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Abstract

End-to-end automatic speech recognition sys-
tems represent the state of the art, but they rely
on thousands of hours of manually annotated
speech for training, as well as heavyweight
computation for inference. Of course, this im-
pedes commercialization since most companies
lack vast human and computational resources.
In this paper, we explore training and deploying
an ASR system in the label-scarce, compute-
limited setting. To reduce human labor, we
use a third-party ASR system as a weak su-
pervision source, supplemented with labeling
functions derived from implicit user feedback.
To accelerate inference, we propose to route
production-time queries across a pool of CUDA
graphs of varying input lengths, the distribution
of which best matches the traffic’s. Compared
to our third-party ASR, we achieve a relative
improvement in word-error rate of 8% and a
speedup of 600%. Our system, called Speech-
Net, currently serves 12 million queries per day
on our voice-enabled smart television. To our
knowledge, this is the first time a large-scale,
Wav2vec-based deployment has been described
in the academic literature.

1 Introduction

Training an end-to-end automatic speech recogni-
tion (ASR) model requires hundreds, if not thou-
sands, of hours of hand-labeled speech. With
the rise of silicon-hungry pretrained transformers,
these models additionally need increasing amounts
of computational power just to perform inference.
Together, these two hurdles impede effective model
deployment at all but the largest technology com-
panies and specialized speech processing startups.
The hurdles certainly apply to us at Comcast, the
main stage of this work. Our industrial challenge is
to fine-tune and deploy a large, pretrained speech
recognition model, without an army of annotators
(as in Amazon) or mammoth GPU farms (e.g.,
Google). Our end application is the Xfinity X1,

a voice-enabled smart television serving millions
of active devices in the United States.

Evidently, cloud ASR services are cheaply avail-
able.1 Google Cloud, for example, charges $1.44
USD per hour of transcribed speech. In contrast,
manual annotation services like Rev cost $90 per
hour, and our in-house annotators, whom Comcast
must use to protect user privacy, cost even more.
Thus, cloud ASR’s comparatively low pricing, com-
bined with its decent quality, suggests its utility as
an annotation source in the absence of substantial
human-labeled data.

Nevertheless, cloud ASR still falls short of hu-
man parity and hence demands label denoising. To
do this, we propose to use implicit user feedback
to remove incorrectly labeled examples, bootstrap-
ping an existing cloud ASR service. We derive
these labeling functions using signals from query
repetition, session length, and ASR confidence
scores. We model them in Snorkel (Ratner et al.,
2017), a popular data programming framework,
producing a 1400-hour weakly labeled dataset.
Trained on this, our models improve over those
using unfiltered data by an average 0.97 points in
word-error rate (WER), as presented in Section 4.

As for the second hurdle of resource efficiency,
many model acceleration methods exist. However,
few meet our productionization criteria: we seek
to preserve the quality, ruling out structured prun-
ing (Li et al., 2020); we wish to preserve the pre-
trained architectural structure, eliminating knowl-
edge distillation (Tang et al., 2019a); and we re-
quire stable software–GPU support, disqualifying
low bit-width quantization (Shen et al., 2020) and
other CPU-oriented approaches.

All things considered, the prime candidates are
medium bit-width quantization, decoder optimiza-
tions (Abdou and Scordilis, 2004), and CUDA com-
putation graphs (Gray, 2019). The first two follow

1But not cheaper or better than using our own in-house
ASR system; otherwise, there would be no need for this work!
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the literature, but the third is more open ended. In
spite of their record-breaking performance, CUDA
graphs work only with fixed-length input, not vari-
able length. Toward this, we propose to allocate
a pool of CUDA graphs of varying lengths, alto-
gether matching the production-time traffic length
distribution. During inference, we route each query
to the graph with the least upper-bound in length.
As we show in Section 4, this yields a 3–5× in-
crease in throughput.

We claim the following contributions: first, we
derive novel labeling functions for constructing
weakly labeled speech datasets from in-production
ASR systems, improving our best model by a rela-
tive 8% in word-error rate. Second, we propose to
accelerate model inference using a pool of CUDA
graphs, attaining a 7–9× inference speed increase
at no quality loss. The resulting system, Speech-
Net, currently serves more than 20 million queries
per day on our smart television. To our knowledge,
we are the first to describe a large-scale, Wav2vec-
based deployment in the academic literature.

2 Our SpeechNet Approach

Our task is to train and deploy a state-of-the-art,
end-to-end ASR system, without using human-
annotated data. The context of this deployment is a
smart TV, which users interact with using a speech-
driven remote control. To issue a voice query, users
hold a button, speak their command, and release the
button. We initially serve them with a third-party
cloud ASR service, bootstrapping it for the devel-
opment of SpeechNet. Data-wise, we store thou-
sands of hours of utterances per day, complete with
session IDs, transcripts, and device IDs. Resource-
wise, we have 30 deployment nodes, each hosting
an Nvidia Tesla T4 GPU and receiving 120 queries
per second (QPS) at peak time; thus, our model’s
real-time factor must exceed 120.

2.1 End-to-End ASR Modeling

In end-to-end ASR systems, we transcribe speech
waveform directly to orthography, consolidating
the traditional acoustic–pronunciation–language
modeling approach. Similar to natural language
processing, the dominant paradigm in speech is to
pretrain transformers (Vaswani et al., 2017) on unla-
beled speech using an unsupervised contrastive ob-
jective, then fine-tune on labeled datasets (Baevski
et al., 2020). We practitioners further fine-tune
these released models on our in-domain datasets.

Snorkel
LF 1

LF 2

LF 3

“Net�ix”Session Info

Abstain

Correct

Incorrect

Denoise Incorrect

Figure 1: An example weak labeling. In this case, we
would discard the incorrect transcript, “Netflix.”

Concretely, we feed an audio amplitude se-
quence (xt)

ℓ
t=1 ∈ [−1, 1] into a pretrained model

consisting of one-dimensional convolutional fea-
ture extractors and transformer layers, getting
frame-level context vectors (ht)

N
t=1 ∈ Rk. On each

of these vectors, we perform a softmax transforma-
tion across the vocabulary V , for a final probability
distribution sequence of (yt)

N
t=1 ∈ R|V |. For fine-

tuning, we use a training set composed of audio–
transcript pairs and optimize with the standard con-
nectionist temporal classification objective (CTC;
Graves, 2012) for speech recognition. We uncase
the transcripts and encode them with a character-
based tokenizer, as is standard. At inference time,
we decode the CTC outputs with beam search and
a four-gram language model.

2.2 Data Curation
To build a weakly labeled dataset, we turn to
Snorkel (Ratner et al., 2017), a popular data pro-
gramming framework for aggregating and denois-
ing weak labelers. In Snorkel, domain experts first
create handwritten weak labelers, which the au-
thors call labeling functions (LFs). Each of these
LFs takes as input an unlabeled example, as well
as any auxiliary data, and either outputs a label or
abstains. Next, Snorkel applies these LFs to each
example in a dataset, producing a matrix of noisy
labels. It learns from this noisy observation matrix
a generative model with the true labels as latent
variables, which it supplies to downstream tasks.

Our task is to remove incorrect transcripts from
a weakly constructed dataset. Our LF inputs are
audio clips and transcripts, along with session data,
and our outputs are one of correct, incorrect, or
abstain. After Snorkel denoises the LF outputs and
labels each dataset example, we discard abstained
or incorrect ones, as visualized in Figure 1. We
derive and use the three following novel LFs:

Session position. We group queries in the same
session if each occurs within 60 seconds of at least
one other and is issued by the same user. Previ-
ously, we found a negative correlation between the
intrasession position of a query and the word-error
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Launch Kernel

Launch Kernel

Launch Kernel

Launch Kernel

Figure 2: Typical way for the CPU to launch a sequence
of small GPU kernels, with time flowing from left to
right. Red area denotes launch latency.

Launch Graph Kernel Kernel Kernel Kernel

Figure 3: Launching a CUDA graph. Difference in right
margin relative to Figure 2 portrays time savings.

rate (Tang et al., 2019b), where the last query con-
sistently has a low word-error rate (WER), and long
sessions have high intermediate query WERs. With
this finding, we write the session position LF, given
query q, as

LFSP(q) :=


CORRECT if q is last in its session
INCORRECT if sess. length ≥ 3, q not last
ABSTAIN otherwise.

ASR confidence. For each transcribed utterance,
ASR systems output a confidence score, which
correlates with the WER. In most systems, this
score results from an addition between the acoustic
model score and the language model score. The
first is a function of speech, while the second of
text. Since our third-party ASR service is opaque,
we have access only to the final score. This compli-
cates its direct use because thresholding it would
skew the balance toward frequent words, as influ-
enced by the language model.

To bypass this issue, we collect sample statistics
of the final score grouped by transcript text, then
design an LF with transcript-specific thresholds.
This way, we remove the language model score as
a confounder. Define

LFAC(q) :=


CORRECT if s(q) ≥ p80(q)
INCORRECT if s(q) ≤ p20(q)
ABSTAIN if p20(q) or p80(q) undefined

or otherwise,

where s(q) is the confidence score for query q from
the third-party ASR, and p20(q) and p80(q) return
the 20th and 80th percentile ASR score for the tran-
script of q, respectively.
Rapid repetition. Users often rapidly repeat their
voice queries upon ASR mistranscription (Li and
Ture, 2020). Given this, we can discard queries
that closely precede others from the same user:

CUDA Graph Pool

q2q1 q3

Queries

Figure 4: Three queries routed across a graph pool.

LFRR(q) :=

INCORRECT if the user’s next query
occurs ≤ 13 seconds of q

ABSTAIN otherwise.

On our platform, we’ve determined 13 seconds to
be the optimal duration in terms of specificity and
sensitivity (Li and Ture, 2020).

2.3 Model Inference Acceleration

In production, we use a batch size of one for in-
ference. This largely decreases efficiency because
GPU kernel launches now dominate the processing
time, as portrayed in Figure 2. In our case, we can’t
just pad to a large fixed size, since computation in-
creases quadratically with length for transformers.
It’s also infeasible to use batching (e.g., batch to-
gether sequential queries) because only 4–6 queries
arrive in a 50-millisecond window per server, and
we can’t afford to sacrifice that much speed.

To improve inference efficiency, CUDA graphs
allow a sequence of GPU kernels to be captured
and run as a single computation graph, thus incur-
ring one CPU launch operation instead of many—
see Figure 3. However, these graphs are input
shape and control flow static, so they must be pre-
constructed. This clearly poses a barrier to using
variable-length audio as input.

To address this issue, we propose to allocate a
pool of differently sized CUDA graphs, then route
each query to the nearest upper-bound graph. For
higher efficiency, we match the length distribution
of the pool with that of the computation time on pro-
duction traffic. Formally, let X be the random vari-
able (r.v.) denoting the arrival distribution of the
lengths of production-time queries. Let Z := f(X)
be the time it takes for a CUDA graph to perform
inference for length X . Then, our CUDA graph
pool comprises G := (gz1 , . . . , gzn), where gzi de-
notes a CUDA graph of length zi and z1, . . . , zn
are realizations of Z. To serve a query of length l,
we pick the graph gz∗ , where

z∗ := min{zi | gzi ∈ G, zi ≥ l}. (1)
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Dataset Train/Dev/Test Hrs. # Speakers # Unique

CC-20 22/2.2/2.2 40K/4K/4K 20
CC-LG 1400/1.0/2.5 325K/2K/4K 88K

Table 1: Dataset statistics. Further query distribution
details are in the appendix.

Our upstream system sends no more than ten sec-
onds of audio by design, bounding this set. We
illustrate this process in Figure 4.

3 Experimental Setup

Our key experiments are to validate the model
effectiveness of our labeling functions (Section
2.2) and the computational savings of our CUDA
graph pool (Section 2.3). We trained every run on
one p3.2xlarge Amazon Web Services (AWS)
instance, which has an Nvidia V100 GPU and
eight virtual CPU cores. We implemented our
models in PyTorch using the HuggingFace Trans-
formers library (Wolf et al., 2019) and Nvidia’s
NeMo (Kuchaiev et al., 2019); see the appendix for
more details.

3.1 Dataset Curation

We curated two datasets: one critical dataset, called
CC-20, comprising the twenty most frequent com-
mands, and another large-scale dataset, named CC-
LG, consisting of audio examples sampled uni-
formly at random from user traffic. We split our
datasets into one or more training sets, a develop-
ment (dev) set, and a test set, all drawn from sepa-
rate days and speakers—see Table 1 for statistics.
On CC-20, native English speakers annotated the
training set to establish an “upper bound” in qual-
ity, relative to using the weakly labeled datasets.
On CC-LG, the 1400-hour set was too large to an-
notate, so we skipped that. On both datasets, we
manually annotated the dev and test sets to serve
as gold evaluation sets.

For the weakly labeled training sets, we con-
structed one set with raw transcripts from the third-
party ASR system and another set with transcripts
from Snorkel, filtered using the labeling functions
in Section 2.2. We name the former set “raw” and
the latter “weak.” To remove dataset size as a con-
founder, we use the same size for all training sets.

3.2 Baselines and Models

For our first baseline, we picked Google Cloud’s
public ASR offering (Beaufays, 2022), primarily

Model Training CC-20 CC-LG
Dev/Test Dev/Test

Google Cloud – 24.7/24.7 26.5/25.5
Our Third Party – 7.56/7.60 10.8/9.66

Our Trained Models

SEWtiny
Raw 6.72/6.82 17.4/16.3

41M parameters
Weak 5.17/4.80 15.9/14.5
Human 4.79/4.66 –

Wav2vec2.0base
Raw 2.81/3.17 10.2/9.11

94M parameters
Weak 1.62/1.77 9.14/8.82
Human 1.54/1.75 –

Conformerlarge
Raw 3.52/3.68 12.6/10.6

120M parameters
Weak 3.63/4.08 12.0/9.78
Human 2.60/2.72 –

Table 2: Dev and test WERs of models trained on sets
without LFs (raw), with LFs (weak), and with human
annotations (human). Best results bolded.
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Figure 5: Throughput in queries per second and la-
tency in milliseconds of all three models, under different
CUDA graph pool settings. The red line on the left is
our third-party ASR model latency and the blue line on
the right our required throughput in production.

to sanity check our third-party ASR service. We
used their standard model offering, touted as state
of the art, costing us $0.006 USD per 15 seconds
of speech. For our second baseline, we selected
our third-party ASR service that we licensed from
a major American technology company.

Models. We chose three different state-of-the-art,
pretrained transformer models from the literature,
each representing a separate computational oper-
ating point: the Squeezed and Efficient Wav2vec
model, tiny variant (SEW-tiny; Wu et al., 2022),
at 41 million parameters; the standard Wav2vec
2.0 base model (Wav2vec 2.0-base; Baevski et al.,
2020), at 94 million parameters; and the large
Conformer model (Conformer-large; Gulati et al.,
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Training Set CC-20 CC-LG
Dev/Test Dev/Test

Raw (no LFs) 2.81/3.17 14.9/13.6
+ LFSP 2.32/2.64 13.3/12.1
+ LFAC 2.16/1.93 13.3/11.9
+ LFRR 1.62/1.77 13.1/11.8

Human 1.52/1.75 –

Table 3: Quality of Wav2vec 2.0-base under differently
constructed but equally sized training sets.

2020), at 120 million. We initialized them with
LibriSpeech-fine-tuned weights and trained them
using standard gradient-based optimization—we
put details in the appendix.

4 Results and Discussion

We present our model quality results in Table 2.
Unsurprisingly, Google Cloud does worse than our
third-party service, which has been specifically tai-
lored to our in-domain vocabulary. On average,
sets curated with Snorkel (denoted as “weak”) im-
proves the WER by 0.97 points (95% CI, 0.09 to
1.85) relative to those without (“raw”). Wav2vec
2.0-base, our best model, outperforms the third
party by a relative 70% and 8% on CC-20 and CC-
LG, respectively. Except for Conformer-large, all
models trained on Snorkel-labeled sets achieve near
parity with those on human-annotated training sets,
with Wav2vec 2.0-base in particular reaching a test
WER on CC-20 worse by only 0.02 points (1.77 vs.
1.75). We speculate that conformers perform worse
than Wav2vec 2.0-base does due to using log-Mel
spectrograms instead of raw audio waveform: our
voice queries greatly differ in loudness, resulting
in exponential fluctuations after applying the log
transform (as the input approaches 0).

We chart our model acceleration results in Fig-
ure 5. We gather these statistics from replaying
production-time traffic as fast as possible to satu-
rate the model. Overall, CUDA graph pools accel-
erate our models by 7–9× (left subfigure; compare
blue and green bars) and increase throughput by
3–5× (right subplot). Initializing the graph lengths
to be log-normal distributed ekes out a few percent-
age points (compare orange and green) in perfor-
mance, since that better matches our production
traffic. Most stark is the contrast between vanilla,
graphless conformer throughput (22 QPS) and its
accelerated counterpart (117 QPS), representing a
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Figure 6: Twin plots of the system latency and through-
put plotted against the number of CUDA graphs and
inference threads, with the left y-axis tracking latency
and the right axis throughput.

five-fold improvement. This likely arises from the
vanilla conformer incurring much kernel launch
overhead, on account of its more nested architec-
ture, precisely which CUDA graphs address.

4.1 Ablation Studies

Data curation. We measure the quality contribu-
tion of each LF, as described in Section 2.2. We
curate datasets using one additional LF at a time,
starting with no LFs, then the session position LF,
followed by the ASR confidence LF, and, finally,
the rapid repetition LF. This process results in four
datasets for the nested configurations. To remove
transcript diversity and dataset size as confounders,
we fix the number of training hours to 200 hours
and match the transcript distributions. We target
Wav2vec 2.0-base since it’s our deployment model.

We present the ablation results in Table 3. Each
added LF improves the quality, with the first LF
having the most impact (1.5 average points for the
first vs. 0.1–0.7 for the rest), likely due to diminish-
ing returns. We note that the ASR confidence score
affects CC-20 more than it does CC-LG, possibly
because of shorter sessions.

Model inference acceleration. We study how the
number of CUDA graphs and inference threads
(i.e., threads for launching graphs) affects the la-
tency and the throughput, all else being equal. First,
we sweep the number of CUDA graphs and hold
the thread count at 3, the optimal value from our
experiments. Next, we vary the thread count and
fix the number of graphs at 36, also the best value.
In both settings, we sample 10k queries uniformly
at random from production and queue them up in
our inference server, which comprises an Nvidia
T4 GPU and an eight-core CPU.

We plot our results in Figure 6. For CUDA
graphs, we observe rapidly diminishing returns
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in both latency and throughput after 5–8 graphs,
although they continue to improve until the final
value of 36 graphs, the most we can fit in the GPU
memory. For inference threads, we see initially
rapid gains in throughput (though not latency) un-
til 4 threads, whereupon throughput tapers slightly
and latency grows linearly. We conjecture that this
arises from GPU saturation causing thread con-
tention; while we can certainly push more queries
at a time (there being 36 graphs), the GPU can
process only 138 queries worth per second. This
results in a backlog of queries when we exceed
3–4 threads, causing linear growth in latency if
throughput remains stable.

4.2 Industrial Considerations

We deploy SpeechNet as load-balanced Docker
Swarm replicas, each exposing a WebSocket API
for real-time transcription. We write the model
server in Python and the inference decoder in C++;
in particular, we free in the decoder Python’s global
interpreter lock, a substantial bottleneck in our ap-
plication. Our decoder runs faster than all tested
open-source CTC decoders do, such as Parlance’s
ctcdecode, pyctcdecode, and Flashlight. We exe-
cute all graphs in half-precision on separate CUDA
streams, further increasing parallelism.

To monitor the reliability of our production sys-
tem, we measure and expose four key service-
level indicators (SLIs): query traffic, server errors,
response latency, and system saturation. Taken
together, these represent the so-called “Google
Golden signals,” a battery of metrics espoused by
its namesake. As is standard in industry, we ex-
port real-time metrics to Prometheus, a monitoring
system for time series, and then aggregate them in
Grafana, a full-stack visualizer.

During the initial release of SpeechNet, these
metrics enabled us to detect and mitigate critical
imperfections. In one such case, we observed a
large spike in traffic preceding increases in time-
out errors and latency. The spike occurred at the top
of the hour, when, due to the nature of television
programming, many users issue queries to change
shows. From this evidence, we traced the culprit to
our suboptimal decoder implementation, which we
promptly fixed.

5 Related Work

Pretrained ASR models. Much like natural lan-
guage processing, the dominant paradigm in the

end-to-end speech recognition literature is to pre-
train transformers on vast quantities of unlabeled
speech and then fine-tune on the labeled datasets.
In their seminal work, Schneider et al. (2019) pio-
neer this approach with a contrastive learning ob-
jective, calling it Wav2vec. They further refine it
in Baevski et al. (2020) by introducing discretized
representations, naming their model the present
Wav2vec 2.0. Other variants of this model include
the Squeezed and Efficient Wav2vec model (Wu
et al., 2022), which introduces architectural modifi-
cations for computational efficiency, and the con-
former (Gulati et al., 2020), which adds convo-
lutions in the transformer blocks for better local
context modeling.

Weakly supervised ASR. Several papers explore
constructing a weakly labeled dataset and train-
ing an ASR system with little to no human an-
notation. VideoASR (Cheng et al., 2021) and
GigaSpeech (Chen et al., 2021) construct speech
datasets from videos and subtitles, but this fails in
our domain since our users’ voice queries differ
greatly from those of public sources in both acous-
tics and text. For example, our queries contain rare
entities (e.g., “Xfinity Home”), rarely last more
than 4–5 seconds, and come from a low-fidelity
microphone in frequently noisy households. Along
a separate line, Dufraux et al. (2019) proposes a
label noise-aware objective for ASR; however, this
method increases training time by 15–30×, which
is too burdensome for us.

Model acceleration. A plethora of model acceler-
ation methods exist for transformers. In structured
pruning, entire blocks of weights are removed, like
attention heads (Michel et al., 2019) and weight
submatrices (Li et al., 2020), resulting in a more
lightweight model. This comes at the cost of qual-
ity, which we can’t sacrifice given our thin margin
over our third party. Hinton et al. (2015) proposes
knowledge distillation, where the outputs of a small
model are fine-tuned against those of a large model,
but we wish to use the original, pretrained model
architecture at runtime for robustness. Still others
propose low bit-width (2–8 bit) quantization (Shen
et al., 2020), which, while quality preserving, has
poor conventional GPU software support. Note
that, in this paper, we restricted our experiments to
CUDA graph pools because their application does
not exclude others. In fact, when multiple accelera-
tion methods can be applied, Xin et al. (2022) find
that the savings are largely cumulative.
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6 Conclusions and Future Work

In this paper, we explore commercializing a
transformer-based, end-to-end speech recognition
system without human annotation and with less
computational power. We design three novel la-
beling functions, derived from implicit user feed-
back, for Snorkel to construct weakly labeled, in-
domain speech datasets from production traffic. We
also propose CUDA graph pools, a novel model
acceleration method especially suited for single-
example inference, as frequently encountered in
production. Our system, SpeechNet, improves the
word-error rate by a relative 8% and the inference
speed by 600%, compared to our third-party ASR
service. One promising research direction is to ex-
tend SpeechNet to the recently released OpenAI
Whisper (Radford et al., 2022), an ultra large-scale
ASR model trained on 680,000 hours of speech,
representing the longest corpus to date.

Limitations

Our methods primarily apply to companies seeking
to build out in-house ASR systems given at least
a few thousand customers. We target business-
to-consumer products, not business to business,
where clients have wildly different needs without
any guarantee on the userbase size (or even exis-
tence). Due to the setting of our work at a for-profit
organization, we’re also barred from releasing user
data and source code out of concerns for privacy
and intellectual property.
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A Computational Environment

We train all models on Amazon p3.2xlarge in-
stances running HuggingFace Transformers 4.15.0,
from which we borrow the SEW and Wav2vec im-
plementations; PyTorch 1.11.0 (CUDA 10.2), a
popular deep learning framework; Nvidia’s NeMo
library, which we depend on for the Conformer
implementation; and SentencePiece 0.1.94, which
we use for the character-based tokenizer. We im-
plement our CTC decoder in C++14, interfacing
with Python using pybind11 and the development li-
braries for SentencePiece and PyTorch (LibTorch).
We serve users on geographically dispersed data

centers on the American east and west coasts, run-
ning Nginx-load-balanced boxes with Nvidia T4s.

B Dataset and Production Statistics

We curated CC-20 sampled across weeks of traffic,
with training, dev, and test coming from separate
speakers. We constructed CC-LG’s training set
sampled from 2 days of traffic between July 3 and
July 5, 2022 and the development/test sets from
separate users sampled a day after the training set.
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Figure 7: Distribution statistics of our in-production
queries.

We present detailed production statistics of our
queries in Figure 7. The query distributions have
large right skew, with the top 1000 queries mak-
ing up nearly 70% of the traffic, as the first sub-
plot shows. Our queries are lexically simple, e.g.,
“Hulu,” “Free movies for me,” etc., as the second
subgraph shows. The third and fourth subgraphs de-
note the activity of the ASR system—most queries
are less than 1–2 seconds in speech (not necessarily
total audio length).

C Training Details

For all models, on CC-LG, we first resize and re-
initialize the final linear layer to match our vocabu-
lary size, then fine-tune just the output linear layer
(as recommended in the original Wav2vec paper)
for 30k steps. Next, we ran 750k optimization
steps on the “raw” training set. Then, we train
for an additional 100k steps on the “weak” subset,
if applicable. If it’s the raw training run, we still
train for an additional 100k steps, but on the “raw”
training set as usual. That is, all configurations on
CC-20 use 850k optimization steps. On CC-20, we
use 10k steps for the initial output layer fine-tuning
and then ran 50k optimization steps for all models.
We use the AdamW (Loshchilov and Hutter, 2018)
optimizer with a batch size of 8 for all runs. We
decode all model outputs using a beam size of 15
and a beam cutoff of 30. All model weights are
initialized from the respective model cards on Hug-
gingFace’s model zoo. We describe model-specific
hyperparameters:
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SEW. We optimize our models using a learning
rate of 3× 10−6, determined from preliminary ex-
periments across several choices spanning different
orders of magnitude. SEW operates on the raw
audio waveform.

Wav2vec 2.0. We use a learning rate of 2× 10−6,
determined similarly. Wav2vec 2.0 operates on the
raw audio waveform as well.

Conformer. As is standard, we transform all audio
amplitudes to 80-dimensional Mel spectrograms
before being input to the Conformer encoder. We
pick a learning rate of 5 × 10−6 using the same
procedure as the other models do.


