn domain-agnostic hidden representations
of the training inputs. This is accomplished by
training a domain classifier in parallel with the RC

model and teaching their shared feature extractor to
produce adversarial representations for the domain
classifier (Lee et al., 2019).

Given a model with parameters ⇥ to be opti-
mized on mult-domain training data, episodic train-
ing (Li et al., 2019) updates a random subset ⇥0 in
each iteration; values for the remaining parameters
⇥ \ ⇥0 are copied over from a weaker model pre-
trained on one of the source domains other than
that of the current example. This procedure effec-
tively forces the ⇥0 subnetwork to become more
robust to domain shift as it learns to work with an
OOD companion ⇥ \ ⇥0. While Li et al. (2019)
use a fixed breakdown of ⇥ into a feature extractor
and a task head, we relax this condition for mul-
tilayer transformer models to allow a split after a
randomly chosen transformer layer.

Finally, meta learning (Finn et al., 2017) for
DG (MLDG) (Li et al., 2018) uses disjoint subsets
of the source domains as meta-train and meta-test
domains at each training step. It uses the meta-
train set to update model parameters in a way that
improves performance on the meta-test set. This is
accomplished using a second-order differentiation
through the parameter updates of the model.

3.2 Setup

We run our experiments on the the public subset
of the DG benchmark by Fisch et al. (2019)1. It
consists of (a) training and in-domain validation
data from six source datasets, and (b) six target
datasets for evaluation. Table 1 shows some key
statistics. We refer the reader to the original paper
for a detailed description of each dataset.

Given our stated intent to study DG with rela-
tively small models (§1), we fine-tune BERT-base
(110M parameters) (Devlin et al., 2019) for RC with
the different training methods (Wolf et al., 2020).
In KD experiments, we use a BERT-large teacher
(345M parameters) fine-tuned using ERM on the
source datasets. To prevent any confounding ef-

1
https://github.com/mrqa/MRQA-Shared-Task-2019#datasets

Source Train Dev
SQuAD (Rajpurkar et al., 2016) 86,588 10,507
NewsQA (Trischler et al., 2017) 74,160 4,212
NQ (Kwiatkowski et al., 2019) 104,071 12,836
HotpotQA (Yang et al., 2018) 72,928 5,904
TriviaQA (Joshi et al., 2017) 61,688 7,785
SearchQA (Dunn et al., 2017) 117,384 16,980

Target Test
BioASQ (Tsatsaronis et al., 2015) 1,504
DROP (Dua et al., 2019) 1,503
DuoRC (Saha et al., 2018) 1,501
RACE (Lai et al., 2017) 674
RelEx (Levy et al., 2017) 2,948
TextbookQA (Kembhavi et al., 2017) 1,503

Table 1: Dataset statistics (Fisch et al., 2019): # of examples.

fects from negative windows (Fisch et al., 2019),
only those sliding windows of the training contexts
are retained that actually contain an answer. We
upsample from smaller training sets to make the
number of examples equal across domains, and in-
clude examples from only one training set in each
mini-batch (which worked better than multi-dataset
mini-batches in our experiments). All hyperparam-
eters are tuned by optimizing the macro-averaged
F1 score on the in-domain validation sets. See
Appendix A.3 for more details.

With every training method, we train six mod-
els, each on a unique five-set combination of the
six source datasets. Each of these six models is
selected using the validation sets of the same five
datasets. The performance of the method on an
individual test set is the mean F1 score of these
six models on the set. Finally, the F1 scores on
all six test sets are macro-averaged to measure the
method’s overall OOD performance.

For synthetic data generation, we fine-tune sepa-
rate BART-large models (Lewis et al., 2020) on the
individual source datasets. We generate 500k ques-
tions per dataset from Wikipedia contexts using
top-p top-k sampling (p=.95, k=10).

3.3 Results

In Table 3 (column 1), we show in-domain valida-
tion results for ERM and the two variants of KD:
ERM clearly exhibits some underfitting relative to
the other two methods, as it has the lowest score of
the three. KD using gold instances helps mitigate
the underfitting effect to some extent; augmented
KD with additional synthetic questions further im-
proves results. These results confirm the utility
of each of our methods in improving in-domain
generalization of RC systems.
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Method Test Set Avg.
BioASQ DROP DuoRC RACE RelEx TextbookQA

ERM 51.7±1.4 37.8±0.2 55.1±1.5 39.0±1.0 83.3±0.3 51.6±1.8 53.1±1.0
Domain-invariant learning to limit overfitting:
Domain-Adv 51.7±1.9 38.4±1.1 56.0±1.0 39.3±0.6 83.5±0.7 52.2±1.7 53.5±1.2
Episodic 52.0±1.6 38.4±1.4 56.4±1.1 40.1±0.5 83.3±0.4 52.3±1.9 53.7±1.2
MLDG 52.7±0.9 38.0±1.1 56.1±1.5 39.5±0.9 83.9±0.3 51.1±2.0 53.6±1.1
Improved source domain learning to address underfitting:
KD (gold-only) 53.2±0.7 42.2±1.3 58.4±1.6 42.9±0.9 84.1±0.9 56.1±2.6 56.2±1.3
KD (augmented) 53.4±0.9 45.2±1.7 60.3±1.2 44.2±0.8 84.8±0.6 58.0±1.4 57.6±1.1

Table 2: Performance (F1 score) of different training methods on OOD test data. Each score is a mean±SD over
six models, each trained on a unique five-set combination of the six source datasets. While the domain-invariant
methods provide small gains over plain ERM, improved source domain learning demonstrates by far the best results.

Method ID-Dev OOD-Test
ERM 75.0 53.1
KD (gold-only) 76.4 (1.9%) 56.2 (5.8%)
KD (augmented) 77.2 (2.9%) 57.6 (8.5%)

Table 3: F1 score (and relative gain over ERM) for each
proposed KD-based method. Gains on the OOD test
sets outpace those on the in-domain dev sets, indicating
strong generalization.

Table 2 summarizes the performance of different
training methods on the OOD test sets. The DIL

methods do yield small gains over ERM, but im-
proved source domain learning with KD and data
augmentation outperforms by a much larger margin.
Crucially, we observe improvements on each indi-
vidual test set. In a two-tailed Student’s t-test, we
find all differences between (a) DIL and ERM, and
(b) KD-based methods and DIL, to be statistically
significant (p < .0001).

To further examine the generalization induced
by KD, we compare in Table 3 their performance
on in-domain validation data versus OOD test data:
both methods provide substantially larger relative
gains (5.8–8.5%) over ERM in OOD evaluation than
in in-domain evaluation (1.9–2.9%). These results
clearly indicate that many of the new and/or im-
proved patterns the proposed methods teach do
indeed generalize to other domains.

Method Avg. F1
KD 56.2
KD + Domain-Adv 55.4
KD + Episodic 55.5
KD + MLDG 55.8

Table 4: Domain-invariant learning does not comple-
ment KD-based source domain learning in OOD tests.

Even though the KD-based methods exhibit
stronger overall OOD generalization, it is still pos-
sible that DIL teaches certain DG-inducing patterns

Figure 1: The ability of different methods to cover, i.e.,
function as a proxy for, other methods. The leftmost
plot shows the coverage of domain-adversarial train-
ing by other methods, for example. KD-based source
domain learning provides the best coverage across the
board. B: ERM, E: Episodic, M: MLDG, A: Domain-Adv,
Kg: gold-only KD, Ka: KD combined with synthetic data
augmentation.

that even powerful source domain supervision fails
to reveal, in which case the former should comple-
ment the latter well. To test this effect, we train
three models using each of the three DIL methods,
but replace ERM with KD (gold instances only) as
the underlying training mechanism for RC. As Ta-
ble 4 shows, none of the three combinations does
better than KD alone. Along with the results of
Table 2, this result indicates that as a learner is
exposed to more powerful source domain supervi-
sion, DIL starts to lose its ability to complement its
already strong OOD generalization.

As a final test of adequacy for multi-source KD

as a DG method, we look at its ability to function
as a proxy for the different DIL methods. Let E be
the set of examples for which a training method M

has a higher F1 score than ERM, representing the
DG capabilities of M. We define the coverage of
M by another method M0 as the relative F1 score
of M0 as a fraction (%) of the F1 score of M on
E . This metric essentially quantifies the degree
to which the DG capabilities of M is retained by
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M0. As the bar charts of Figure 1 demonstrate, the
KD-based methods provide the best coverage of
all three DIL methods; the latter, while providing
considerably better coverage of one another than
ERM, lag behind KD in all three cases. These results
again suggest that strong source domain learning
may potentially be a sufficiently optimal policy for
multi-source DG, without the need for an explicit
enforcement of domain invariance.

4 Conclusion

This paper puts forward the view with empirical ev-
idence for question answering (QA) that contrary to
popular belief, multi-source domain generalization
(DG) is better modeled as a problem of addressing
model underfitting than overfitting. Our experi-
mental results show that by simply learning the
training domains well via knowledge distillation,
even when the number of such domains is relatively
small, strong out-of-domain (OOD) generalization
can be achieved in QA without the need for any
cross-domain regularization. These findings point
to the need for a re-examination of whether not
fitting the noise in training data is indeed a more
reasonable path forward for DG than actually learn-
ing the signal in it; we hope that our work will
inspire future efforts to answer this important ques-
tion in greater detail with a wider range of tasks
and approaches.

Limitations

We explore the problem of multi-source domain
generalization (DG) in QA with new and existing
methods. We believe that our findings will general-
ize to more baselines and datasets, but here we only
show proof of concept for a select set of existing
baselines and a single multi-dataset DG benchmark.
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A Appendix

A.1 Qualtitative Analysis
To better understand what new patterns the pro-
posed method of augmented knowledge distillation
(KD-Aug) teaches, we take a closer look at a ran-
dom sample of the test instances where the baseline
model has an F1 score of zero and the student has
an F1 score greater than .5. Table 5 shows four
such examples from four different test sets. Even
in this very small sample, we observe a number
of different ways in which the KD-Aug student is
better than the plain ERM baseline:

• BioASQ: The student has learned that syn-
onyms are commonly mentioned in parenthe-
ses, especially in the beginning of a sentence.

• DuoRC: The word “overdose” can be diffi-
cult to model in context as the subject of the
verb “overdose” becomes the object in the ex-
pression “giving someone an overdose”. The
student appears to have learned this nuanced
semantics, which the baseline model has not.

• RelationExtraction: Unlike the baseline, the
student knows that a fictional universe is not
a time period, and the word “Universe” at the
end of the phrase “DC Universe” is a strong
hint to capitalize on in this particular case.
Crucially, it has also learned to ignore the
spurious surface-level match in this example
between the question and the phrase “from the
30th century” in the passage.

• DROP: This one is a somewhat harder case
to analyze, where a plausible explanation
could be that the student has better knowledge
about people’s names and only the last name
“Gostkowski” was sufficient for it to recognize
it as a player’s name.

Even though these patterns were taught by KD-
Aug using a small number of source domains, their
domain-agnostic importance is quite clear and intu-
itive, which is also supported by the experiments
reported in this paper.

A.2 Further Commentary on KD Results
The BERT-base model fine-tuned using ERM has an
F1 score of 75.0 on the in-domain dev set; the cor-
responding number for the BERT-large teacher is
77.3. As Table 3 shows, the augmented KD student
has an F1 score of 77.2, indicating that additional

synthetic questions facilitated almost perfect distil-
lation from large to base on our source domains.

A.3 Model Selection
We use a training batch size of 32 for all mod-
els (with gradient accumulation when necessary).
To ensure fair comparison, we train and vali-
date all methods on a large set of learning rates:
{1, 3, 5, 7, 9} ⇥ 10�6, {1, 3, 5, 7, 9} ⇥ 10�5 and
{1, 3, 5} ⇥ 10�4, as the optimal learning rate var-
ied drastically across different methods in our val-
idation experiments. All models are trained for
two epochs; we select the best of the epoch 1 and
the epoch 2 checkpoint on the validation set for
final evaluation on the OOD test set. In Table 6 we
provide the optimal values of these two hyperpa-
rameters for all models.

Table 7 provides the optimal combinations of
method-specific hyperparameters. Below is a brief
description of each:

1. �adv (Domain-Adv): This is the weight of the
adversarial loss of the domain classifier. The
main ERM loss has a fixed weight of 1.

2. �erm, �episodic (Episodic): The relative
weights of the ERM loss and the episodic train-
ing loss in their convex combination.

3. � (MLDG): The weight of the meta-test loss
during meta-optimization (second-order dif-
ferentiation). The meta-train loss has a fixed
weight of 1.

4. ⌧ (KD): Temperature (Eq. 1).

A.4 Infrastructure and Computation
We run all experiments on a single V100 GPU with
32GB memory. A vast majority of the runs take
less than a day; the longest ones take less than 48h.

3758



Dataset: BioASQ
Question: Name synonym of Acrokeratosis paraneoplastica.
Passage: Acrokeratosis paraneoplastica ( Bazex ’ syndrome ) is a rare but clinically distinctive dermatosis that
has been associated in all reported cases , to our knowledge , with either a primary malignant neoplasm of the
upper aerodigestive tract or metastatic cancer to the lymph nodes of the neck . Acrokeratosis paraneoplastica
was found in a 53-year - old black man with squamous cell carcinoma of the tonsil . A distinctive series of
changes was found on histopathologic examination of biopsy specimens taken from his skin lesions , and direct
immunofluorescence microscopy of both lesional and nonlesional skin specimens showed immunoglobulin and
complement deposition on the epidermal basement membrane . The skin lesions largely resolved following
radiation therapy of the neoplasm and of the presumably involved lymph nodes .
GT: [‘Bazex syndrome’]
ERM Answer: dermatosis
KD-Aug Answer: Bazex ’ syndrome
Dataset: DuoRC
Question: Who overdoses on insulin?
Passage: The film tells the story of a psychiatrist , Dr. Cross ( Vincent Price ) , who is treating a young woman ,
Janet Stewart ( Anabel Shaw ) , who is in a coma - state , brought on when she heard loud arguing , went to her
window and saw a man strike his wife with a candlestick and kill her . It also stars Lynn Bari as Dr. Cross ’s
nurse / lover , Elaine Jordan . As Stewart comes out of her shock , she recognizes Dr. Cross as the killer . He
then takes her to his sanitarium and at Elaine ’s urging , gives Janet an overdose of insulin under the pretense of
administering insulin shock therapy . He ca n’t bring himself to murder her in cold blood , though , and asks
Elaine to get the medicine to save her . Elaine refuses , they argue , and he strangles her . A colleague of Dr.
Cross , Dr. Harvey , saves Janet ’s life and Dr. Cross is taken into custody by a lawyer from the District Attorney
’s office .
GT: [‘Janet.’, ‘Janet’]
ERM Answer: Dr. Cross
KD-Aug Answer: Janet Stewart
Dataset: RelationExtraction
Question: What is the name of the fictional universe that Polar Boy is from?
Passage: Polar Boy is a fictional character from the 30th century of the DC Universe , initially suggested by
reader Buddy Lavigne of Northbrook , Illinois in the letters page of Adventure Comics # 304 , January , 1963 .
GT: [‘DC Universe’]
ERM Answer: 30th century
KD-Aug Answer: DC Universe
Dataset: DROP
Question: Which player scored the first points of the game?
Passage: The Patriots clinched their fourth straight AFC East title with a close road win . After a scoreless first
quarter , the Jaguars responded to a Gostkowski field goal with a Maurice Jones - Drew touchdown run . The
Patriots challenged the play , as Jones - Drew appeared to fall down at the line of scrimmage , but the ruling on
the field was upheld . New England came back before the halftime to retake the lead at 10 - 7 on a Dillon one -
yard touchdown run . The Patriots maintained their lead as the teams traded touchdowns in the second half ,
including another touchdown by Jones - Drew . A David Garrard fumble with 1:55 left in the fourth quarter ,
recovered by safety Rodney Harrison , sealed the Patriots ’ 11th win of the season .
GT: [‘Gostkowski’]
ERM Answer: Maurice Jones
KD-Aug Answer: Gostkowski

Table 5: Examples of test cases where KD-based methods improve over plain ERM.
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Method Source Datasets Learning Rate # of Epochs

ERM

C, D, L, P, V 3e-5 2
D, L, P, V, W 1e-5 2
L, P, V, W, C 1e-5 2
P, V, W, C, D 7e-6 2
V, W, C, D, L 1e-5 2
W, C, D, L, P 1e-5 2

Domain-Adv

C, D, L, P, V 5e-5 2
D, L, P, V, W 7e-5 2
L, P, V, W, C 7e-5 2
P, V, W, C, D 7e-5 2
V, W, C, D, L 9e-5 2
W, C, D, L, P 9e-5 2

Episodic

C, D, L, P, V 9e-6 2
D, L, P, V, W 9e-6 2
L, P, V, W, C 1e-5 2
P, V, W, C, D 7e-6 2
V, W, C, D, L 7e-6 2
W, C, D, L, P 9e-6 2

MLDG

C, D, L, P, V 9e-6 2
D, L, P, V, W 1e-5 2
L, P, V, W, C 1e-5 2
P, V, W, C, D 3e-5 1
V, W, C, D, L 9e-6 2
W, C, D, L, P 9e-6 2

KD Teacher (ERM)

C, D, L, P, V 9e-6 1
D, L, P, V, W 7e-6 2
L, P, V, W, C 7e-6 2
P, V, W, C, D 9e-6 1
V, W, C, D, L 1e-5 1
W, C, D, L, P 7e-6 1

KD (gold-only)

C, D, L, P, V 7e-5 2
D, L, P, V, W 3e-5 2
L, P, V, W, C 3e-5 2
P, V, W, C, D 5e-5 2
V, W, C, D, L 5e-5 2
W, C, D, L, P 3e-5 2

KD (augmented)

C, D, L, P, V 5e-5 synthetic: 1, gold: 2
D, L, P, V, W 5e-5 synthetic: 1, gold: 2
L, P, V, W, C 3e-5 synthetic: 1, gold: 1
P, V, W, C, D 5e-5 synthetic: 1, gold: 2
V, W, C, D, L 5e-5 synthetic: 1, gold: 2
W, C, D, L, P 9e-6 synthetic: 1, gold: 2

KD (gold) w/ Domain-Adv

C, D, L, P, V 7e-5 2
D, L, P, V, W 9e-5 2
L, P, V, W, C 9e-5 2
P, V, W, C, D 7e-5 2
V, W, C, D, L 1e-4 2
W, C, D, L, P 1e-4 2

KD (gold) w/ Episodic

C, D, L, P, V 3e-5 2
D, L, P, V, W 3e-5 2
L, P, V, W, C 3e-5 2
P, V, W, C, D 3e-5 2
V, W, C, D, L 3e-5 2
W, C, D, L, P 3e-5 2

KD (gold) w/ MLDG

C, D, L, P, V 5e-5 2
D, L, P, V, W 5e-5 2
L, P, V, W, C 5e-5 2
P, V, W, C, D 5e-5 2
V, W, C, D, L 7e-5 2
W, C, D, L, P 5e-5 2

Table 6: Optimal values of shared hyperparameters (learning rate, # of epochs). C: SearchQA, D: SQuAD,
L: NaturalQuestions (NQ), P: HotpotQA, V: TriviaQA, W: NewsQA.
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Method Hyperparameters Grid Optimal
Domain-Adv �adv {0.01, 0.1, 1.0} 0.1

Episodic (�erm,�episodic)
�erm 2 {0.25, 0.5, 0.75, 0.9}

(0.75, 0.25)
�episodic = 1 � �erm

MLDG � {1} 1
KD (gold) ⌧ {1, 2, 4} 2
KD (augmented) ⌧ {4} 4
KD (gold) w/ Domain-Adv (⌧,�adv) {1, 2, 4} ⇥ {0.01, 0.1, 1.0} (1, 0.01)

KD (gold) w/ Episodic (⌧,�erm,�episodic) {1, 2, 4} ⇥ �erm 2 {0.25, 0.5, 0.75, 0.9} (1, 0.75, 0.25)
�episodic = 1 � �erm

KD (gold) w/ MLDG (⌧,�) {1, 2, 4} ⇥ {1} (4, 1)

Table 7: Optimal values of hyperparameters specific to different training methods and the respective search grids.

3761


