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Abstract

Generative models of code, pretrained on large
corpora of programs, have shown great success
in translating natural language to code (Chen
et al., 2021; Austin et al., 2021; Li et al., 2022,
inter alia). While these models do not explic-
itly incorporate program semantics (i.e., exe-
cution results) during training, they are able to
generate correct solutions for many problems.
However, choosing a single correct program
from a generated set for each problem remains
challenging.

In this work, we introduce execution result—
based minimum Bayes risk decoding (MBR-
EXEC) for program selection and show that
it improves the few-shot performance of pre-
trained code models on natural-language-to-
code tasks. We select output programs from a
generated candidate set by marginalizing over
program implementations that share the same
semantics. Because exact equivalence is in-
tractable, we execute each program on a small
number of test inputs to approximate seman-
tic equivalence. Across datasets, execution or
simulated execution significantly outperforms
the methods that do not involve program se-
mantics. We find that MBR-EXEC consistently
improves over all execution-unaware selection
methods, suggesting it as an effective approach
for natural language to code translation.'

1 Introduction

The recent success of large pretrained language
models (Radford et al., 2019; Brown et al., 2020)
has extended to translating natural language de-
scriptions into executable code (Chen et al., 2021;
Austin et al., 2021; Li et al., 2022, inter alia). After
pretraining on large corpora of code with a simple
language modeling objective, the models demon-
strate the ability to follow few-shot prompts (Rad-
ford et al., 2019; Brown et al., 2020) to translate nat-
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Figure 1: Illustration of MBR-EXEC on translating nat-
ural language to Python code: we (1) sample programs
from Codex (Chen et al., 2021), (2) execute each pro-
gram on one test case, and (3) select the example with
the minimal execution result-based Bayes risk. Num-
bers around dotted lines denote the 0/1 matching loss
between execution results, while the Bayes risk of a
program is defined by the sum of the loss between itself
and other examples. In the figure, either Code #1 or
Code #3 can be selected. Ground-truth program output
is not needed for selection.

ural language to various programming languages.
While code sampled from such models obtains sur-
prisingly good BLEU scores against ground-truth
programs and relatively high execution accuracies,
it often includes obvious mistakes, and is of much
lower quality than the code written by intermediate-
level human programmers (Li et al., 2022). In ad-
dition, choosing a single correct one from a set of
generated programs remains challenging.

In this work, we translate natural language to
executable code with awareness of execution re-
sults on a limited number of test case inputs,
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which we require only at inference time. Our ap-
proach is built on the hypothesis that a pretrained
code model spreads probability mass over multi-
ple semantically-equivalent code forms that imple-
ment the same functionality. Given a text descrip-
tion of a desired program function, we (1) sample
a set of programs from a pretrained code model
(§3.1) and (2) select a single candidate program
using execution-result-based minimum Bayes risk
(MBR) decoding (§3.2). Intuitively, we score each
sampled program using its agreement to other sam-
ples in terms of execution results, and select a pro-
gram with maximal overall agreement.

Our evaluation focuses on a challenging set-
ting where only a single program can be submit-
ted as the solution to a given problem. We show
that the execution result—based selection method
(i.e., MBR-EXEC) significantly outperforms all no-
execution baselines across all considered datasets,
despite having never executed any code during
training and even when it has no access to ground-
truth outputs. In addition, we show that MBR de-
coding with a BLEU-based risk function performs
consistently well across datasets, and can be con-
sidered as a promising alternative when we are not
able to execute.

2 Related Work

2.1 Language to Code with Neural Networks

With the progress of neural network—based lan-
guage modeling and conditioned text generation,
there has been much work exploring natural lan-
guage to code generation with end-to-end neu-
ral model architectures (Xiao et al., 2016; Ling
et al., 2016; Rabinovich et al., 2017; Dong and
Lapata, 2018; Suhr et al., 2018; Xu et al., 2020;
Lachaux et al.,, 2021, inter alia). Recently,
large Transformer-based (Vaswani et al., 2017)
pretrained code models have shown surprisingly
strong generation performance across program-
ming languages (Chen et al., 2021; Austin et al.,
2021; Li et al., 2022, inter alia). In this work, we
explore selection (i.e., inference) methods to apply
to these pretrained models, showing that selecting
programs using their execution results can greatly
improve program generation.

Multiple benchmarks have been proposed to
evaluate code model performance (Miceli Barone
and Sennrich, 2017; Yin et al., 2018; Hendrycks
etal., 2021; Lu et al., 2021, inter alia). In this work,
we evaluate on three text-to-code datasets: MBPP

(Python; Austin et al., 2021), Spider (SQL; Yu et al.,
2018) and NL2Bash (Bash; Lin et al., 2018), cov-
ering a range of programming languages.

2.2 Prompting Pretrained Language Models

The GPT-2 (Radford et al., 2019) and GPT-3
(Brown et al., 2020) models have shown strong
prompting performance: after conditioning on a
task-related prompt, the language models are of-
ten able to make accurate output predictions for
unseen inputs. These results lead to prompt-based
approaches for few-shot or zero-shot text classifica-
tion (Shin et al., 2020; Gao et al., 2021; Min et al.,
2021, inter alia), question answering (Khashabi
et al., 2020), machine translation (Radford et al.,
2019), and evaluation of generated text (Yuan et al.,
2021), where no more than a few examples are
used to construct the prompts. Few-shot exam-
ples are usually formatted into natural language
prompts and continuations generated by the mod-
els for these prompts are then converted to task-
specific predictions. The prompt formatting can
be either manually designed (Jiang et al., 2020) or
automatically learned (Li and Liang, 2021; Lester
et al., 2021). Recently, Wang et al. (2022) find that
self-consistency based decoding improves chain-
of-thought prompting (Wei et al., 2022). We refer
the readers to Liu et al. (2021) for a more compre-
hensive survey.

In this work, we prompt a pretrained code model
(Codex; Chen et al., 2021) in a few-shot setting
(§3.1) and perform execution-based selection over
the samples. We also find that the Codex model
performs well with a fairly programming-language-
agnostic prompt formatting (Table 1).

2.3 Minimum Bayes Risk Decoding

In structured prediction, Minimum Bayes risk
(MBR) decoding (Bickel and Doksum, 1977) se-
lects a structured output that minimizes the ex-
pected errors in the structure by introducing an
explicit loss function to the decision criterion. This
method has outperformed the maximum a posteri-
ori (MAP) method on many tasks, including syntac-
tic parsing (Titov and Henderson, 2006; Shi et al.,
2019; Zhang et al., 2020), statistical machine trans-
lation (Kumar and Byrne, 2004; Zhang and Gildea,
2008), and neural machine translation (Eikema and
Aziz, 2020, 2021).

In machine translation, MBR decoding is usu-
ally implemented by reranking candidates (Goel
and Byrne, 2000; Kumar and Byrne, 2004; Tromble
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General Template <info>[INFO]</info> (optional)
<text>[TEXT]</text>
<code>[CODE]</code>

Instantiation 1: Python | <info>assert add(1, 2) == 3</info>

One-Shot Example

<text>Write a function that adds 2 integers</text>
<code>def add(a, b): return a + b</code>

Query

<info>assert cat() == "cat"</info>

<code>

<text>Write a function that outputs the string "cat"</text>

Instantiation 2: Bash

One-Shot Example <code>1s</code>

<text>show the files in the current directory</text>

Query
<code>

<text>show the first 5 lines of a.txt</text>

Table 1: Prompt formatting template for queries to pretrained code models. For instantiation, we substitute [TEXT]
and [CODE] with natural language descriptions and corresponding code snippets respectively. We also provide
compatibility for an optional [INFO] section to provide the model extra information (e.g., the desired function
identifier and example function calls) that helps code generation. In general, we expect the pretrained code models
to generate a </code> token at the end of each code snippet given its pattern following ability (Brown et al., 2020;
Chen et al., 2021), otherwise we truncate the generated code to a maximum of 1024 tokens.

et al., 2008, inter alia). Let F' denote the input, and
F denote the corresponding ground-truth transla-
tion. Given a loss function £(-,-) between trans-
lations and a probability model P(E | F'), MBR
decoding can be formulated as

E = arg min (E,E"P(E|F), ()
E'egy

where &}, is the hypothesis space, and &, is the evi-
dence space: both are sets of possible translations.

We define execution based MBR loss functions,
and show that they are crucial in the sample selec-
tion processes for natural language to code with a
pretrained large language model.

3 Proposed Approach: MBR-EXEC

Our execution-based framework consists of two
parts: (1) collecting samples from a pretrained code
model (§3.1) and (2) selecting the best candidate
using minimum Bayes risk decoding (§3.2).

3.1 Sample Collection

To obtain the corresponding code, we query the
pretrained code model with few-shot prompts fol-
lowed by the text description, using a unified
mark-up style few-shot prompting template (Ta-
ble 1).> In addition to the generated programs

2While existing work on prompting language models usu-
ally requires a task-specific design of prompts (Shin et al.,
2020; Zhong et al., 2021; Gao et al., 2021, inter alia), we find
that a fairly general pattern (Table 1), which does not involve

any programming language—specific information, works well
across programming languages on Codex.

themselves, most existing models also allow us
to have the associated probability of generating
each generated token w; conditioned on the prompt
tokens C' = {c1,...,¢,) and all the previously
generated tokens wy, . .., w;_1, denoted by P(w; |
C, Wiy - .. wi,l).

3.2 Execution-Based MBR Decoding

Given a problem in its natural language description
C, we sample a set of programs P = {p; }¥, using
the method in §3.1. We formulate the execution-
based MBR (MBR-EXEC) decoding by selecting

p = argmin £ ;P
p gpeP mBr(D; P)

= i ¢ v 2
argmin > | ((p: Pry) )
prefep

as the best candidate, where Lypg(-; -) denotes the
MBR loss of a program conditioned on a set of ref-
erences and / is a predefined, execution-based loss
function that examines the discrepancy between
two programs. Intuitively, this finds a consensus
candidate which has a low loss relative to all other
candidates. The above implementation is an unbi-
ased estimation of Eq (1).

We introduce the following execution result—
based loss function:

U(pi,pj) = ItneaTXIl [pi(t) # p;(1)],

where 7 is the set of available test inputs,® and
pi(t) denotes the execution result of program p;

30ur MBR-EXEC decoding process does not involve any

3535



Method MBPP Spider NL2Bash
Greedy (3-shot) 47.3+2.5 50.8+2.6 52.8+2.9
Sample (3-shot) 47.7+£1.5 485+2.6 53.0+29
MBR-EXEC 582+0.3 63.6+0.8 58.5+0.3

Table 2: Comparison between MBR-EXEC and base-
lines without selection process. For both MBR-EXEC
and Sample (3-shot), we collected samples with tem-
perature 0.3. All numbers involve the same set of 125
samples for each case: for greedy and sample baselines,
we report average performance of them all; for MBR-
EXEC, we report the result with 25 examples, averaged
across 5 experiments.

when having ¢ as the input. When a program fails
to execute on a test case, it is considered not equiv-
alent to any other programs, even if they fail to
execute as well. Intuitively, ¢ assigns equivalence
(0 loss) if and only if two programs have the same
output on all considered test cases.

There may be multiple programs receiving the
same MBR loss Lyr(+; P), which are all minima.
We break any ties by selecting the program with
the largest likelihood among them.

4 Experiments

We evaluate (§4.3) and analyze (§4.4) the perfor-
mance of MBR-EXEC, starting with introducing
the datasets and evaluation metrics (§4.1), as well
as non-execution-based baselines (§4.2) for MBR-
EXEC. Finally, we show and discuss oracle perfor-
mances on the considered tasks (§4.5).

4.1 Datasets and Evaluation Metrics

We consider three datasets that cover a range of
programming languages: MBPP (Python; Austin
et al., 2021), Spider (SQL; Yu et al., 2018), and
NL2Bash (Bash; Lin et al., 2018).

MBPP. The MBPP dataset (Austin et al., 2021)*
consists of 974 basic Python programming prob-
lems, with 500 of them used for testing and the
rest for training or few-shot prompting. There are
ground-truth program and three assertions (i.e., test
cases with input and ground-truth output) associ-
ated with the description of each problem. When
collecting the samples, we use one assertion as the

ground-truth test case output, nor the ground-truth programs.
This is compatible with many real scenarios, e.g., in a pro-
gramming competition, where valid test input are easier to
access than ground-truth output.
*https://github.com/google-research/
google-research/tree/master/mbpp

extra information ([INFO]; Table 1).? Programs
are evaluated with execution accuracy, where a pro-
gram is considered as passing if all three test cases
are correct.

Spider. The Spider dataset (Yu et al., 2018)° is
a text-to-SQL dataset, which requires a model to
translate text descriptions into SQL commands.
There are 7,000 examples for training and 1,034
for development. When prompting models to pro-
duce candidate commands, we concatenate the cor-
responding SQL table and column names as the
[INFO]. Commands are evaluated with the execu-
tion accuracy, where a command is considered as
passing if it returns the same result as the ground-
truth command when being executed on the same
database.

NL2Bash. The NL2Bash dataset (Lin et al.,
2018) aims to translate natural language to bash
commands. We do not include [INFO] in the sam-
ple collection process. Because it is difficult to
execute bash commands in a sandbox, we split a
bash command with bashlex,’ a rule-based bash
parser, and use the token-level BLEU-4 score be-
tween commands as the estimation of execution
result similarity. We consider a command to be
unexecutable when bashlex fails to parse it. Fol-
lowing Lin et al. (2018), commands are evaluated
with character-level BLEU-4 score.

Across datasets, we use 15 examples from the
training set for few-shot prompting. A detailed ex-
ample showing prompt formatting can be found in
Appendix A. Unless otherwise specified, we col-
lect samples by querying Codex with five different
prompts, each containing 3 examples, using tem-
perature 0.3. We combine the candidates sampled
across the five prompts to get a set of candidate
samples to use in our selection methods. For execu-
tion on MBPP and Spider, we apply a memory limit
of 128GB and a time limit of 10 seconds on a sin-
gle Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
CPU, and consider the programs that exceed these
limits as inexecutable; unless otherwise specified,
we only execute each program on the first test input
provided for the example, and use the output for
calculating the Bayes risk in the inference process.

5The main goal of [INFO] in MBPP is to inform Codex
about the desired function name for easier evaluation — while
the assertions are not a necessary part of prompt, we use them
as [INFO] for simplicity and compatibility with past work
(Austin et al., 2021).

®https://yale-1lily.github.io/spider

7https: //pypi.org/project/bashlex/
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Figure 2: Primary evaluation results: performance of the evaluated selection criteria (best viewed in color). For
each sample size, we evaluate the methods on 5 different groups of samples and report the average performance
(lines) and the standard deviations (shaded regions). All samples are collected from Codex with temperature 0.3.

4.2 Baselines * BLEU score based MBR (MBR-BLEU). To
We compare the most basic baselines with no se- study the effect of execution based MBR in sam-
lection, prompting Codex with three examples in ple selection, we cons1d§r BLEU score based
Table 1 format:® MBR, where the Bayes risk is calculated using

the following risk function:
* Greedy decoding. We perform token by token

greedy decoding to generate the output. Csrev(pi, pj) = —BLEU(p;, pj),

e Sampling. We sample the output token by to-
ken with a fixed temperature, where we set the where BLEU(p;, p;) is the BLEU score of the

temperature as 0.3 in all of our experiments. two programs. We use character-level (MBR-
charBLEU) or token-level (MBR-tokenBLEU)
In addition, we consider the following baseline BLEU-4 in all of our experiments.

sample selection methods:

« Maximizing likelihood (ML). Given a set of > FPrimary Results

sampled candidate programs, we select the one ~ 'We evaluate MBR-EXEC on the three datasets
with the largest log likelihood. Formally, we  (§4.1) with dataset-specific metric, where we use

select one test case for each problem. MBR-EXEC outper-
np forms all baselines without a selection process by

p = arg max H P(wp; | Cowpa,. . wpi1), 2 significant margin (Table 2). In additior.1, we find
PEP -3 that MBR-EXEC outperforms all baseline selec-

tion methods (Figure 2), and is especially effective

where n;, denotes the number of tokens in a gen-  on the two datasets (MBPP and Spider) that use

erated program p, and wy, ; denotes its i-th token.  execution-based evaluation. In addition, the MBR-

« Maximizing average log likelihood (MALL) BLEU metrics are also strong and robust across

across tokens. In order to address the practical ~ datasets, suggesting the effectiveness of finding a

issue that ML typically favors shorter sequences, ~ consensus candidate that has generally low discrep-
we follow Chen et al. (2021) and propose an-  ancy with other samples.

other baseline that uses the average log likelihood While more samples lead to better performance

across tokens as the selection criterion, where we ~ for most methods, MALL consistently performs

select worse with a larger sample size, as we find that

MALL generally favors programs with unneces-

P = arg max sary repetitions,” and a larger sample size generally
. ::P leads to a larger chance to have such a sample.

TTp ; log P(wp’i ’ c, Wpls-o o wp’i_l)' °This issue has been found in existing open-ended text gen-

- = eration models, while methods such as unlikelihood training
8We use the code-davinci-001 engine throughout this (Welleck et al., 2020) may help reduce degeneration (i.e., the
work. generation of unnecessarily repetitive output).
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Figure 3: Performance of the evaluated selection criteria across temperatures (best viewed in color). For each
temperature, we perform the methods on 5 different groups of 25 examples and report the average performance

(lines) and the standard deviations (shaded regions).

Dataset Greedy (r = 0) Sample (7 = 0.3)
MBPP 56.0 58.2+0.3
Spider 62.1 63.6 = 0.8
NL2Bash 58.4 58.5+0.3

Table 3: MBR-EXEC performance on greedily decoded
and sampled programs: for each problem, we use 25
groups of 3-shot prompts, decode or sample one pro-
gram with each prompt, and use MBR-EXEC to select
the best program. For sampling with temperature 0.3,
we repeat the process for 5 times and report the aver-
age performance and standard deviations. The dataset-
specific metric can be found at §4.1. The best number
in each row is in boldface. Note that the greedy perfor-
mances are different from those reported in Table 2, as
we perform MBR-EXEC here over greedy decoding out-
puts, while report the average performance in Table 2.

4.4 Analysis

We analyze the performance of MBR-EXEC from
the following perspectives: the effectiveness across
different sample collection temperatures (§4.4.1),
the effectiveness of using groups of 3-shot prompts
(§4.4.2) and the contribution of using execution
results instead of simply checking the executability
of programs (§4.4.3).

4.4.1 Effect of Sample Temperature

We first compare sampling with temperature 0.3 to
greedy decoding (i.e., temperature 7 = 0) from
the Codex model (Table 3). When having the
same number of examples, MBR-EXEC on sam-
pled candidates with temperature 0.3 consistently
reaches competitive or better performance than that
on greedy decoded candidates.

We plot the performance of MBR-EXEC for var-
ious sampling temperatures (Figure 3). Across
datasets, we find that MBR-EXEC with a decoding
temperature lower than 0.5 usually leads to rea-

58

—— groups of 3-shot

56 concatenation of 15

54

Execution Accuracy (- 100)

0 20 40 60 80 100 120

# Samples
(a) MBPP

59
=)
S
— 58
5 —— groups of 3-shot
E 57 concatenation of 15
g
<
“ 56

0 20 40 60 80 100 120
# Samples

(b) NL2Bash

Figure 4: Performance with different types of prompts,
where groups of 3-shot denotes the prompt formatting
in Table 1, while concatenation of 15 denotes concate-
nating all available 15 examples as prompts for data
collection.

sonably good performance. When the temperature
approaches 1.0, the results rapidly drop for all con-
sidered selection methods on MBPP and Spider;
however, MALL generally achieves higher perfor-
mance on NL2bash with a higher temperature.

According to the evidences discussed above, we
recommend to use sampling with a low temper-
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Figure 5: Comparison between applying methods to
all possible candidates vs. applying methods to only
executable candidates (best viewed in color), where
executability- X denotes applying selection criteria X
on executable candidates only. We did not include MBR-
tokenBLEU and MALL and their combination with
executability check in this figure for clarity — full anal-
ysis on execution vs. executability can be found in
appendix B.

ature (specifically, lower than 0.5) for candidate
sample collection, and perform MBR-EXEC for
final program selection for better results.

4.4.2 Effect of Different 3-shot Prompts

We analyze the necessity of choosing multiple
groups of 3-shot instead of simply concatenat-
ing the available 15 examples as the prompt (Fig-
ure 4).'9 We allow different orders of the 15 ex-
amples when collecting samples. On both MBPP
and NL2Bash datasets, we find that using differ-
ent groups of 3-shot prompts clearly outperforms
concatenating all 15 examples, suggesting that dif-
ferent groups of fewer-shot prompts followed by
post-hoc decoding may be more effective than us-

%We only include MBPP and NL2Bash results here as
concatenating 15 Spider examples usually results in exceeding
the token number limit of the pretrained models.

60

59

————— MBR-EXEC(3)-¢
MBR-EXEC(2)-{
---------- MBR—EXEC(S)—ESOﬂ

58

57
---- MBR-EXEC(2)-/.

56 soft

—— MBR-EXEC

Execution Accuracy (- 100)

55
0 20 40 60 80 100 120
# Samples

Figure 6: Execution accuracies with respect to sample
size on the MBPP dataset, where the number in the
parentheses denotes the number of test cases per prob-
lem used for MBR-EXEC. Best viewed in color.

ing all available examples for all time.

4.4.3 Executability vs. Execution Results

We perform an ablation study to identify the contri-
bution of execution results vs. program executabil-
ity (Figure 5) on the MBPP and Spider datasets.'!
We try to execute all candidates on the test cases,
and perform baseline candidate methods only on
the candidates that successfully execute within the
time limit. On both datasets, we find that sim-
ply involving executability checking significantly
helps improve the performance of all non-semantic
feature—based selection methods; on Spider, apply-
ing ML over executable commands even outper-
forms MBR-EXEC across sample sizes.

4.4.4 Soft Loss as the Bayes Risk Function

While all the above evaluations are based on exe-
cuting one test case per problem, more test cases
can lead to more accurate judgments of semantic
equivalence between programs (Zhong et al., 2020).
Therefore, we introduce more test cases, and com-
pare ¢ (§3.2) with £z, a soft version of the loss
function, as the Bayes risk function in MBR-EXEC.
We define /s, as follows:

bon(pi-ps) = 77 Zﬂ pi(t) # p; (1)],

teT

which assesses equivalence based on the number
of test cases that receive the same output. If there

"'We did not include NL2bash since MBR-EXEC does not
really execute the commands. However, the comparison be-
tween MBR-EXEC and MBR-tokenBLEU in Figure 3(c) shows
that using an external bash parser as an executability estimator
leads to more consistent and generally better performance.
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is only one test case available, £ and £y are equiv-
alent.

We experiment with the MBPP dataset (Fig-
ure 6) as it provides three test cases per prob-
lem. While multiple test cases clearly outperforms
MBR-EXEC with one test case across sample sizes,
we did not find significant difference between 54,4
and £, nor between using two or three test cases.

4.5 Oracle Performance

We report the upper bound performance of all in-
ference methods (Figure 7). Here, we define the
expected Pass@K on one problem ¢ by

ExPass@K(q)

- _
max min [p(t) = G(1)]|,

=Eip—x
where G(t) denotes the ground-truth output for test
case input ¢. Intuitively, to calculate the perfor-
mance upper bound, a problem g is considered to
be solved if there exists one program in the can-
didate sample set P that passes all associated test
cases 7,. The dataset-level expected Pass@K is
defined as the average expected Pass@K over all
problems.

In addition, we report the supervised perfor-
mance on these datasets, where all available train-
ing data are used for model training or finetuning:
for MBPP, the results are from Austin et al. (2021),
where they use all 374 training examples to finetune
their pretrained code model; for Spider, we com-
pare to the current state-of-the-art result (Scholak
et al., 2021); for NL2Bash, we finetune GPT-2
(Radford et al., 2019) with all training examples
with the same prompting set up as Table 1.

However, it is worth noting that the upper bounds
already outperform the state-of-the-art supervised

performances on all datasets by a significant mar-
gin, when a reasonable amount of sample is given.
This further demonstrates the effectiveness of the
pretrained code models, and points out a potential
next step in the direction: while such models are
able to generate correct programs, designing effec-
tive inference algorithm may be a promising way
towards translating natural language to code in real
world applications.

5 Discussion

We presented and systematically analyzed MBR-
EXEC, an execution-based inference algorithm for
pretrained language to code models, on datasets
that cover three representative programming lan-
guages. Our results showed that doing execution,
even with access only to inputs (not outputs) for
test cases, or with only access to an executability
checker, substantially helps improve the quality of
generated programs especially in the settings that
use execution accuracy as the evaluation metric
(MBPP and Spider). Given the consistently strong
performance, we suggest future work on program
synthesis with large pretrained models consider
MBR-EXEC as an effective selection algorithm.
When we are not able to execute programs, or there
are no test inputs available, our results suggest con-
sidering an alternative MBR metric (e.g., MBR-
BLEU) as the selection algorithm.

Limitations

In this work, all selection methods are performed
on top of a frozen pretrained code model (Codex;
Chen et al., 2021). We note that incorporating exe-
cution information into the training or finetuning
process of pretrained models may further help im-
prove the performance. We leave the exploration
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of joint execution and training to future work.
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Appendices

A Example Prompts and Codex API
Responses

We include example 3-shot prompts and corre-
sponding Codex responses that we used in our ex-
periments, on the three datasets (Tables 4, 5, 6),
where we format the prompts following the pat-
terns presented in Table 1. Data shown in the tables
are collected with the greedy decoding strategy (i.e.,
temperature = 0), and can be found in the first line
of seed O in our released data for each test dataset.

B Full Analysis on Executability vs.
Execution Result

We report the comparison between MBR-
tokenBLEU and MALL vs. their combination with
executability check (Figure 8; in complementary to
Figure 5), where we observe that an executability
checker is an effective filter to improve execution
accuracies for both datasets (MBPP and Spider).
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MBPP: Prompt

<info>assert camel_to_snake('GoogleAssistant') == 'google_assistant'</info>
<text>Write a function to convert camel case string to snake case string by using regex.</text>
<code>import re
def camel_to_snake(text):
str1 = re.sub('(.)([A-Z]1[a-z]1+)"', r'\\1_\\2', text)
return re.sub('([a-z0-91) ([A-Z1)', r'\\1_\\2', str1).lower()</code>
<info>assert sort_dict_item({(5, 6) : 3, (2, 3) : 9, (8, 4): 10, (6, 4): 12} ) == {(2, 3): 9, (6,
4): 12, (5, 6): 3, (8, 4): 10}</info>
<text>Write a function to sort dictionary items by tuple product of keys for the given dictionary
with tuple keys.</text>
<code>def sort_dict_item(test_dict):
res = {key: test_dict[key] for key in sorted(test_dict.keys(), key = lambda ele: ele[1] x ele
[e1)}
return (res)
</code>
<info>assert reverse_list_lists([[1, 2, 3, 41, [5, 6, 7, 81, [9, 10, 11, 121, [13, 14, 15, 16]1])
==[[4, 3, 2, 11, [8, 7, 6, 51, [12, 11, 1@, 91, [16, 15, 14, 13]1</info>
<text>Write a function to reverse each list in a given list of lists.</text>
<code>def reverse_list_lists(lists):
for 1 in lists:
1.sort(reverse = True)
return lists </code>
<info>assert remove_Occ(\"hello\"”,\"I\") == \"heo\"</info>
<text>Write a python function to remove first and last occurrence of a given character from the
string.</text>
<code>

MBPP: Response

def remove_Occ(strl,ch):
return stri1[:str1.index(ch)] + stri[stri1.rindex(ch)+1:]</code>

Table 4: MBPP example prompt and response from Codex: we use the first assertion in the dataset as the extra
information (i.e., [INFQ] in Table 1). The content in the last <info>...</info> and <text>...</text> marks in
the prompt corresponds to the test problem.
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Spider: Prompt

<info>e_learning | * | Course_Authors_and_Tutors : author_id , author_tutor_ATB , login_name ,
password , personal_name , middle_name , family_name , gender_mf , address_line_1 | Students
: student_id , date_of_registration , date_of_latest_logon , login_name , password ,
personal_name , middle_name , family_name | Subjects : subject_id , subject_name | Courses :
course_id , author_id , subject_id , course_name , course_description |
Student_Course_Enrolment : registration_id , student_id , course_id , date_of_enrolment ,
date_of_completion | Student_Tests_Taken : registration_id , date_test_taken , test_result</
info>
<text>Which course authors teach two or more courses? Give me their addresses and author IDs.</
text>
<code>SELECT T1.address_line_1 , T2.author_id FROM Course_Authors_and_Tutors AS T1 JOIN Courses
AS T2 ON T1.author_id = T2.author_id GROUP BY T2.author_id HAVING Count(*) >= 2</code>
<info>flight_1 | = | flight : flno , origin , destination , distance , departure_date ,
arrival_date , price , aid | aircraft : aid , name , distance | employee : eid , name ,
salary | certificate : eid , aid</info>
<text>Show origin and destination for flights with price higher than 300.</text>
<code>SELECT origin , destination FROM Flight WHERE price > 300</code>
<info>driving_school | * | Addresses : address_id , line_1_number_building , city , zip_postcode
, state_province_county , country | Staff : staff_id , staff_address_id , nickname ,
first_name , middle_name , last_name , date_of_birth , date_joined_staff , date_left_staff |
Vehicles : vehicle_id , vehicle_details | Customers : customer_id , customer_address_id ,
customer_status_code , date_became_customer , date_of_birth , first_name , last_name ,
amount_outstanding , email_address , phone_number , cell_mobile_phone_number |
Customer_Payments : customer_id , datetime_payment , payment_method_code , amount_payment |
Lessons : lesson_id , customer_id , lesson_status_code , staff_id , vehicle_id , lesson_date
, lesson_time , price</info>
<text>When did the staff member with first name as Janessa and last name as Sawayn leave the
company?</text>
<code>SELECT date_left_staff FROM Staff WHERE first_name = \"Janessa\” AND last_name = \"Sawayn
\";</code>
<info>concert_singer | * | stadium : Stadium_ID , Location , Name , Capacity , Highest , Lowest ,
Average | singer : Singer_ID , Name , Country , Song_Name , Song_release_year , Age ,
Is_male | concert : concert_ID , concert_Name , Theme , Stadium_ID , Year |
singer_in_concert : concert_ID , Singer_ID</info>
<text>How many singers do we have?</text>
<code>

Spider: Response

SELECT COUNT(*) FROM singer;</code>

Table 5: Spider example prompt and response from Codex: following Xie et al. (2022), we use the concatenation of
corresponding table and column names in the dataset as the extra information (i.e., [INFO] in Table 1).. The content
in the last <info>. . .</info> and <text>...</text> marks in the prompt corresponds to the test problem.

NL2Bash: Prompt

<text>Print file information of command \"bash\"</text>

<code>echo $(1s -1 $(which bash))</code>

<text>Recursively change the owner and group of all files in \"/your/directory/to/fuel/\" to \"
nginx\"</text>

<code>chown nginx:nginx /your/directory/to/fuel/ -R</code>

<text>Copy \"src/prog.js\" and \"images/icon.jpg\" to \"/tmp/package\"” keeping relative path
names</text>

<code>rsync -R src/prog.js images/icon.jpg /tmp/package</code>

<text>Adds execution permissions on a script ./etc/bash_completion within Homebrew home folder
path.</text>

<code>

NL2Bash: Response

chmod +x /usr/local/etc/bash_completion</code>

Table 6: NL2Bash example prompt and response from Codex: we did not use any extra information. The content in
the last <text>...</text> marks in the prompt corresponds to the test problem.
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Figure 8: Comparison between applying methods to
all possible candidates vs. applying methods to only
executable candidates (best viewed in color), where
executability- X denotes applying selection criteria X
on executable candidates only. We also include the
curves of MBR-EXEC for comparison.
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