
Proceedings of the 29th International Conference on Computational Linguistics, pages 6115–6127
October 12–17, 2022.

6115

Graph-to-Text Generation with Dynamic Structure Pruning

Liang Li1,2, Ruiying Geng3, Bowen Li3, Can Ma1∗, Yinliang Yue1,
Binhua Li3 , Yongbin Li3∗

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3DAMO Academy, Alibaba Group
{liliang, macan, yueyinliang}@iie.ac.cn

{ruiying.gry, binhua.lbh, shuide.lyb}@alibaba-inc.com

Abstract

Most graph-to-text works are built on
the encoder-decoder framework with cross-
attention mechanism. Recent studies have
shown that explicitly modeling the input graph
structure can significantly improve the perfor-
mance. However, the vanilla structural encoder
cannot capture all specialized information in a
single forward pass for all decoding steps, re-
sulting in inaccurate semantic representations.
Meanwhile, the input graph is flatted as an
unordered sequence in the cross attention, ig-
noring the original graph structure. As a re-
sult, the obtained input graph context vector in
the decoder may be flawed. To address these
issues, we propose a Structure-Aware Cross-
Attention (SACA) mechanism to re-encode
the input graph representation conditioning on
the newly generated context at each decoding
step in a structure aware manner. We further
adapt SACA and introduce its variant Dynamic
Graph Pruning (DGP) mechanism to dynami-
cally drop irrelevant nodes in the decoding pro-
cess. We achieve new state-of-the-art results
on two graph-to-text datasets, LDC2020T02
and ENT-DESC, with only minor increase on
computational cost.

1 Introduction

Data-to-text task aims to generate a natural lan-
guage description from structural or semi-structural
data, such as tables (Wiseman et al., 2017), Ab-
stract Meaning Representation (AMR) graphs (Ba-
narescu et al., 2013), and Knowledge Graphs (KG)
(Cheng et al., 2020). It helps people get the key
points of the input data and makes the stored in-
formation accessible to a broader audience of end-
users. There have been several practical application
scenarios in this field, such as biography generation
(Lebret et al., 2016), basketball news generation
(Wiseman et al., 2017), and advertising text gen-
eration (Shao et al., 2019). This paper focuses on

∗∗Corresponding authors: Can Ma, Yongbin Li

Encoder Decoder

Encoder Decoder

Encoder
Decoder

Cross-Attention

×𝑁

(a)

(b)

Structure-Aware Cross-Attention

𝒉𝒕
ℎ"

ℎ#

ℎ"$%

…
GT context

IG context

(c)

DGP

structure-enhanced IG context

Figure 1: (a) denotes an encoder-decoder framework
with the cross-attention mechanism where IG and GT
contexts denote the input graph and generated text graph
contexts, respectively. (b) is an example of Structure-
Aware Cross-Attention. The dotted lines in (c) denote
the pruned edges and nodes.

generation from graph structures in AMR and KG,
referred to as graph-to-text.

In recent years, encoder-decoder with the cross-
attention mechanism has been the de facto frame-
work for graph-to-text tasks (shown in Figure 1(a)).
Given an input graph, the encoder first computes
vector representations for the graph nodes. On the
decoding side, Input Graph (IG) context vector is
obtained via cross-attention based on the partially
Generated Text (GT) at each time step, then the
next target token is finally predicted. Unlike con-
ventional text-to-text tasks, the structural nature of
the input graph makes it unsuitable to naively ap-
ply sequential encoder-decoder architecture to the
graph-to-text task. To alleviate this issue, recent
studies (Song et al., 2018; Damonte and Cohen,
2019; Cai and Lam, 2020) proposed to utilize the
graph encoder to capture the input graph structure.
These works have demonstrated that explicitly mod-
eling the graph structure can bring benefits to the
model performance.

6116

Although equipped with the structure-aware
modeling, it is still hard for the encoder to cap-
ture all specialized information for graph-to-text
generation. It is evidenced by recent studies (Liu
et al., 2019; Li et al., 2021) that a vanilla structural
encoder cannot capture the accurate semantic rep-
resentation of the input structural data effectively.
Auxiliary supervision has been shown to be helpful,
but effective auxiliary tasks are not easy to design
and may not generalize well to different datasets.
We suspect that it is challenging for the encoder to
encode all relevant information into node represen-
tations in a single forward pass for all the decoding
steps, especially if the input graph structure is com-
plex. Besides the encoder side, few works have
focused on the decoder side for graph-to-text tasks.
Considering the ordinary cross-attention mecha-
nism, the representations of input data obtained
from the encoder are still treated as an unordered
node representation sequence. We conjuncture that
this plain cross-attention does not take full advan-
tage of the input graph structure and therefore may
harm the model performance.

Current models with graph encoder and cross-
attention may yield inaccurate input graph con-
text representation due to the deficiency on both
encoder and decoder as we discussed before.
To tackle the above problems and avoid in-
troducing auxiliary tasks, we propose a novel
Structure-Aware Cross-Attention (SACA) mech-
anism. Apart from the plain cross-attention, our
SACA re-encodes the input graph conditioning on
the newly generated context in a structure-aware
fashion. Other than a single forward pass, special-
ized representations from the source side are built
adaptively at each decoding step, which makes the
decoder easily exploit relevant-only information
for prediction. More specifically, as shown in Fig-
ure 1(b), we construct a joint graph, in which we
explicitly treat the generated text context vector as
an additional node and connect it with nodes in the
input graph at each decoding step. We implement
SACA using the relational graph attention network
(RGAT, Shaw et al. 2018). Furthermore, we stack
multiple layers of SACAs to perform deep inter-
actions between the generated text context vector
and input node representations. Finally, we fetch
the node representation corresponding to the newly
added node as the structure-enhanced input graph
context to predict the target token.

In practice, we notice that some nodes become ir-

relevant and uninformative as the decoding goes on.
These nodes are distracting and can disturb the gen-
eration process. Intuitively, the decoder should dy-
namically discard the unrelated parts of the graph at
different decoding steps. In other words, the joint
graph structure should be dynamically adjusted.
To this end, we adapt SACA and propose its vari-
ant Dynamic Graph Pruning (DGP) mechanism
(shown in Figure 1(c)). DGP prunes the structure of
the joint graph via the gate mechanism to achieve
sparse connections between the nodes based on the
generated text context.

We conduct experiments on two graph-to-text
datasets, LDC2020T021 and ENT-DESC (Cheng
et al., 2020), to verify the effectiveness of the pro-
posed approach. Empirical results show that our
proposed methods achieve new state-of-the-art re-
sults on the two datasets. Further experiments in-
dicate that SACA and DGP do not reduce the di-
versity of the generated text and can better handle
complex graphs. Meanwhile, additional investiga-
tion reveals that SACA and DGP only bring minor
increase on the model size and inference time.

2 Related Works

Graph-to-text is a challenging task which aims at
generating a descriptive text from the structured
knowledge, such Knowledge Graph (KG), and Ab-
stract Meaning Representation (AMR) graphs. It
is helpful for interpretability of KGs in general
(Schmitt et al., 2020) and knowledge-based ques-
tion answering (Hui et al., 2022; Wang et al., 2022;
Fu et al., 2020; Qin et al., 2022).

In recent years, most graph-to-text methods have
been built based on the encoder-decoder architec-
ture. This kind of method usually consists of a
structural encoder and a decoder. The structural
encoder aims to model the structure information
into the representation of the input graph. Song
et al. (2018) first propose the graph recurrent net-
works (GRNs) to encode the AMR node directly.
And then, some works (Shi et al., 2020; Chen
et al., 2020) introduce the Graph Neural Networks
(GNNs) as the structural encoder, which updates
the representations of nodes based on their immedi-
ate neighbors. To integrate both local and non-local
features and learn a better structural representation
of a graph, Guo et al. (2019) introduce the dense
connection, allowing deeper GCNs. Unlike the
local information aggregation scheme, Zhu et al.

1https://catalog.ldc.upenn.edu/LDC2020T02

6117

(2019); Cai and Lam (2020) propose the Graph
Transformer that uses explicit relation encoding
and allows direct communication between two dis-
tant nodes.

A recently proposed neural abstractive Multi-
Document Summarization (MDS) model, Graph-
Summ (Li et al., 2020), also considers the input
graph structure during decoding. The biggest differ-
ence between Graphsum and our proposed SACA
is that the former only introduces one graph atten-
tion layer in each decoder layer. SACA, on the
other hand, injects graph structure into decoding
by re-encoding the input graph. Specifically, it
re-computes the input graph representation by con-
ditioning it on the newly generated text at each
decoding step.

Recent approaches try to apply the Pre-trained
Language Models (PLMs) (Kenton and Toutanova,
2019; Raffel et al., 2019) into the graph-to-text gen-
eration. Particularly, Ribeiro et al. (2021) propose
to utilize the adapter method (Pfeiffer et al., 2020)
to encode graph structure into PLMs and only train
graph structure-aware adapter parameters. In this
way, they avoid catastrophic forgetting while main-
taining the topological structure of the graph.

3 Approach

We expect that developing graph-to-text genera-
tion should benefit from the recent advance on
pre-trained language models (PLMs) (Lewis et al.,
2020; Raffel et al., 2019). To explicitly encode the
input graph structure into PLMs while alleviating
the catastrophic forgetting problem, we consider
SA-RGCN (Ribeiro et al., 2021) as our baseline
model. SA-RGCN is an adapter method to encode
graph structure into PLMs. The overall illustra-
tion of our model architecture is shown in Figure
2(a). In this section, we first introduce how to
represent the input graph and the architecture of
our baseline SA-RGCN. Then, we depict our pro-
posed Structure-Aware Cross-Attention (SACA) in
details. Lastly, we adapt SACA and propose its
variant Dynamic Graph Pruning (DGP).

3.1 Graph Representation

Let G0 = (V0, E0,R0) denote a multi-relational
and directed graph with nodes vi ∈ V0 and labeled
edges (vi, r, vj) ∈ E0, where r ∈ R0 is the rela-
tion type. Following previous work (Beck et al.,
2018), we convert each input graph into a Levi
graph Gl = (Vl, El), which is an unlabeled and con-

nected bipartite graph. Specifically, each labeled
edge (vi, r, vj) ∈ E0 is transformed into two unla-
beled edges (vi, r), (r, vj) ∈ El. In addition, we
add a reverse edge (vj , vi) for each default edge
(vi, vj). Therefore, each Levi graph Gl contains
two type relations Rl = {d, r}, where d and r de-
note the default and reverse edge, respectively. To
better take advantage of the PLMs, we convert each
Gl into a new token graph G = (V, E ,R), where
each token of a node in Vl becomes a node v ∈ V .

3.2 Pretrained LMs with Structural Adapters
To inject graph structural bias into PLMs, we incor-
porate the structural adapter (Ribeiro et al., 2021)
into the PLMs encoder. As shown in Figure 2
(a), we add a structural adapter after each trans-
former encoder block on the encoder. Figure 2 (b)
illustrates the architecture of a structural adapter,
in where a relational GCN (RGCN) (Schlichtkrull
et al., 2018) layer computes the node representation
based on the local neighborhood of node v ∈ V .
Formally, at each layer l, given the encoder layer
representation hlv, a structural adapter computes
the representation for v by the following:

glv =
∑
r∈R

∑
u∈Nr(v)

1

|Nr(v)|
W l

rLN(hlv), (1)

zlv = W l
e(σ(g

l
v)) + hlv, (2)

where LN(·) denotes layer normalization. Nr(v)
is the sef of immediate neighbors under relation
r ∈ R. W l

r encodes the edge type between the
nodes u and v. σ is the activation function.

We add an FNN adapter after each transformer
decoder block to adapt the language model to the
graph-to-text task. Given the output ĥlv of the l th
transformer decoder block, the adapter representa-
tion is computed as:

ẑlv = W l
o(σ(W

l
pLN(ĥlv))) + ĥlv, (3)

where W l
o and W l

d denote learnable parameters.

3.3 Structure-Aware Cross-Attention
We argue that the input graph context representa-
tion obtained by the plain cross-attention may be
inaccurate. The reason is twofold. First, it is not
easy for the graph encoder to capture all special-
ized information required for generation in a single
forward pass. Therefore, a single encoder without
any auxiliary assistant may not be effective in cap-
turing the accurate semantic representation (Liu

6118

Structural Adapter

Transformer Encoder Block

Transformer Decoder Block

FNN Adapter

Transformer Decoder Block

×𝑁

×𝑁 − 1

×𝐿

(a) Overview of Architecture

Dynamic Graph Pruning

Structure-Aware Cross-Attention

𝑣! 𝑣!

𝑣!

actor singer

United States
of America

Matthew
Lawrence

Recess
voice actor

Brotherly Love

RGCN Layer

Relu

Layer Normalization

(b) The Architecture of a Structural Adapter

(c) An example of Dynamic Graph Pruning

𝑟! 𝑟!
𝑟!

𝑟!

𝑟!

𝑟"

𝑟"

𝑟#
𝑟$

𝑟"

Brotherly Love

Pruned

<s> Andrew Lawrence … known for his roles in “ Recess” …
Andrew Lawrence … is an American actor and singer.
He is best known for his roles in " Recess" and …

Feed-Forward Layer

Figure 2: Illustration of the proposed model architecture. (a) is an overview of our model. (b) is the architecture of a
structural adapter. (c) is an example of Dynamic Graph Pruning, where r1 ∼ r4 denote the relations: “country of
citizenship", “occupation”, “sibling”, and “cast member”, respectively. The dummy lines in (c) denote the pruned
edges.

et al., 2019; Li et al., 2021). In other words, the
graph representation encoded by the graph encoder
may be inaccurate. Second, during decoding, the
decoder treats structural data as an unordered node
sequence, which ignores the input graph structure.
However, the graph structure has been proven to
play an essential role in the graph representation
and may offer clues about which nodes are more
related to the generated text context.

To tackle the above challenge, we propose a
Structure-Aware Cross-Attention (SACA) mecha-
nism, which re-encodes the input graph representa-
tion by conditioning on the newly generated con-
text. Specifically, we first build a joint graph, in
which we view the generated text (GT) context as
a new node vd and explicitly connect it to each
node in the input graph G at each decoding step.
The corresponding reverse edges are also added.
The joint graph can be formulated as Gjoint =
(Vjoint, Ejoint,R), where Vjoint = {vd} ∪ V and
Ejoint = {(vi, vd), (vd, vi); vi ∈ V} ∪ E . We use
the representations from the encoder for the node
from V and the hidden state from the last trans-
former decoder block as the representation for the
GT context node.

To induce the representations for the nodes in
the joint graph Gjoint and facilitate introducing Dy-
namic Graph Pruning (in Section 3.4), we con-
sider graph neural network built on graph attention
framework (GAT) (Shaw et al., 2018). Moreover,
we employ the relational graph attention network
(RGAT) implemented by Shaw et al. (2018) to
model the relation between neighbor nodes. Specif-
ically, at each RGAT layer l, we update the repre-

sentation hlv of each node v ∈ Gjoint by:

sv,u =
W qhlv

T
(W khlu + Er

R(v,u))√
m

, (4)

αv,u =
esv,u∑

u′∈Nv
esv,u′

, (5)

hl+1
v = σ(

∑
u∈Nv

αv,uWvh
l
u), (6)

where Er
R(v,u) means the embedding of the rela-

tion between node v and u. m denotes the hidden
dimension of RGAT. Finally, the representation
vector hLvd corresponding to the GT context node
vd is fetched and used as the structure-enhanced
input graph context vector for token prediction.

In conclusion, SACA provides two advantages.
First, it re-encodes the input graph by conditioning
its representation on the newly generated context.
As a result, we build specialized representations
which make it easier for the decoder to exploit
relevant-only information for prediction at each
decoding step. Second, the re-encoding explicitly
injects structural bias into input graph context mod-
eling, helping the decoder obtain a more accurate
input graph context vector. The proposed SACA
can be plugged after the last transformer decoder
block as shown in Figure 2 (a).

3.4 Dynamic Graph Pruning
In practice, we notice that some nodes become ir-
relevant and uninformative as the decoding goes
on. These unrelated nodes are distracting and can
even disturb the subsequent generation. Intuitively,
the decoder should dynamically prune the joint

6119

graph at different decoding steps. For this purpose,
we adapt SACA and propose its variant Dynamic
Graph Pruning (DGP) mechanism, which aims to
dynamically drop the redundant nodes in the joint
graph according to the generated text during de-
coding. The DGP employs the gate mechanism
to sparse the connection between a node and its
immediate neighbors in the joint graph to achieve
graph pruning. Specifically, at each decoding step
t, for each node v in the joint graph, we formulate
its gate as bellow:

gv = sigmoid(W T
g tanh(Wehv +Wdh

d
t)), (7)

where Wg, We, and Wd are learnable parameters.
And hv is the representation of node v and hdt is
the decoder hidden state at decoding step t, which
is usually considered as the representation of the
generated text context. The value of gate gv ∈ R
decides whether the node vi should be dropped or
not. Correspondingly, we apply the gate value to
multiple SACA layers invariably by modifying the
attention weights in SACA (Equation 5) as follows:

αv,u =
gu ⊙ esv,u∑

u′∈Nv
gu′ ⊙ esv,u′

. (8)

Intuitively, if the value of gate gu is close to 0,
the connections between node u with all its imme-
diate neighbors will be largely weaken. That is, the
node is removed from the joint graph. Specifically,
the attention score αv,u measures the relevance be-
tween any two nodes, v and u, in the joint graph,
while the gate gv models the relevance between the
node v and the generated text context ht.

As a shown example in Figure 2 (c), the red
node represents the main entity. Initially, the main
entity connects with all its neighbor nodes. As the
decoding goes on, some nodes are redundant for
the subsequent generation. For example, the nodes
“actor“ has been described, and node “voice actor“
is also covered by the generated text. Therefore,
DGP discards these nodes by giving them gates
with small values.

We observed that the values of the gates calcu-
lated by Equation 7 are almost equal to 1, indicat-
ing that the model does not actively learn to prune
a graph. Inspired by Xue et al. (2020), we fur-
ther introduce a regularization item, encouraging
the network to turn off more gates and generate
more sparse connections between nodes in the in-

ENT-DESC LDC2020T02
#train/dev/test 88,650/11,081/11,081 55,635/1,722/1,898
#relations 967 157
Avg #nodes 18.0 14.2
Avg #triples 27.4 14.8
Avg length 31.0 95.0

Table 1: Dataset statistics of ENT-DESC and
LDC2020T02.

put graph. We formulate it as follows:

LDGP =

∑|y|
t=1 ∥Gatet∥1

|y|
, (9)

where Gatet = {gv|v ∈ V}. ∥∗∥1 means L1 norm
regularizer.

3.5 Training
Given a reference output y = {y1, y2, ..., yT } and
an input graph G, we use the cross-entropy loss as
the objective function of graph-to-text generation:

Llm =

|y|∑
t=1

log p(yt|y1:t−1,G, θ). (10)

Finally, the overall objective function consists of
two parts:

L = Llm + λLDGP , (11)

where λ is a tunable hyper-parameter and is used
to make a trade-off between the cross-entropy loss
and the regularization item. Intuitively, the LDGP

object encourages the model to learn how to prune
the graph, and the Llm trains the model to generate
the text according to the graph and restrains DGP
from pruning too much.

4 Experiments

4.1 Datasets
We demonstrate the effectiveness of our models on
two graph-to-text datasets: LDC2020T02 and ENT-
DESC (Cheng et al., 2020) LDC2020T02 is an
AMR-to-Text dataset and has 55,635/1,722/1,898
instances for training, development, and testing.
We follow Ribeiro et al. (2021) to preprocess the
AMR graphs and tokenize the sentences. Each
instance contains a sentence and an AMR graph.
ENT-DESC is a large-scale and challenging dataset
generating text from the Knowledge Graph (KG-to-
Text). Each instance contains a KG consisting of
a main entity and a few topic-related entities. The

6120

LDC2020T02Models BLEU METEOR ChRF++ M BERTScore
LDGCN (Zhang et al., 2020b) 34.3 38.2 63.7 - -
SPRING (Bevilacqua et al., 2021) 44.9 - 72.9 - -
FINETUNE (Ribeiro et al., 2021) 41.6±0.6 - 70.4±0.5 78.5±0.2 96.0±0.1

ADAPT (Ribeiro et al., 2021) 43.0±0.2 - 71.3±0.1 79.3±0.1 96.2±0.1

SA-RGCN (Ribeiro et al., 2021) 48.0±0.2 - 73.2±0.1 80.1±0.3 96.3±0.1

FINETUNE‡ 41.55±0.58 42.06±0.21 70.62±0.34 78.30±0.32 96.02±0.12

SA-RGCN‡ 47.85±0.22 45.11±0.16 73.53±0.19 80.31±0.24 96.41±0.03

Ours 48.78±0.08 46.12±0.12 74.35±0.09 80.69±0.41 96.62±0.02

ENT-DESCModels BLEU METEOR ChRF++ ROUGE-L PARENT
S2S (Bahdanau et al., 2015) 6.8 10.8 - 40.7 10.0
GraphTransformer (Koncel-Kedziorski et al., 2019) 19.1 16.1 - 54.3 21.4
GRN (Beck et al., 2018) 24.4 18.9 - 55.5 21.3
GCN (Marcheggiani and Perez-Beltrachini, 2018) 24.8 19.3 - 56.2 21.8
DeepGCN (Guo et al., 2019) 24.9 19.3 - 56.2 21.8
MGCN + CNN (Cheng et al., 2020) 26.4 20.4 - 57.4 24.2
FINETUNE‡ 32.39±0.12 30.39±0.02 53.87±0.06 56.27±0.05 42.35±0.18

SA-RGCN‡ 34.06±0.31 31.54±0.04 57.78±0.06 58.42±0.04 43.32±0.18

Ours 34.87±0.36 32.37±0.11 58.41±0.22 58.97±0.14 43.70±0.12

Table 2: Main results of models on LDC2020T02 and ENT-DESC test datasets. ‡ means our reimplementation. The
other results are copied from the original paper. Mean (±s.d.) over 4 seeds.

target text consists of sentences that verbalize the
main entity in KG. ENT-DESC lacks explicit align-
ment between the input and the output. Therefore,
some knowledge in the input graph may be noise.
We follow official training, development, and test
splits of 88,650/11,081/11,081 instances. Table 1
summarizes the detailed statistics of LDC2020T02
and ENT-DESC.

4.2 Settings

Our implementation is based on Hugging Face
(Wolf et al., 2019). The RGCN and RGAT are
implemented based on PyTorch Geometric (Fey
and Lenssen, 2019). We initialize our models by
T5 (Raffel et al., 2019). To make a fair comparision,
we following the same experimental setting with
SA-RGCN (Ribeiro et al., 2021). We set the hidden
dimensions of both Structural Adapter and SACA
to 256. And we use T5base for all experiments on
ENT-DESC and T5large on LDC2020T02 for a fair
comparison with baselines. We use the AdamW op-
timizer (Loshchilov and Hutter, 2018) and employ
a linearly decreasing learning rate schedule without
warm-up. The learning rate is fixed as 10−4. We
set the training batch size as 4 for all experiments.
We freeze the T5 parameters and only update the
newly added parameters during training. We tune
the hyper-parameter λ in Equation 11 from the set
[1−2, 5−3, 1−3, 5−4], and select the best one on the
development set. We stack L = 2 RGAT layers
in Structure-Aware Cross-Attention. During de-

coding, we use beam search with a beam size 5.
We use BLEU (Papineni et al., 2002) for the early
stopping criterion. All experiments are trained on
Nvidia Tesla V100 32GB GPUs.

Following previous works, on both datasets, we
evaluate the results with BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011),
and ChRF++ (Popović, 2015) on both datasets.
On LDC2020T02, following Ribeiro et al. (2021),
we utilize the meaning (M) component of the
MF-score (Opitz and Frank, 2021) to measure
how well the source AMR graph can be recon-
structed from the generated sentence (refer to A.1
for more details). We use BERTScore (Zhang et al.,
2020a) allowing a semantic evaluation that depends
less on the surface forms. On ENT-DESC, We
add ROUGE-L (Lin, 2004) and employ PARENT
(Dhingra et al., 2019) for evaluating the faithful-
ness. We conduct experiments over 4 different
seeds and report the average scores on them.

4.3 Main Results

We compare our method with recent state-of-the-
art methods (please refer to A.4 for more details).
Table 2 summarizes the results on LDC2020T02
and ENT-DESC test sets. FINETUNE is a method
that transforms the input graph into a sequence
and finetunes T5 directly. It does not consider
the input graph structure. For LDC2020T02, our
method outperforms the previous state-of-the-art
model by 0.78 BLEU and 1.15 ChRF++. Com-

6121

Models BLEU METEOR M Dis-1 Dis-2
GOLD - - 81.00 23.82 71.76
ADAPT 45.22 43.28 79.56 23.20 71.40
Ours 47.85 45.80 80.37 23.46 71.75
w/o DGP 47.68 45.51 80.21 23.51 72.08
w/o SACA & DGP 47.20 45.05 80.01 23.38 71.69
w/o StrucAdapt 45.43 43.54 79.75 23.32 71.65

Table 3: Ablation study of models on LDC2020T02
development dataset. GOLD indicates the ground-truth
sentences. Dis-1 and Dis-2 denote Distinct1 and Dis-
tinct2, respectively.

pared with our implemented SA-RGCN, we im-
prove 1.01 METEOR. Moreover, our method raises
0.38 M, which indicates that it can generate more
faithful sentences to the input graphs. The improve-
ment on BERTScore shows that the sentence gener-
ated by our method is more similar to the ground
truth on the semantic level. For ENT-DESC, we
notice FINETUNE performs better than all previ-
ous methods. SA-RGCN, which encodes graph
structure into T5, furtherly improves the perfor-
mance. And our model exceeds all previous works
and achieves new state-of-the-art results on all met-
rics. The above results indicate that our proposed
methods can improve the model on fluency and
faithfulness.

4.4 Analysis and Discussion

Ablation Study The overall performance on the
two datasets shows the superiority of our proposed
Structure-Aware Cross-Attention (SACA) and Dy-
namic Graph Pruning (DGP). To demonstrate the
effectiveness of each component, we conduct ab-
lation studies on LDC2020T02 development sets
and minus one particular component at a time to
understand its impact on the performance. Espe-
cially, w/o DGP denotes we remove the dynamic
graph pruning module and the training objective
LDGP . ADAPT and w/o StrucAdapt denote re-
placing each structural adapter in SA-RGCN’s and
our encoders with an FNN adapter, respectively.
W/o StrucAdapt means that the model only con-
siders the structural information during decoding.
The results are summarized in Table 3. Particularly,
we observe the performance drops after remov-
ing SACA or DGP. This indicates that injecting
the structural information into input graph context
modeling (SACA) and dynamically removing the
redundant nodes (DPG) are beneficial. Regarding
the M score, our model and ADAPT are close to
GOLD. The AMR parser utilized by M, ADAPT

Models # Additional Params (million) Latency (s)
ADAPT 28.72 (3.3%) 1.41
SA-RGCN 37.80 (4.9%) 1.49

+ SACA 39.21 (5.0%) 1.54
+ SACA & DGP 41.31 (5.0%) 1.55

Table 4: Impact on parameter and speed.

as well as our method are all initialized by T5. And
the AMR paring and AMR-to-Text are dual tasks
actually. Therefore, the M score is biased and the
results of our model and ADAPT are somehow
inflated. Additionally, we utilize Distinct-1 and
Distinct-2 (Li et al., 2016) to evaluate the diversity
of the output text. We observe that SACA and DGP
have little effect on Distinct-1 and Distinct-2. This
implies that they will not reduce the diversity of
the output text.

We notice that, compared with ADAPT, w/o
StrucAdapt shows a slight improvement. This in-
dicates it is necessary to explicitly model the graph
structure in the encoder, even though structural bias
has been injected into the input graph context mod-
eling during decoding. We believe this may be
attributed to SACA relying on the input graph rep-
resentation encoded by the encoder. Because our
SACA is designed to exploit the relevant-only infor-
mation for prediction, it re-encodes the input graph
by conditioning its representation on the newly gen-
erated context. Therefore, the initial representation
for the input graph is important.

Impact on the parameter and speed Further-
more, we investigate the impact of SACA and DPG
on the model parameters and inference speed on
LDC2020T02 development. Specifically, we calcu-
late the additional parameters of each model with
respect to T5large. And we set the batch size to 1 to
calculate the average decoding time for generating
all examples. The results summarized in Table 4
indicate that SACA and DGP only bring minor
increase on the model size and inference time.

Impact on the Graph Properties To examine
the robustness of our proposed methods, we in-
vestigate the model’s performance concerning dif-
ferent graph properties (graph size, graph diame-
ter, and reentrancies) on LDC2020T02 and ENT-
DESC. Following previous works (Cheng et al.,
2020; Ribeiro et al., 2021), we use BLEU as the
metric. The results are summarized in Table 5
and Table 6, respectively. For LDC2020T02, we
firstly note that the BLEU scores decrease as the
graph size increases since the larger graph is often

6122

Graph Size 1-30 31-60 >60
Examples 840 678 380
SA-RGCN 54.10 44.89 46.12
Ours 54.55+0.45 45.88+0.99 46.72+0.60

Graph Diameter 1-8 9-12 >12
Examples 824 603 471
SA-RGCN 56.98 43.12 46.07
Ours 57.01+0.03 43.59+0.47 46.99+0.92

Reentrancies <= 1 2 >2
Examples 913 549 436
SA-RGCN 53.60 44.03 43.30
Ours 54.16+0.56 44.55+0.52 44.53+1.23

Table 5: BLEU scores with respect to graph size, graph
diameter and number of reentrancies on LDC2020T02
test set.

complex. Our method achieves a clear improve-
ment when handling graphs with > 30 nodes. And
then we observe that the BLEU gap between our
method and SA-RGCN becomes larger for a rela-
tively larger graph diameter. Reentrancies are the
nodes with multiple parents. A graph with more
reentrancies is typically more complex (Wang et al.,
2020). As shown in the last section in Table 5,
our method has an improvement of +1.23 BLEU
points compared to SA-RGCN when graphs con-
tain > 2 reentrancies. To sum up, the results on the
LDC2020T02 dataset show the advantage of our
model in dealing with the AMR graph with more
complex structures.

As shown in Table 6, both models perform differ-
ently on ENT-DESC than on LDC2020T02. First,
we notice that both models perform the best when
the graph size is between 31 and 50, and they per-
form poorly when the graph size is too small or too
large. Cheng et al. (2020) also observed the finding,
and they believe this is due to the insufficient or
very noisy input information for generation. Addi-
tionally, both models perform better when graph
diameter or number of the reentrancies increase.
The reason is that, in the ENT-DESC, the knowl-
edge graph with a small diameter or number of
the reentrancies contains more noisy information
for the generation. Please refer to A.2 for more
details. The BLEU gap between our method and
SA-RGCN is the largest when the graph diame-
ter > 5 or the number of reentrancies > 10. The
above results demonstrate that our approach makes
SA-RGCN better at handling complex knowledge
graphs.

We investigate how the model behaves on dif-
ferent types of graphs (AMR and KG). And the re-
sults demonstrate that our model deals better with

Graph Size 1-20 21-40 >40
Examples 3,559 5,069 2,453
SA-RGCN 33.01 38.86 28.54
Ours 33.67 +0.66 39.44+0.58 29.02 +0.48

Graph Diameter 1-3 4-5 >5
Examples 2,227 5,017 3,787
SA-RGCN 30.52 34.41 35.83
Ours 31.14+0.62 34.83+0.45 36.55+0.72

Reentrancies < 6 6-10 >10
Examples 2,277 5,017 3,787
SA-RGCN 27.57 36.58 37.17
Ours 28.03 +0.46 37.17 +0.59 37.81+0.64

Table 6: BLEU scores with respect to graph size, graph
diameter and number of reentrancies on ENT-DEST test
set.

Models BLEU METEOR ROUGE-L
GraphWriter 14.30 18.80 -
GraphWriter‡ 14.13 ± 0.10 18.92 ± 0.28 27.61 ± 0.16
Ours 15.59 ±0.35 19.70 ±0.21 28.47 ±0.14

Table 7: Generalization Study on AGENDA test dataset.
‡ means our reimplementation.

complex structures. We believe the improvement
comes from two aspects. First, on the one hand, it is
challenging for an encoder to encode all relevant in-
formation into node representations in a single for-
ward pass, especially if the graph structure is com-
plex. On the other hand, the re-encoding in SACA
makes the decoder easily exploit the relevant-only
information for prediction and explicitly injects the
structural information at each decoding step. Sec-
ond, DGP dynamically removes the nodes which
are redundant for the subsequent generation, which
makes the decoder pay more attention to the rele-
vant nodes.

4.5 Generalization Study

Institutionally, our proposed methods can not only
be applied to PLMs but also RNN based models.
In other words, we can easily combine the SACA
and DGP with previous RNN based works. To
examine the generalization of SACA and DGP,
we choose GraphWriter (Koncel-Kedziorski et al.,
2019) as the baseline, which consists of a multi-
layer graph transformer encoder and an attention-
based decoder with a copy mechanism. Further, to
make a fair comparison, we conduct the general-
ization experiment on AGENDA dataset (Koncel-
Kedziorski et al., 2019). We simply replace the
plain cross-attention in GraphWriter with our pro-
posed SACA. Additionally, we add the DGP layer
before the SACA. The experiments are under the
same settings as described in GraphWriter. As

6123

4.49 4.45

3.53

4.57 4.53

3.81

3

3.4

3.8

4.2

4.6

5

Fluency Grammar Authenticity

SA-RGCN Ours

Figure 3: Human evaluation results on ENT-DESC test
set.

shown in Table 7, we observe that our proposed
model significantly improves the performance of
GraphWriter. The results indicate that SACA and
DGP are not only effective well on PLMs-based
models but also potent for RNN-based models.

4.6 Human Evaluation

Considering that the knowledge graph is more read-
able than AMR, we do human evaluations on the
ENT-DESC test set to examine whether human
judgments corroborate improvements in automatic
evaluation metrics. Following Cheng et al. (2020),
from outputs generated by the baseline model SA-
RGCN and our final model (Ours). We distribute
the outputs of different systems to three annotators
with linguistic backgrounds. The annotators have
no knowledge in advance about which model the
generated text comes from. Specifically, we give
each participant all main entities’ neighbors, 1-hop
and 2-hop connections between main entities, and
topic-related entities as references. They are re-
quired to score the generated text from 1 to 5 in
terms of three criteria: Fluency (is the sentence
fluent?), Grammar (is the sentence grammatical?),
and Authenticity (is the sentence more related to
the input graph?). For each criterion, we calcu-
late the final score by averaging the scores from
all annotators. As shown in Figure 3, our model
outperforms the baseline SA-RGCN on Fluency
and Grammar metrics. For Authenticity, the im-
provement is more significant. The performance
validates the benefit of our proposed SACA and
DGP modules in capturing more accurate input
graph context representations. We supply a case
study in A.3.

5 Conclusions

In this work, we make two main contributions.
First, we propose Structure-Aware Cross-Attention
(SACA) to make decoder easily exploit relevant-

only information for prediction. Apart from the
plain cross-attention, SACA re-encodes the input
graph conditioning on the newly generated context
while explicitly considering the input graph struc-
ture. The second one is that we adapt SACA and
propose its variant Dynamic Graph Pruning (DGP)
mechanism. In detail, the DGP dynamically prunes
the structure of the joint graph at different decoding
steps according to the generated text. Experimen-
tal results conducted on two graph-to-text datasets,
LDC2020T02 and ENT-DESC, show the effective-
ness of our method. The empirical and analysis
results on both datasets show that the proposed
methods can improve the model’s performance on
complex graphs while only bringing minor increase
on the model size and inference time.

References
Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated graph
neural networks. In ACL.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to rule them both: Sym-
metric AMR semantic parsing and generation without
a complex pipeline. In Proc. of AAAI.

Deng Cai and Wai Lam. 2020. Graph transformer for
graph-to-sequence learning. In Proc. of AAAI.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020. Kgpt: Knowledge-grounded pre-
training for data-to-text generation.

Liying Cheng, Dekun Wu, Lidong Bing, Yan Zhang,
Zhanming Jie, Wei Lu, and Luo Si. 2020. ENT-
DESC: Entity description generation by exploring
knowledge graph. In EMNLP.

Marco Damonte and Shay B Cohen. 2019. Structural
neural encoders for amr-to-text generation. In Proc.
of AACL.

Michael Denkowski and Alon Lavie. 2011. Meteor
1.3: Automatic metric for reliable optimization and
evaluation of machine translation systems. In Pro-
ceedings of the sixth workshop on statistical machine
translation.

6124

Bhuwan Dhingra, Manaal Faruqui, Ankur P. Parikh,
Ming-Wei Chang, Dipanjan Das, and William W.
Cohen. 2019. Handling divergent reference texts
when evaluating table-to-text generation. In Proc. of
ACL.

Matthias Fey and Jan E. Lenssen. 2019. Fast graph
representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on
Graphs and Manifolds.

Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li,
Haiyang Yu, and Jian Sun. 2020. A survey on
complex question answering over knowledge base:
Recent advances and challenges. arXiv preprint
arXiv:2007.13069.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei Lu.
2019. Densely connected graph convolutional net-
works for graph-to-sequence learning. Transactions
of the Association for Computational Linguistics.

Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin,
Yanyang Li, Bowen Li, Jian Sun, and Yongbin Li.
2022. S2SQL: Injecting syntax to question-schema
interaction graph encoder for text-to-SQL parsers.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 1254–1262, Dublin,
Ireland. Association for Computational Linguistics.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proc. of AACL.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
generation from knowledge graphs with graph trans-
formers. In Proc. of AACL.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In EMNLP.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2020. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting objec-
tive function for neural conversation models. In Proc.
of NAACL.

Liang Li, Can Ma, Yinliang Yue, and Dayong Hu. 2021.
Improving encoder by auxiliary supervision tasks for
table-to-text generation. In ACL.

Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng
Wang, and Junping Du. 2020. Leveraging graph to
improve abstractive multi-document summarization.
In Proc. of ACL.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out.

Tianyu Liu, Fuli Luo, Qiaolin Xia, Shuming Ma,
Baobao Chang, and Zhifang Sui. 2019. Hierarchical
encoder with auxiliary supervision for neural table-
to-text generation: Learning better representation for
tables. In Proc. of AAAI.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In ICLR.

Diego Marcheggiani and Laura Perez-Beltrachini. 2018.
Deep graph convolutional encoders for structured
data to text generation. In Proceedings of the 11th
International Conference on Natural Language Gen-
eration.

Juri Opitz and Anette Frank. 2021. Towards a decom-
posable metric for explainable evaluation of text gen-
eration from AMR. In Proc. of EACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In EMNLP.

Maja Popović. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql
parsing: Concepts, methods, and future directions.
arXiv preprint arXiv:2208.13629.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021. Structural adapters in pretrained language
models for AMR-to-Text generation. In Proc. of
EMNLP.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In The Semantic Web - 15th
International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings.

Martin Schmitt, Sahand Sharifzadeh, Volker Tresp, and
Hinrich Schütze. 2020. An unsupervised joint sys-
tem for text generation from knowledge graphs and
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7117–7130, Online. As-
sociation for Computational Linguistics.

6125

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei Xu,
and Xiaoyan Zhu. 2019. Long and diverse text gen-
eration with planning-based hierarchical variational
model. In EMNLP-IJCNLP.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proc. of NAACL.

Yunzhou Shi, Zhiling Luo, Pengcheng Zhu, Feng Ji,
Wei Zhou, Haiqing Chen, and Yujiu Yang. 2020. G2t:
Generating fluent descriptions for knowledge graph.
In Proc. of SIGIR.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for amr-
to-text generation. In ACL.

Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min
Yang, Bailin Wang, Binhua Li, Jian Sun, Fei Huang,
Luo Si, et al. 2022. Proton: Probing schema linking
information from pre-trained language models for
text-to-sql parsing. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1889–1898.

Tianming Wang, Xiaojun Wan, and Hanqi Jin. 2020.
Amr-to-text generation with graph transformer.
Transactions of the Association for Computational
Linguistics.

Sam Wiseman, Stuart M. Shieber, and Alexander M.
Rush. 2017. Challenges in data-to-document genera-
tion. In Proc. of EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Lanqing Xue, Xiaopeng Li, and Nevin L Zhang. 2020.
Not all attention is needed: Gated attention network
for sequence data. In Proc. of AAAI.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020a. Bertscore: Eval-
uating text generation with BERT. In Proc. of ICLR.

Yan Zhang, Zhijiang Guo, Zhiyang Teng, Wei Lu,
Shay B Cohen, Zuozhu Liu, and Lidong Bing. 2020b.
Lightweight, dynamic graph convolutional networks
for amr-to-text generation. In EMNLP.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better amr-to-text genera-
tion. In EMNLP-IJCNLP.

6126

A Appendix

A.1 MF-score
The M (Meaning Preservation) component of the
MF-score (Opitz and Frank, 2021) is utilized to
measure how well the source AMR graph can be
reconstructed from the generated sentence. It recon-
structs the AMR with a SOTA parser and computes
the relative graph overlap of the reconstruction and
the source AMR using graph matching. M em-
ploys the python library amrlib2 (version 0.5.0) to
make AMR parse, where the parser is a T5-based
model.

A.2 Distribution on Graph Size
On the ENT-DESC test set, previous study (Cheng
et al., 2020) and our experimental results (in Ta-
ble 6) suggest that the model performs the best
when the graph size lies in the range of 21 − 40
and has a poorer performance when the number of
triples is too small or too large. It should be due
to the fact that the input information is insufficient
or very noisy. However, we find that the model
performance increases as the graph diameter and
reentrancies increase. For further investigation, we
calculate the distribution of graph diameter and
reentrancies broken down by graph size, respec-
tively. The results are summarized in Figure 4. As
shown in Figure 4(a), the proportion of graphs with
size 21 − 40 increases as the graph diameter in-
creases. As shown in Figure 4(b), the results on
graph reentrancy follow a pattern similar to graph
diameter. In a word, in ENT-DESC, the noise de-
creases as the graph diameter and reentrancies in-
crease, so the model performs better.

A.3 Case Study
As shown in Figure 5, we further take a typical ex-
ample from our human study to better understand
how our method improves the mode’s performance.
Given the Knowledge Graph containing the main
entity “Andrew Lawrence" and all its related en-
tities, we aim to generate a description about the
main entity. We notice that both the baseline and
our model can identify the main entity. However,
the baseline outputs a sentence describing the re-
lation between “Andrew Lawrence" and “Matthew
Lawrence". The relation is not existing in the input
graph. Moreover, it repeatedly generates the entity
“Brotherly Love" and misses the related entity “Re-
cess". Compared with it, our model generates the

2https://github.com/bjascob/amrlib/tree/0.5.0

sentences faithful to the input graph and correctly
covers the main entity and most topic-related enti-
ties. We consider this is because the SACA helps
the decoder obtain a more accurate input graph con-
text, and the DGP removes the redundant nodes as
the decoding stage progresses.

A.4 Baseline Models
On the AMR-to-Text task LDC2020T02, we com-
pare our method with several baselines including:

• LDGCN (Zhang et al., 2020b) is a a dynamic
fusion mechanism, which captures richer non-
local interactions by synthesizing higher order
information from the input graphs. A weight
tied convolutions to reduce memory usage is
applied.

• SPRING (Bevilacqua et al., 2021) casts Text-
to-AMR and AMR-to-Text as a symmetric
transduction task and proposes a graph lin-
earization and extending a pretrained encoder-
decoder model.

On the KG-to-Text task ENT-DESC, we com-
pare our method with several baselines including:

• s2s (Bahdanau et al., 2015) is a encoder-
decoder based model, which allows a model
to automatically (soft-)search for parts of a
source sentence that are relevant to predicting
a target word, without having to form these
parts as a hard segment explicitly.

• GraphTransformer (Koncel-Kedziorski
et al., 2019) introduces a novel graph
transforming encoder which can leverage the
relational structure of such knowledge graphs
without imposing linearization or hierarchical
constraints.

• GRN (Beck et al., 2018) couples the recently
proposed Gated Graph Neural Networks with
an input transformation that allows nodes and
edges to have their own hidden representa-
tions.

• GCN (Marcheggiani and Perez-Beltrachini,
2018) proposes an alternative encoder based
on graph convolutional networks that directly
exploits the input structure.

• DeepGCN (Guo et al., 2019) introduces a
dense connection strategy, which is able to
integrate both local and non-local features to

6127

sum
1-20 21-40 >40 1-20

<6 2169 1120 236 3525 <6 0.615319
6-10 1328 2136 818 4282 6-10 0.310135
>10 62 1813 1399 3274 >10 0.018937

3559 5069 2453 11081 0.32118

1-20 21-40 >40 1-20
1-3 1386 719 172 2277 <6 0.608696
4-5 1667 2350 1000 5017 6-10 0.33227
>5 506 2000 1281 3787 >10 0.133615

3559 5069 2453 11081

11081

Graph SizeReentrancies

Graph Diameter Graph Size

Reentrancies Graph Size

Reentrancies Graph Size

0

500

1000

1500

2000

2500

1-3 4-5 >5

Ex

am
pl

e

Graph Diameter

Graph Size 1-20

Graph Size 21-40

Graph Size >40

31.58%

46.84%

52.81%

0%

20%

40%

60%

80%

100%

<6 6-10 >10

Graph Diameter

Graph Size >40

Graph Size 21-40

Graph Size 1-20

sum
1-20 21-40 >40 1-20

<6 2169 1120 236 3525 <6 0.615319
6-10 1328 2136 818 4282 6-10 0.310135
>10 62 1813 1399 3274 >10 0.018937

3559 5069 2453 11081 0.32118

1-20 21-40 >40 1-20
1-3 1386 719 172 2277 <6 0.608696
4-5 1667 2350 1000 5017 6-10 0.33227
>5 506 2000 1281 3787 >10 0.133615

3559 5069 2453 11081

11081

Graph SizeReentrancies

Graph Diameter Graph Size

Reentrancies Graph Size

Reentrancies Graph Size

0

500

1000

1500

2000

2500

1-3 4-5 >5

Ex

am
pl

e

Graph Diameter

Graph Size 1-20

Graph Size 21-40

Graph Size >40

31.58%

46.84%

52.81%

0%

20%

40%

60%

80%

100%

<6 6-10 >10

Graph Diameter

Graph Size >40

Graph Size 21-40

Graph Size 1-20

(a) The distribution of graph diameter by graph size.

21-40 >40
0.31773 0.06695

0.498832 0.191032
0.553757 0.427306

0.45745 0.22137

21-40 >40
0.315766 0.075538
0.468407 0.199322
0.528123 0.338262

Graph Size

Graph Size

0

500

1000

1500

2000

2500

<6 6-10 >10

Ex

am
pl

e

Reentrancies

Graph Size 1-20

Graph Size 21-40

Graph Size >40

31.77%

49.88%

55.38%

0%

20%

40%

60%

80%

100%

<6 6-10 >10

Reentrancies

Graph Size >40

Graph Size 21-40

Graph Size 1-20

21-40 >40
0.31773 0.06695

0.498832 0.191032
0.553757 0.427306

0.45745 0.22137

21-40 >40
0.315766 0.075538
0.468407 0.199322
0.528123 0.338262

Graph Size

Graph Size

0

500

1000

1500

2000

2500

<6 6-10 >10

Ex

am
pl

e

Reentrancies

Graph Size 1-20

Graph Size 21-40

Graph Size >40

31.77%

49.88%

55.38%

0%

20%

40%

60%

80%

100%

<6 6-10 >10

Reentrancies

Graph Size >40

Graph Size 21-40

Graph Size 1-20

(b) The distribution of graph reentrancies by graph size.

Figure 4: The clustered column charts of graph diameter and reentrancies by graph size.

Gold Andrew James Lawrence (born January 12, 1988) is an American
actor and singer. He is known for his roles as Andy Roman in
"Brotherly Love" and T.J. Detweiler in "Recess".

SA-RGAT Andrew Lawrence (born January 12, 1988) is an American actor,
voice actor, and singer. He is best known for his roles in the films
"Brotherly Love" and "Brotherly Love". He is the younger brother of
Matthew Lawrence.

Ours Andrew Lawrence (born January 12, 1988) is an American actor and
singer. He is best known for his roles in "Recess" and "Brotherly
Love".

Figure 5: An example of generated sentences. The main
entity is highlighted in red, topic-related entities are
highlighted in blue, and the sentence that is not faithful
to the input graph is in green.

learn a better structural representation of a
graph.

• MGCN + CNN (Cheng et al., 2020) is a
multi-graph structure that is able to represent
the original graph information more compre-
hensively. We do not report the results of
MGCN + CNN + delex. Because it applies the
delexicalization technique on the ENT-DESC
dataset, which delexicalizes the main entity
and topic-related entities by replacing these
entities with tokens indicating the entity types
and indices. The delexicalization technique
greatly boosts their performance on ROUGE-
L. They do not release the code about delexi-
calization, and we can not reproduce it.

What’s more, FINETUNE, ADAPT and SA-RGCN
are T5-based models proposed in (Ribeiro et al.,

2021).

