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Abstract

Named entity recognition and relation extraction are core sub-tasks of relational triple extraction.
Recent studies have used parameter sharing or joint decoding to create interaction between these
two tasks. However, ensuring the specificity of task-specific traits while the two tasks interact
properly is a huge difficulty. We propose a multi-gate encoder that models bidirectional task
interaction while keeping sufficient feature specificity based on gating mechanism in this paper.
Precisely, we design two types of independent gates: task gates to generate task-specific features
and interaction gates to generate instructive features to guide the opposite task. Our experiments
show that our method increases the state-of-the-art (SOTA) relation F1 scores on ACE04, ACE05
and SciERC datasets to 63.8% (+1.3%), 68.2% (+1.4%), 39.4% (+1.0%), respectively, with higher
inference speed over previous SOTA model.

1 Introduction

Extracting relational facts from unstructured texts is a fundamental task in information extraction. This
task can be decomposed into two sub-tasks: Named Entity Recognition (NER) (Florian et al., 2003),
which aims to recognize the boundaries and types of entities; and Relation Extraction (RE) (Zelenko et al.,
2002), which aims to extract semantic relations between entities. The extracted relational triples in the
form of (subject, relation, object) are basic elements of large-scale knowledge graphs (Lin et al., 2015).

Traditional approaches perform NER and RE in a pipelined fashion (Zhou et al., 2005; Chan and Roth,
2011; Gormley et al., 2015). They first extract all the entities in a given text, and then identify pairwise
relations between the extracted entities. However, because the two sub-tasks are modeled independently,
pipelined methods are vulnerable to error propagation issue. Since the interaction between NER and RE
is neglected, the errors accumulated in the previous NER stage cannot be corrected in the subsequent RE
stage. To resolve this issue, some joint models have been proposed to model these two tasks simultaneously.
Early feature-based joint models (Yu and Lam, 2010; Miwa and Sasaki, 2014) rely on complicated feature
engineering to build interaction between entities and relations. More recently, neural joint models have
attracted increasing research interest and have demonstrated promising performance on joint entity and
relation extraction.

In existing neural joint models, there are mainly two ways to build the interaction between NER and RE:
parameter sharing and joint decoding. In parameter sharing methods (Zeng et al., 2018; Bekoulis et al.,
2018a; Dixit and Al-Onaizan, 2019), NER model and RE model are built on top of a shared encoding layer
to achieve joint learning. However, approaches based on parameter sharing implicitly rather than explicitly
model the inter-task interaction, leading to insufficient excavation of the inherent association between the
two tasks. Moreover, these two tasks focus on different contextual information (Zhong and Chen, 2021;
Ye et al., 2022), but methods of sharing representations cannot provide task-specific features with enough
specificity for the two tasks. In terms of error propagation, parameter sharing methods alleviate the error
propagation between tasks, but to a limited extent, because these models still perform pipelined decoding.
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Another family of approaches adopt unified tagging framework in the form of sequences (Zheng et al.,
2017), tables (Zhang et al., 2017; Ren et al., 2021), or graphs (Fu et al., 2019; Xue et al., 2021) to integrate
the information of entities and relations as a whole and perform joint decoding to extract relational triples.
Although these methods enhance the inter-task interaction, the specificity of task features is not well
considered since the entities and relations still share contextual representations in essence. Moreover, all
these joint decoding methods require complex joint decoding algorithms, and it is challenging to balance
the accuracy of joint decoding and the abundance of task-specific features.

Accordingly, the main challenge of joint entity and relation extraction is to construct proper interaction
between NER and RE while ensuring the specificity of task-specific features. Wang and Lu (2020)
adopt two types of representations to generate task-specific representations, sequence representations
for NER and table representations for RE, separately. These two types of representations interact with
each other to model inter-task interaction. Yan et al. (2021) perform neuron partition in an autoregressive
manner to generate task-specific features jointly in order to build inter-task interaction. They combine
the task-specific features and global features as the final input to the task modules. Inspired by Yan et al.
(2021)’s work, we adopt the task modules they used that model each relation separately with tables (Miwa
and Sasaki, 2014), and we propose a simple but effective feature encoding approach for joint entity and
relation extraction, achieving excellent results while being less computationally intensive. We will detail
the differences and our advantages in Section 3.5.

In this work, we propose a Multi-Gate Encoder (MGE) that control the flow of feature information
based on gating mechanism, so as to filter out undesired information and retain desired information. MGE
has two types of gates: task gates and interaction gates. Task gates are used to generate task-specific
features, and interaction gates control how much information flows out to guide the opposite task. The
output of interaction gate is combined with the opposite task-specific features to generate the input of
corresponding task module, resulting in a bidirectional interaction between NER and RE while maintaining
sufficient specificity of task-specific features.

The main contributions of this work are summarized below:
1. A multi-gate encoder for joint entity and relation extraction is proposed, which effectively promotes

interaction between NER and RE while ensuring the specificity of task features. Experimental results
show that our method establishes the new state-of-the-art on three standard benchmarks, namely
ACE04, ACE05, and SciERC.

2. We conduct extensive analyses to investigate the superiority of our model and validate the effective-
ness of each component of our model.

3. The effect of relation information on entity recognition is examined. Our additional experiments
suggest that relation information contributes to predicting entities, which helps clarify the controversy
on the effect of relation signals.

2 Related Work

The task of extracting relational triples from plain text can be decomposed into two sub-task: Named
Entity Recognition and Relation Extraction. The two tasks can be performed in a pipelined manner (Chan
and Roth, 2011; Gormley et al., 2015; Zhong and Chen, 2021; Ye et al., 2022) or in a joint manner (Miwa
and Sasaki, 2014; Zheng et al., 2017; Wang and Lu, 2020; Yan et al., 2021).

Traditional pipelined methods (Zhou et al., 2005; Chan and Roth, 2011; Gormley et al., 2015) firstly
train a model to extract entities and then train another model to classify the relation type between
subject and object for each entity pair. Recent pipelined approaches (Zhong and Chen, 2021; Ye et al.,
2022) still follow this pattern and adopt marker-based span representations to learn different contextual
representations between entities and relations, and between entity pairs, which sheds some light on the
importance of feature specificity. Although Zhong and Chen (2021) and Ye et al. (2022) achieve better
performance than previous pipelined methods and some joint methods, they still run the risk of error
propagation and do not adequately account for interactions between tasks. To ease these issues, some
joint models that extract entities and relations jointly has been proposed.

Joint entity and relation extraction is a typical multi-task scenario, and how to handle the interaction
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between tasks is a frequently discussed topic. Early joint models (Yu and Lam, 2010; Miwa and Sasaki,
2014) rely on feature engineering to build task interaction. More recently, many neural joint models have
been proposed and show promising performance. Miwa and Bansal (2016) builds a sequence tagging
model for NER and a dependency tree model for RE separately on top of a shared LSTM layer and
performs joint learning, achieving task interaction through parameter sharing. Zeng et al. (2018) uses
sequence-to-sequence learning framework with copy mechanism to jointly extract entities and relations.
Bekoulis et al. (2018b) builds a CRF layer for NER and a sigmoid layer for RE on a shared LSTM
layer. Eberts and Ulges (2020) proposes a span-based joint model for entity and relation extraction.
They performs span classification and span filtering to extract entity spans and then performs relation
classification based on the contextual span representations from BERT (Devlin et al., 2019) encoder. All
these approaches construct the interaction between NER and RE through parameter sharing. Another
class of methods adopts joint decoding to fuse the two tasks together. Li and Ji (2014) uses structured
perceptron with beam search to extract entities and relations simultaneously. Wang et al. (2018) proposes
a transition system to convert the joint task into a directed graph. Wang et al. (2020b) introduces a novel
handshaking tagging scheme to formulate joint extraction as a token pair linking problem. Zhang et al.
(2017) and Ren et al. (2021) convert the task into a table-filling problem.

In addition to building interaction between tasks, another important issue is the specificity of task
features. As recent studies (Zhong and Chen, 2021; Ye et al., 2022) have shown, generating specific
contextual features for different tasks can achieve better results on the overall task than sharing input
features. Zhong and Chen (2021) and Ye et al. (2022) both use a pre-trained language model (e.g., BERT)
for NER and another for RE to obtain different contextual representations for specific task. However,
fine-tuning distinct pre-trained encoders for the two task separately is computationally expensive. In our
work, we adopts gating mechanism to balance the flow of feature information, taking into account both
the interaction between tasks and the specificity of task features.

3 Method

In this section, we first formally define the problem of joint entity and relation extraction and then detail
the structure of our model. Finally, we discuss how our model differs from the approach we follow and
explain why our method performs better.

3.1 Problem Definition

The problem of joint entity and relation extraction can be decomposed into two sub-tasks: NER and RE.
Let E denotes the set of predefined entity types andR denotes the set of predefined relation types. Given
a sentence containing N words, X = {x1, x2, . . . , xN}, the goal of NER is to extract an entity type eij ∈ E
for each span sij ∈ S that starts with xi and ends with xj , where S is the set of all the possible spans
in X . For RE, the goal is to extract a relation type ri1i2 ∈ R for each span pair whose start words are
xi1 and xi2 respectively. Combining the results of NER and RE, we get the final output of this problem
Yr = {(ei1j1 , ri1i2 , ei2j2)}, where ei1j1 , ei2j2 ∈ E , ri1i2 ∈R.

3.2 Multi-Gate Encoder

We adopt BERT (Devlin et al., 2019) to encode the contextual information of input sentences. As shown in
Figure 1, our proposed MGE employs four gates to control the flow of feature information based on gating
mechanism. The two task gates are designed to generate task-specific features for NER and RE, while
the two interaction gates aim to generate interaction features that have a positive effect on the opposite
task. The task-specific features and interaction features are combined to form the input of task modules,
carrying out bidirectional task interaction through feature exchange.

Let Hb ∈ RN×d denotes the contextual feature matrix of sentence X extracted by BERT encoder, where
d is the hidden size of BERT layer. In order to preliminarily build the specificity between entity recognition
features and relation extraction features, we generate candidate entity features Hc

e and candidate relation
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BERT Encoder

x1 x2 x3 x4 x5 x6 x7 x8

σ tanh σ σtanhσ

NER Module

σ task gate (sigmoid) σ tanh

copy

interaction gate (sigmoid) tanh function

Hadamard product concatenate

RE Module

Figure 1: The architecture of our proposed MGE. There are two types of gates in the encoder: task
gates and interaction gates. Hc

e and Hc
r denote candidate entity features and candidate relation features

respectively. He task and Hr task denote task-specific features generated by task gates. He inter and
Hr inter denote interaction features generated by interaction gates to guide the opposite task. Hner and
Hre are the final input features to NER module and RE module.

features Hc
r based on BERT output representations as follows:

Hc
e = tanh (HbWe + be)

Hc
r = tanh (HbWr + br) ,

(1)

where W(⋅) ∈ Rd×h and b(⋅) ∈ Rh denote trainable weights and bias and h is the hidden size in MGE.
tanh (⋅) means tanh activation function. The candidate features will be input to the task gates and
interaction gates of corresponding task for further feature filtering to generate task-specific features and
interaction features.

The task gates decide what information in the candidate features is contributing to the corresponding
specific task, which is implemented by a sigmoid layer. The sigmoid layer produces values in the range of
zero to one, indicating how much information is to be transmitted. A value of zero means no information
is allowed to pass, whereas a value of one means all the information is allowed to pass. We calculate
entity task gate Ge task and relation task gate Gr task as below:

Ge task = σ (HbWe task + be task)
Gr task = σ (HbWr task + br task) ,

(2)

where σ (⋅) represents sigmoid activation function. W(⋅) ∈ Rd×h and b(⋅) ∈ Rh denote weights and bias.
The entity task gate Ge task and relation task gate Gr task work independently and are specialized in
filtering information useful for specific task in candidate features to obtain task-specific features for entity
recognition and relation extraction respectively. We calculate the Hadamard (element-wise) product
between task gates and candidate features to generate task-specific features for NER and RE:

He task = Ge task ⊙Hc
e

Hr task = Gr task ⊙Hc
r ,

(3)

CC
L 
20
22

Proceedings of the 21st China National Conference on Computational Linguistics, pages 848-860, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

851



Computational Linguistics

where ⊙ denotes Hadamard product operation. He task and Hr task represent entity task-specific features
and relation task-specific features respectively.

Similarly, the interaction gates decide what information in entity candidate features Hc
e is helpful for

guiding relation extraction and what information in Hc
r is helpful for guiding entity recognition. This is

also implemented through sigmoid activation function:

Ge inter = σ (HbWe inter + be inter)
Gr inter = σ (HbWr inter + br inter) ,

(4)

where Ge inter denotes entity interaction gate and Gr inter denotes relation interaction gate. W(⋅) ∈ Rd×h

and b(⋅) ∈ Rh denote weights and bias. These two interaction gates are then applied to candidate features
to generate interaction features:

He inter = Ge inter ⊙Hc
e

Hr inter = Gr inter ⊙Hc
r ,

(5)

where He inter denotes entity interaction features used to guide RE and Hr inter denotes relation interac-
tion features used to guide NER.

Finally, we perform feature exchange based on the task-specific features and interaction features to
achieve bidirectional interaction between NER and RE. Specifically, we concatenate entity task-specific
features He task and relation interaction features Hr inter, and relation task-specific features Hr task is
concatenated with entity interaction features He inter:

Hner =He task ⊕Hr inter

Hre =Hr task ⊕He inter,
(6)

where ⊕ means concatenation operation. Hner ∈ RN×2h and Hre ∈ RN×2h are the final features to be
input to NER and RE task modules respectively. Through exchanging features that are designed to guide
the opposite task and combining task-specific features, Hner and Hre balance the task interaction and
feature specificity of NER and RE.

3.3 Table-filling Modules
Following Yan et al. (2021), we adopt table-filling framework to extract entities and relations, which
treats both NER and RE as table filling problems. For NER, the goal is to predict all the entity spans
and corresponding entity types. Specifically, we construct a N ×N type-specific table for each entity
type k ∈ E , whose element at row i and column j represents the probability of span sij ∈ S belonging
to type k. We firstly concatenate the representations of every two tokens based on Hner and connect a
fully-connected layer to reduce the hidden size. Then we employ layer normalization (Ba et al., 2016) and
ELU activation (Clevert et al., 2015) to obtain table representations of spans. Formally, for span sij that
starts with xi and ends with xj , we compute the table representation T i,j

ner ∈ Rh as follows:

T i,j
ner = ELU(LayerNorm([H i

ner;H
j
ner]W h

e + bhe)), (7)

where H i
ner ∈ R2h and Hj

ner ∈ R2h denote the vectors corresponding to words xi and xj in entity features
Hner ∈ RN×2h that containing both entity task-specific information and relation interaction information.
W h

e ∈ R4h×h and bhe ∈ Rh are trainable parameters. To predict the probability of span sij belonging
to entity type k, we project the hidden size to ∣E ∣ with a fully-connected layer followed by a sigmoid
activation function:

p(eij = k) = σ(T i,j
nerW

tag
e + btage ),∀k ∈ E , (8)

where W tag
e ∈ Rh×∣E ∣ and btage ∈ R∣E ∣ are trainable parameters and ∣E ∣ represents the number of predefined

entity types.
The goal of RE table-filling module is to predict the start word of each entity and classify the relations

between them. The structure of RE module is formally analogous to the NER module. Similar to NER,
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we construct a N ×N type-specific table for each relation type l ∈ R. For the table corresponding to
relation l, the element at row i and column j represents the probability that the i-th word xi and the j-th
word xj in a sentence are respectively the start words of subject entity and object entity of relation type l.
For xi and xj , we compute the table representations T i,j

re ∈ Rh as follows:

T i,j
re = ELU(LayerNorm([H i

re;H
j
re]W h

r + bhr )), (9)

where H i
re ∈ R2h and Hj

re ∈ R2h denote the vectors corresponding to words xi and xj in features
Hre ∈ RN×2h that containing both relation task-specific information and entity interaction information.
W h

r ∈ R4h×h and bhr ∈ Rh are trainable parameters. The probability that xi and xj are the start words of
the subject and object of relation type l is calculated as follows:

p(rij = l) = σ(T i,j
re W

tag
r + btagr ),∀l ∈R, (10)

where W tag
r ∈ Rh×∣R∣ and btagr ∈ R∣R∣ are trainable parameters and ∣R∣ represents the number of predefined

relation types. We obtain the prediction results of NER module and RE module under the following
conditions:

p(ei1j1 = k1) ≥ 0.5; p(ri1i2 = l) ≥ 0.5; p(ei2j2 = k2) ≥ 0.5 (11)

where k1, k2 ∈ E , l ∈ R. For a fair comparison, the hyper-parameter threshold is set to be 0.5 without
further fine-tuning as in previous works.

Combining the prediction results of NER and RE task modules, we can get the final relational triples in
a given sentence:

Yr = {(ei1j1 , ri1i2 , ei2j2)}, ei1j1 , ei2j2 ∈ E , ri1i2 ∈R, (12)

where ei1j1 and ei2j2 are entity spans predicted by NER task module, and ri1i2 denotes the relation
between head-only entities predicted by RE task module.

3.4 Loss Function

During training, we adopt binary cross entropy loss for both NER and RE task modules. Given a sentence
containing N words, we compute the NER loss and RE loss as follows:

LNER = −
N

∑
i=1

N

∑
j=i
∑
k∈E

p̂(eij = k) log p(eij = k) + (1 − p̂(eij = k)) log (1 − p(eij = k))

LRE = −
N

∑
i=1

N

∑
j=1
∑
l∈R

p̂(rij = l) log p(rij = l) + (1 − p̂(rij = l)) log (1 − p(rij = l)),
(13)

where p̂(eij = k) and p̂(rij = l) represent ground truth labels. p(eij = k) and p(rij = l) are the probability
predicted by NER and RE modules. The final training goal is to minimize the sum of these two losses:

L = LNER +LRE. (14)

3.5 Differences from PFN

Our method differs from PFN (Yan et al., 2021) in the following ways: (1) We generate interaction
features using distinct interaction gates, which are independent of the process of generating task-specific
features. (2) All feature operations in MGE are performed in a non-autoregressive manner, i.e., all tokens
in the sentence are processed in a single pass, resulting in increased efficiency. As a result, our method is
simpler while still ensuring proper NER-RE interaction. Furthermore, as demonstrated in Section 4, our
model outperforms PFN on three public datasets and achieves faster inference speed while employing the
same task modules and pre-trained encoders.
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4 Experiments

4.1 Dataset

We evaluate our model on three popular English relation extraction datasets: ACE05 (Walker et al., 2006),
ACE04 (Doddington et al., 2004) and SciERC (Luan et al., 2018). The ACE05 and ACE04 datasets are
collected from various domains, such as news articles and online forums. Following Luan et al. (2019),
we split ACE04 into 5 folds and ACE05 into 10051 sentences for training, 2424 sentences for validation,
and 2050 sentences for test 0. And we follow Yan et al. (2021) to construct the development set of ACE04
with 15% of the training set.

Dataset ∣E ∣ ∣R∣ #Entities #Relations #Sentences
Train Dev Test

ACE05 7 6 38,287 7,070 10,051 2,424 2,050
ACE04 7 6 22,708 4,084 8,683 (5-fold)
SciERC 6 7 8,094 4,684 1,861 275 551

Table 1: Statistics of datasets. ∣E ∣ and ∣R∣ are numbers of entity and relation types.

The SciERC dataset is collected from 500 AI paper abstracts, and includes annotations for scientific
entities, their relations, and coreference clusters. It consists six predefined scientific entity types and seven
predefined relation types. In our experiments, we only use the annotation information of entities and
relations. We download the processed dataset from the project website 1 of Luan et al. (2018), including
1861 sentences for training, 275 sentences for validation and 551 sentences for test. Table 1 shows the
statistics of ACE04, ACE05 and SciERC datasets.

4.2 Evaluation

Following standard evaluation protocol, we use micro F1 score as an evaluation for both NER and RE.
For NER task, an entity is considered as correct if its boundary and type are both predicted correctly. For
RE task, a relational triple is correct only if its relation type and the boundaries and types of entities are
correct.

4.3 Implementation Details

For fair comparison, we use albert-xxlarge-v1 (Lan et al., 2020) as the base encoder for ACE04 and ACE05.
And for SciERC, we use scibert-scivocab-uncased (Beltagy et al., 2019) as the base encoder. Regarding
the use of cross-sentence context (Luan et al., 2019; Luoma and Pyysalo, 2020), that is, to extend each
sentence by its context for better contextual representations, we don’t adopt this experimental setting
considering the fairness of experimental comparisons. Zhong and Chen (2021) extend each sentence to
a fixed context window size of 300 words for entity model and 100 words for relation model. Ye et al.
(2022) set the context window size to be 512 words for entity model and 256 / 384 words for relation
model. Although cross-sentence context may further enhance the performance of entity recognition and
relation extraction, if the research focus is not on the cross-sentence context, the different cross-sentence
context lengths will greatly affect the experimental results, making it difficult to conduct fair comparisons.
All our experiments are carried out in single-sentence setting and we compare with the experimental
results of other baselines under the single-sentence setting.

Our model is implemented with PyTorch and we train our models with Adam optimizer of a linear
scheduler with a warmup ratio of 0.1. For all the experiments, the learning rate and training epoch are set
to be 2e-5 and 100 respectively. We set the batch size to be 4 for SciERC and 16 for ACE04 and ACE05.
Following previous work (Yan et al., 2021), the max length of input sentence is set to be 128. All the

0We process the datasets with scripts provided by Luan et al. (2019): https://github.com/luanyi/DyGIE/tree/
master/preprocessing.

1http://nlp.cs.washington.edu/sciIE/
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Model Encoder ACE05 ACE04 SciERC
NER RE NER RE NER RE

SPTree (Miwa and Bansal, 2016) LSTM 83.4 55.6 81.8 48.4 - -
Katiyar and Cardie (2017) LSTM 82.6 53.6 79.6 45.7 - -
Multi-turn QA (Li et al., 2019) BERT 84.8 60.2 83.6 49.4 - -
Table-Sequence (Wang and Lu, 2020) ALBERT 89.5 64.3 88.6 59.6 - -
SPE (Wang et al., 2020a) SciBERT - - - - 68.0 34.6

PURE (Zhong and Chen, 2021)
ALBERT 89.7 65.6 88.8 60.2 - -
SciBERT - - - - 66.6 35.6

PFN (Yan et al., 2021)
ALBERT 89.0 66.8 89.3 62.5 - -
SciBERT - - - - 66.8 38.4

MGE (Ours)
ALBERT 89.7 68.2 89.3 63.8 - -
SciBERT - - - - 68.4 39.4

Table 2: Overall F1 scores on the test set of ACE04, ACE05, and SciERC. Results of PURE are reported
in single-sentence setting for fair comparison.

models are trained with a single NVIDIA Titan RTX GPU. We select the model with the best average F1
score of NER and RE on the development set, and report the average F1 of 5 runs on the test set.

4.4 Baselines

We compare our model with the following baselines: (1) BiLSTM (Miwa and Bansal, 2016; Katiyar and
Cardie, 2017): these models perform NER and RE based on shared Bi-directional LSTMs. Miwa and
Bansal (2016) treats entity recognition as a sequence tagging task and represents the relations between
entities in dependency tree. Katiyar and Cardie (2017) formulates both entity recognition and relation
detection as sequence tagging tasks. (2) Multi-turn QA (Li et al., 2019): it converts the task into a
multi-turn question answering task: each entity type and relation type has its corresponding pre-designed
question template, and entities and relations are extracted by answering template questions with standard
machine reading comprehension (MRC) (Seo et al., 2018) framework. (3) Table-Sequence (Wang and
Lu, 2020): this work uses a sequence encoder and a table encoder to learn task-specific representations for
NER and RE separately, and models task interaction through combining these two types of representations.
(4) SPE (Wang et al., 2020a): this method proposes a span encoder and span pair encoder to add intra-span
and inter-span information to the pre-trained model for entity and relation extraction task. (5) PURE
(Zhong and Chen, 2021): this work builds two independent encoders for NER and RE separately and
performs entity relation extraction in a pipelined fashion. PURE experimentally validates the importance
of learning different contextual representations for entities and relations separately. (6) PFN (Yan et al.,
2021): this work proposes a partition filter network to generate task-specific features and shared features
of the two tasks, and then combining global features to extract entities and relations with table-filling
framework.

Among these baselines, the two BiLSTM based methods build task interaction through parameter
sharing, Multi-turn QA is a paradigm shift based method, PURE is a pipelined method, and Table-
Sequence, SPE and PFN are methods based on multiple representations interaction.

4.5 Main Results

Table 2 reports the results of our approach MGE compared with other baselines on ACE05, ACE04 and
SciERC. As is shown, MGE achieves the best results in terms of F1 score against all the comparison
baselines. For NER, MGE achieves similar performance to PURE (Zhong and Chen, 2021) on ACE05
but surpasses PURE by an absolute entity F1 of +0.5%, +1.8% on ACE04 and SciERC. And for RE, our
method obtains a substantially +2.6%, +3.6%, +3.8% absolute relation F1 improvement over PURE on
ACE05, ACE04, and SciERC respectively. This demonstrates the superiority of the bidirectional task
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Model SciERC ACE05
RE (F1) Speed (sent/s) RE (F1) Speed (sent/s)

PFN 38.4 342.2 66.8 / 60.8† 34.2 / 387.2†

MGE (Ours) 39.4 479.2 68.2 / 62.0† 36.0 / 567.6†

Table 3: We compare our MGE model with PFN model in both relation F1 and inference speed. We use
scibert − scivocab − uncased for SciERC and albert − xxlarge − v1 / bert − base − cased for ACE05.
† marks the inference speed on ACE05 when using bert − base − cased encoder. The speed is measured
on a single NVIDIA Titan V GPU with a batch size of 32.

interaction in our model compared to the unidirectional interaction in PURE.
In comparison to the previous state-of-the-art model PFN (Yan et al., 2021), we can see that our method

achieves a similar entity F1 to PFN on ACE04, but an absolute relation F1 improvement of +1.3%. This
suggests that, given the same NER performance, our method can obtain a better RE performance, implying
that the entity knowledge in our method more effectively leads the RE task. Furthermore, on ACE05,
MGE surpasses PFN by an absolute F1 improvement of +0.7% and +1.4% in NER and RE, respectively.
On SciERC, we get a 1.6% higher entity F1 and a 1.0% higher relation F1 compared to PFN. Note that
we use the same pre-trained encoders and task modules as PFN, and these improvements demonstrate the
effectiveness of our proposed multi-gate encoder.

4.6 Inference Speed

As described in Section 3.5, our method employs a non-autoregressive way for feature encoding, which
is simpler and faster than the autoregressive approach in PFN. In order to experimentally compare the
model efficiency, we conduct experiments to evaluate these two models’ inference speed on the test set of
ACE05 and SciERC datasets. We perform inference experiments on a single NVIDIA Titan V GPU with
a batch size of 32.

Table 3 shows the relation F1 scores and the inference speed of PFN and MGE. We use scibert −
scivocab − uncased encoder for SciERC and albert − xxlarge − v1 / bert − base − cased (Devlin et
al., 2019) encoder for ACE05. As is shown, with the same pre-trained model, our method obtains
+1.0% improvement in relation F1 score with +40% speedup on the test set of SciERC. On ACE05, our
model achieves a relation F1 improvement of +1.4% compared to PFN, but only slightly accelerates the
inference speed (34.2 vs 36.0) when using albert − xxlarge − v1 pre-trained model. This is because
albert − xxlarge − v1 contains 223M parameters, which is much larger than the 110M parameters in
scibert − scivocab − uncased and bert − base − cased, and most of the computational cost of the model
is concentrated in the pre-trained model part. As a result, the speedup provided by MGE does not appear
to be significant. Therefore, we also evaluate the inference speed on ACE05 using bert−base−cased. As
Table 3 shows, our model achieves +47% speedup and an absolute relation F1 improvement of +1.2% on
ACE05 when using bert − base − cased. This clearly demonstrates that our proposed MGE can improve
the performance of joint entity and relation extraction while accelerating the model inference speed.

5 Analysis

In this section, we conduct ablation study on ACE05, ACE04 and SciERC to investigate how each
component of MGE affects the final performance, where we apply albert − xxlarge − v1 encoder for
ACE05 and ACE04, scibert − scivocab − uncased encoder for SciERC. Specifically, we ablate the task
gate or interaction gate to verify their effectiveness.

5.1 Effect of Task Gates.

We remove task gates from the complete MGE structure to explore whether they can generate effective
task-specific features. As shown in Table 4, when we remove the entity task gate, the entity F1 scores
on the ACE04 and SciERC datasets decrease by 0.5% and 0.2%, respectively. And when we remove the
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Encoder ACE05 ACE04 SciERC
B Ge task Gr task Ge inter Gr inter NER RE NER RE NER RE

✓ ✓ ✓ ✓ ✓ 89.7 68.2 89.3 63.8 68.4 39.4
✓ - ✓ ✓ ✓ 89.7 67.4 88.8 62.2 68.2 37.5
✓ ✓ - ✓ ✓ 89.9 67.8 88.8 62.6 68.0 39.1
✓ ✓ ✓ - ✓ 89.4 67.4 89.1 63.0 68.5 38.9
✓ ✓ ✓ ✓ - 90.0 66.6 89.2 63.6 68.2 38.7
✓ ✓ ✓ - - 90.0 66.1 88.4 62.8 67.9 37.8

Table 4: F1 scores of ablation study on ACE05, ACE04 and SciERC. B denotes BERT encoder. Ge task,
Gr task, Ge inter and Gr inter means entity task gate, relation task gate, entity interaction gate and relation
interaction gate.

relation task gate, the relation F1 scores on ACE05, ACE04 and SciERC datasets decrease by 0.4%, 1.2%
and 0.3%, respectively. This indicates that task gates can effectively generate task-specific features to
improve the performance of NER and RE.

5.2 Effect of Interaction Gates.
We also investigate the effect of the MGE entity interaction gate and relation interaction gate on task
interaction. As there is no entity interaction gate, it is similar to weakening the guidance of entity
information on the relation extraction task when compared to the unaffected MGE model. After deleting
the entity interaction gate, the relation F1 scores on the ACE05, ACE04, and SciERC datasets decrease by
0.8%, 0.8%, and 0.5%, respectively, as shown in Table 4. In MGE, this highlights the effectiveness of the
entity interaction gate.

Although it is widely accepted that entity information is necessary for relation extraction, previous
research on the impact of relation information on entity recognition has been mixed. Zhong and Chen
(2021) claims that relation information has no significant improvement on entity model. However, Yan et
al. (2021) discover that relation signals have a significant impact on entity prediction. Our research also
sheds light on this contentious issue. In MGE, the guidance of relation information on entity recognition is
cut off when the relation interaction gate is ablate. The entity F1 scores decrease on ACE04 and SciERC
but increase on ACE05 when the relation interaction gate is removed. Our experimental results match the
experimental analysis of Yan et al. (2021). They conclude that relation information is helpful for predicting
entities that appear in relational triples, but not for entities outside relational triples. According to Yan
et al. (2021), there are fewer entities belonging to relational triples in ACE05, compared with ACE04
and SciERC. Consequently, the relation information is comparatively less helpful for entity recognition
in ACE05 but has a positive effect on entity recognition in ACE04 and SciERC. To sum up, the relation
interaction gate can effectively generate interaction features to facilitate the recognition of entities within
triples.

Moreover, when we remove both the entity interaction gate and the relation interaction gate, the relation
F1 scores on ACE05, ACE04 and SciERC datasets decrease by 2.1%, 1.0% and 1.6%, respectively. This
shows the effectiveness of interaction gates in MGE for task interaction in joint entity relation extraction.

5.3 Bidirectional Interaction Vs Unidirectional Interaction.
From Table 4, we also observe that employing only an entity interaction gate or only a relation interaction
gate in the encoder performs worse than adopting these two gates simultaneously. This means that the two
tasks of entity recognition and relation extraction are mutually reinforcing, and bidirectional interaction
between NER and RE is more effective than unidirectional interaction.

6 Conclusion

In this paper, we propose a multi-gate encoder for joint entity and relation extraction. Our model adopts
gate mechanism to build bidirectional task interaction while ensuring the specificity of task features by
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controlling the flow of feature information. Experimental results on three standard benchmarks show that
our model achieves state-of-the-art F1 scores for both NER and RE. We conduct extensive analyses on
three datasets to investigate the superiority of our model and validate the effectiveness of each component
of our model. Furthermore, our ablation study suggests that relation information contributes to entity
recognition, which helps to clarify the controversy on the effect of relation information.
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