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Abstract

We introduce GPT-NeoX-20B, a 20 billion pa-
rameter autoregressive language model trained
on the Pile, whose weights will be made freely
and openly available to the public through a
permissive license. It is, to the best of our
knowledge, the largest dense autoregressive
model that has publicly available weights at
the time of submission. In this work, we
describe GPT-NeoX-20B’s architecture and
training, and evaluate its performance on a
range of language-understanding, mathematics
and knowledge-based tasks. We open-source
the training and evaluation code, as well as
the model weights, at https://github.com/
EleutherAI/gpt-neox.

1 Introduction

Over the past several years, there has been an explo-
sion in research surrounding large language mod-
els (LLMs) for natural language processing, cat-
alyzed largely by the impressive performance of
Transformer-based language models such as BERT
(Devlin et al., 2019), GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), and T5 (Raffel et al.,
2020). One of the most impactful outcomes of
this research has been the discovery that the perfor-
mance of LLMs scales predictably as a power-law
with the number of parameters, with architecture
details such as width/depth ratio having a mini-
mal impact on performance within a wide range
(Kaplan et al., 2020). A consequence of this has
been an abundance of research focusing on scaling
Transformer models up to ever-larger scales, result-
ing in dense models that surpass 500B parameters
(Smith et al., 2022; Chowdhery et al., 2022), a mile-
stone that would have been almost unthinkable just
a few years prior.

*Lead authors. Authors after the first three are listed in
alphabetical order. See Appendix A for individual contribu-
tion details. Correspondence can be sent to {sid, stella,
contact}@eleuther.ai

Today, there are dozens of publicly acknowl-
edged LLMs in existence. The largest have more
than two orders of magnitude more parameters than
GPT-2, and even at that scale there are nearly a
dozen different models. However, these models are
almost universally the protected intellectual prop-
erty of large tech companies, and are gated behind
a commercial API, available only upon request, or
not available for outsider use at all. To our knowl-
edge, the only freely and publicly available dense
autoregressive language models larger than GPT-
2 are GPT-Neo (2.7B parameters) (Black et al.,
2021), GPT-J-6B (Wang and Komatsuzaki, 2021),
Megatron-11B1, Pangu-α-13B (Zeng et al., 2021),
and the recently released FairSeq models (2.7B,
6.7B, and 13B parameters) (Artetxe et al., 2021).

In this paper we introduce GPT-NeoX-20B, a 20
billion parameter open source autoregressive lan-
guage model. We make the models weights freely
and openly available to the public through a per-
missive license, motivated by the belief that open
access to LLMs is critical to advancing research
in a wide range of areas—particularly in AI safety,
mechanistic interpretability, and the study of how
LLM capabilities scale. Many of the most inter-
esting capabilities of LLMs only emerge above a
certain number of parameters, and they have many
properties that simply cannot be studied in smaller
models. Although safety is often cited as a justifica-
tion for keeping model weights private, we believe
this is insufficient to prevent misuse, and is largely
a limitation on the ability to probe and study LLMs
for researchers not based at the small number of
organizations that have access to state of the art
language models.

In the following sections, we give a broad
overview of GPT-NeoX-20B’s architecture and
training hyperparameters, detail the hardware and
software setup used for training and evaluation, and

1This model does not work using the provided codebase,
and we have been told it under-performs GPT-J.
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elaborate on the choices made when designing the
training dataset and tokenization. We also address
of some of the difficulties and unknowns we en-
countered in training such a large model. We place
significant importance on the broader impacts of
the release GPT-NeoX-20B and other such LLMs,
and have prepared a separate manuscript for dis-
secting these issues in greater detail.

In addition, we also make available the model
weights at evenly spaced 1000 step intervals
throughout the whole of training. We hope that
by making a wide range of checkpoints throughout
training freely available, we will facilitate research
on the training dynamics of LLMs, as well as the
aforementioned areas of AI safety and interpretabil-
ity.

2 Model Design and Implementation

GPT-NeoX-20B is an autoregressive transformer
decoder model whose architecture largely follows
that of GPT-3 (Brown et al., 2020), with a few
notable deviations described below. Our model
has 20 billion parameters, of which 19.9 billion
are “non-embedding” parameters that Kaplan et al.
(2020) identify as the proper number to use for
scaling laws analysis. Our model has 44 layers, a
hidden dimension size of 6144, and 64 heads.

2.1 Model Architecture

Although our architecture is largely similar to GPT-
3, there are some notable differences. In this sec-
tion we give a high-level overview of those differ-
ences, but ask the reader to refer to (Brown et al.,
2020) for full details of the model architecture. Our
model architecture is almost identical to that of
GPT-J (Wang and Komatsuzaki, 2021)2, however
we choose to use GPT-3 as the point of reference
because there is no canonical published reference
on the design of GPT-J.

2.1.1 Rotary Positional Embeddings
We use rotary embeddings (Su et al., 2021) instead
of the learned positional embeddings used in GPT
models (Radford et al., 2018), based on our positive
prior experiences using it in training LLMs. Rotary
embeddings are a form of static relative positional
embeddings. In brief, they twist the embedding
space such that the attention of a token at position
m to token at position n is linearly dependent on

2The sole difference is due to an oversight discussed in
Section 2.1.2

m− n. More formally, they modify the standard
multiheaded attention equations from
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where Rd
Θ,x is a d×d block diagonal matrix with

the block of index i being a 2D rotation by xθi

for hyperparameters Θ = {θi = 10000−2i/d | i ∈
{0,1,2, . . . ,(d−1)/2}}.

While Su et al. (2021) apply rotary embeddings
to every embedding vector, we follow Wang and
Komatsuzaki (2021) and instead apply it only to
the first 25% of embedding vector dimensions. Our
initial experiments indicate that this strikes the
best balance of performance and computational
efficiency.3

2.1.2 Parallel Attention + FF Layers
We compute the Attention and Feed-Forward (FF)
layers in parallel4 and sum the results, rather than
running them in series. This is primarily for ef-
ficiency purposes, as each residual addition with
op-sharding requires one all-reduce in the forward
pass and one in the backwards pass (Shoeybi et al.,
2020). By computing the Attention and FFs in par-
allel, the results can be reduced locally before per-
forming a single all-reduce. In Mesh Transformer
JAX (Wang, 2021), this led to a 15% throughput
increase, while having comparable loss curves with
running them in series during early training.

Due to an oversight in our code, we unintention-
ally apply two independent Layer Norms instead
of using a tied layer norm the way Wang and Ko-
matsuzaki (2021) does. Instead of computing

x+Attn(LN1(x))+FF(LN1(x))

as intended, our codebase unties the layer norms:

x+Attn(LN1(x))+FF(LN2(x)).

Unfortunately, this was only noticed after we were
much too far into training to restart. Subsequent

3See the Weights & Biases reports here and here for further
details.

4See GitHub for implementation details.
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experiments at small scales indicated that the untied
layer norm makes no difference in performance, but
we nevertheless wish to highlight this in the interest
of transparency.

2.1.3 Initialization
For the Feed-Forward output layers before the
residuals, we used the initialization scheme intro-
duced in Wang (2021), 2

L
√

d
. This prevents acti-

vations from growing with increasing depth and
width, with the factor of 2 compensating for the
fact that the parallel and feed-forward layers are
organized in parallel. For all other layers, we use
the small init scheme from Nguyen and Salazar

(2019),
√

2
d+4d

2.1.4 All Dense Layers
While GPT-3 uses alternating dense and sparse lay-
ers using the technique introduced in Child et al.
(2019), we instead opt to exclusively use dense
layers to reduce implementation complexity.

2.2 Software Libraries

Our model is trained using a codebase that builds
on Megatron (Shoeybi et al., 2020) and Deep-
Speed (Rasley et al., 2020) to facilitate efficient and
straightforward training of large language models
with tens of billions of parameters. We use the offi-
cial PyTorch v1.10.0 release binary package com-
piled with CUDA 11.1. This package is bundled
with NCCL 2.10.3 for distributed communications.

2.3 Hardware

We trained GPT-NeoX-20B on twelve Supermi-
cro AS-4124GO-NART servers, each with eight
NVIDIA A100-SXM4-40GB GPUs and config-
ured with two AMD EPYC 7532 CPUs. All GPUs
can directly access the InfiniBand switched fab-
ric through one of four ConnectX-6 HCAs for
GPUDirect RDMA. Two NVIDIA MQM8700-
HS2R switches—connected by 16 links—compose
the spine of this InfiniBand network, with one link
per node CPU socket connected to each switch.
Figure 7 shows a simplified overview of a node as
configured for training.

3 Training

Due to the intractability of performing a hyperpa-
rameter sweep for a 20 billion parameter model,
we opted to use the values from Brown et al. (2020)
to guide our choice of hyperparameters. As Brown

et al. (2020) did not train a model at our exact
scale, we interpolate between the learning rates of
their 13B and 175B models to arrive at a learning
rate of 0.97E−5. Based on the results of smaller
scale experiments, we select a weight decay of
0.01. To achieve a higher training throughput, we
opt to use the same batch size as OpenAI’s 175B
model–approximately 3.15M tokens, or 1538 con-
texts of 2048 tokens each, and train for a total of
150,000 steps, decaying the learning rate with a
cosine schedule to 10% of its original value at the
end of training.

We use the AdamW (Loshchilov and Hutter,
2019) optimizer, with beta values of 0.9 and 0.95
respectively, and an epsilon of 1.0E−8. We extend
AdamW with the ZeRO optimizer (Rajbhandari
et al., 2020) to reduce memory consumption by
distributing optimizer states across ranks. Since
the weights and optimizer states of a model at this
scale do not fit on a single GPU, we use the ten-
sor parallelism scheme introduced in Shoeybi et al.
(2020) in combination with pipeline parallelism
(Harlap et al., 2018) to distribute the model across
GPUs. To train GPT-NeoX-20B, we found that the
most efficient way to distribute the model given
our hardware setup was to set a tensor parallel size
of 2, and a pipeline parallel size of 4. This allows
for the most communication intensive processes,
tensor and pipeline parallelism, to occur within a
node, and data parallel communication to occur
across node boundaries. In this fashion, we were
able to achieve and maintain an efficiency of 117
teraFLOPS per GPU.

3.1 Training Data
GPT-NeoX-20B was trained on the Pile (Gao et al.,
2020), a massive curated dataset designed specifi-
cally for training large language models. It consists
of data from 22 data sources, coarsely broken down
into 5 categories:

• Academic Writing: Pubmed Abstracts and
PubMed Central, arXiv, FreeLaw,5 USPTO
Backgrounds,6 PhilPapers,7 NIH Exporter8

• Web-scrapes and Internet Resources: Com-
monCrawl, OpenWebText2, StackExchange,9

Wikipedia (English)
5https://www.courtlistener.com/
6https://bulkdata.uspto.gov/
7https://philpapers.org/
8https://exporter.nih.gov/
9https://archive.org/details/stackexchange
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• Prose: BookCorpus2, Bibliotik, Project
Gutenberg (PG-19; Rae et al., 2019)

• Dialogue: Youtube subtitles, Ubuntu IRC,10

OpenSubtitles (Lison and Tiedemann, 2016),
Hacker News,11 EuroParl (Koehn, 2005)

• Miscellaneous: GitHub, the DeepMind Math-
ematics dataset (Saxton et al., 2019), Enron
Emails (Klimt and Yang, 2004)

In aggregate, the Pile consists of over 825GiB
of raw text data. The diverse data sources reflects
our desire for a general-purpose language model.
Certain components are up-sampled to obtain a
more balanced data distribution. In contrast, GPT-
3’s training data consists of web-scrapes, books
datasets, and Wikipedia. When comparing results
in this work to GPT-3, the training data is almost
certainly the biggest known unknown factor. Full
details of the Pile can be found in the technical re-
port (Gao et al., 2020) and the associated datasheet
(Biderman et al., 2022).

It is particularly notable that the Pile contains
a scrape of StackExchange preprocessed into a
Q/A form. There is a significant and growing
body of work on the influence of the syntactic
structure of finetuning data on downstream per-
formance (Zhong et al., 2021; Tan et al., 2021;
Sanh et al., 2021; Wei et al., 2021). While so far
there has been no systematic work that focuses on
prompted pretraining, recent work (Biderman and
Raff, 2022) observed that the formulation of the
StackExchange component of the Pile appears to
heavily influences code generation.

3.2 Tokenization

For GPT-NeoX-20B, we use a BPE-based tokenizer
similar to that used in GPT-2, with the same total
vocabulary size of 50257, with three major changes
to the tokenizer. First, we train a new BPE tok-
enizer based on the Pile, taking advantage of its
diverse text sources to construct a more general-
purpose tokenizer. Second, in contrast to the GPT-2
tokenizer which treats tokenization at the start of
a string as a non-space-delimited token, the GPT-
NeoX-20B tokenizer applies consistent space de-
limitation regardless. This resolves an inconsis-
tency regarding the presence of prefix spaces to a

10https://irclogs.ubuntu.com/
11https://news.ycombinator.com/

tokenization input.12. An example can be seen in
Figure 1. Third, our tokenizer contains tokens for
repeated space tokens (all positive integer amounts
of repeated spaces up to and including 24). This
allows the GPT-NeoX-20B tokenizer to tokenize
text with large amounts of whitespace using fewer
tokens; for instance, program source code or arXiv
LATEX source files. See Appendix F for an analysis
of the tokenizer.

GPT-2

def fibRec(n):←↩
if n < 2:←↩

return n←↩
else:←↩

return fibRec(n-1) + fibRec(n-2)

55 tokens

GPT-NeoX-20B

def fibRec(n):←↩
if n < 2:←↩

return n←↩
else:←↩

return fibRec(n-1) + fibRec(n-2)

39 tokens

Figure 1: GPT-2 tokenization vs. GPT-NeoX-20B tok-
enization. GPT-NeoX-20B tokenization handles whites-
pace better, which is particularly useful for text such as
source code. For more examples, see Appendix G.

3.3 Data Duplication

In the past two years, the standard practice when
training autoregressive language models has be-
come to train for only one epoch (Komatsuzaki,
2019; Kaplan et al., 2020; Henighan et al., 2020).
Recent research has claimed to see significant ben-
efits from going even further and deduplicating
training data (Lee et al., 2021; Kandpal et al.,
2022; Roberts et al., 2022). In particular, every
publicly known larger language model other than
GPT-3 (Brown et al., 2020) and Jurassic-113 either
uses some form of deduplication (Rae et al., 2022;
Askell et al., 2021; Zeng et al., 2021; Sun et al.,
2021; Smith et al., 2022; Hoffmann et al., 2022;
Chowdhery et al., 2022) or does not discuss the
training data in sufficient detail to determine what
was done (Kim et al., 2021).

When the Pile was originally made, the only
language model larger than GPT-NeoX-20B that

12https://discuss.huggingface.co/t/
bpe-tokenizers-and-spaces-before-words/475/2

13In private communication, the authors confirmed that
Jurassic-1 was trained on the Pile (Gao et al., 2020).
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Figure 2: Training and validation loss for GPT-NeoX-
20B. As the validation loss continued to fall into the
beginning of the second epoch, we decided to let it train
further.

existed was GPT-3, which upsampled high quality
subsets of its training data. The Pile followed suit,
and due to a combination of a lack of resources
for large scale ablations and a lack of noticeable
impact at smaller scales, we opt to use the Pile as-is.
As shown in fig. 2, even at the 20B parameter scale
we see no drop in test validation loss after crossing
the 1 epoch boundary.

Unfortunately, none of the papers that have
claimed to see an improvement from deduplica-
tion have released trained models that demonstrate
this, making replication and confirmation of their
results difficult. Lee et al. (2021) releases the dedu-
plication code that they used, which we intend to
use to explore this question in more detail in the
future.

It is important to note that even if there is not an
improvement in loss or on task evaluations there
are nevertheless compelling reasons to deduplicate
training data for any model put into production. In
particular, systematic analysis has shown signifi-

cant benefits in terms of reducing the leakage of
training data (Lee et al., 2021; Zhang et al., 2021;
Carlini et al., 2022; Kandpal et al., 2022).

4 Performance Evaluations

To evaluate our model we use the EleutherAI
Language Model Evaluation Harness (Gao et al.,
2021b), an open source codebase for language
model evaluation that supports a number of model
APIs. As our goal is to make a powerful model
publicly accessible, we compare with English lan-
guage models with at least 10B parameter that are
publicly accessible. We compare with the GPT-3
models on the OpenAI API(Brown et al., 2020),
the open source FairSeq dense models (Artetxe
et al., 2021), and GPT-J-6B (Wang and Komat-
suzaki, 2021). We do not compare against T5 (Raf-
fel et al., 2020) or its derivatives as our evaluation
methodology assumes that the models are autore-
gressive. While there is a Megatron 11B check-
point that has been publicly released, the released
code is non-functional and we have not been able to
get the model to work. We do not compare against
any mixture-of-experts models as no public MoE
model achieves performance comparable to a 10B
parameter dense model.

While it is common to display “scaling laws”
curves of best fit, we opt to not do so as the small
number of OpenAI API models give DaVinci an
outsized influence on the slope of the curve. In
many of the examples we study, including DaVinci
in the scaling laws calculation moves the line of
best fit so far as to entirely change the conclusions.
Instead, we connect the points with lines directly.
We categorize both GPT-J-6B and GPT-NeoX-20B
under the umbrella of GPT-NeoX models, as both
models are trained with the same architecture (ex-
cept for the negligible differences described in Sec-
tion 2.1.2) and were trained on the same dataset.
However, we connect them using a dashed line to
reflect the fact that these two models are not the
same model trained at two different scales the way
the FairSeq and OpenAI models are, having been
trained using different codebases, different tokeniz-
ers, and for different numbers of tokens.

Where we were able to obtain the relevant in-
formation, we report two baselines: human-level
performance and random performance. All plots
contain error bars representing two standard errors,
indicating the 95% confidence interval around each
point. For some plots, the standard error is so small
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that the interval is not visible.

4.1 Tasks Evaluated

We evaluate our model on a diverse collection of
standard language model evaluation datasets that
we divide into three main categories: natural lan-
guage tasks, Advanced Knowledge-Based Tasks,
and Mathematical Tasks. Due to space constraints a
representative subset of the results are shown here,
with the rest in Appendix E.

Natural Language Tasks We evaluate our model
on a diverse collection of standard language model
evaluation datasets: ANLI (Nie et al., 2020), ARC
(Clark et al., 2018), HeadQA (English) (Vilares
and Gómez-Rodríguez, 2019), HellaSwag (Zellers
et al., 2019), LAMBDADA (Paperno et al., 2016),
LogiQA (Liu et al., 2020), OpenBookQA (Mi-
haylov et al., 2018), PiQA (Bisk et al., 2020),
PROST (Aroca-Ouellette et al., 2021), QA4MRE
(Peñas et al., 2013) (2013), SciQ (Welbl et al.,
2017), TriviaQA (Joshi et al., 2017), Winogrande
(Sakaguchi et al., 2021), and the SuperGlue version
of the Winograd Schemas Challenge (WSC) (Wang
et al., 2019).

Mathematical Tasks The solving of mathemati-
cal problem solving is an area that has had a long
history of study in AI research, despite the fact that
large language models tend to perform quite poorly
on both arithmetic tasks and mathematical prob-
lems phrased in natural language. We evaluate on
the MATH test dataset (Hendrycks et al., 2021b) as
well as on the numerical arithmetic problems intro-
duced by Brown et al. (2020). Note that the MATH
test dataset is an evaluation metric that is generally
finetuned on, but due to computational limitations
we only evaluate models zero- and five-shot here.

Advanced Knowledge-Based Tasks We are also
interested in the ability of our models to answer fac-
tual questions that (for humans) require advanced
knowledge. To do this, we use a dataset of multiple
choice questions in a variety of diverse domains
developed by Hendrycks et al. (2021a). Follow-
ing common practice on this dataset, we focus on
results aggregated by subject area: Humanities,
Social Sciences, STEM, and Miscellaneous as pre-
sented in Figure 6. We report five-shot performance
to be comparable to previous work.

Figure 3: Zero-shot performance of GPT-NeoX-20B
compared to GPT-J-6B and FairSeq and OpenAI models
on a variety of language modeling benchmarks.
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Figure 4: Zero-shot performance of GPT-NeoX-20B
compared to and FairSeq and OpenAI models on arith-
metic tasks. Random performance on these tasks is 0%,
and we were unable to find information on median hu-
man performance.

Figure 5: Zero-shot performance of GPT-NeoX-20B
compared to and FairSeq and OpenAI models on arith-
metic tasks. Random performance on these tasks is 0%,
and we were unable to find information on median hu-
man performance.

Figure 6: Five-shot performance of GPT-NeoX-20B
compared to GPT-J-6B and FairSeq and OpenAI models
on Hendrycks et al. (2021a).

5 Discussion

5.1 Performance Results
Natural Language Tasks While GPT-NeoX-
20B outperforms FairSeq 13B on some tasks (e.g.
ARC, LAMBADA, PIQA, PROST), it underper-
forms on others (e.g. HellaSwag, LogiQA zero-
shot). In total, across the 32 evaluations we did
we outpreform on 22 tasks, underpreform on four
tasks, and fall within the margin of error on six
tasks. By far our weakest performance is on Hel-
laSwag, where we score four standard deviations
below FairSeq 13B in both zero- and five-shot eval-
uations. Similarly, GPT-J underperforms FairSeq
6.7B by three standard deviations zero-shot and six
standard deviations five-shot on HellaSwag. We
find this massive performance loss largely inexpli-
cable; while we originally assumed that the sub-
stantial non-prose components of the Pile were to
blame, we note that GPT-J and GPT-NeoX overpre-
form FairSeq models on the very similar Lambada
task by roughly the same amount.
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Mathematics While GPT-3 and FairSeq models
are generally quite close on arithmetic tasks, they
are consistently out-preformed by GPT-J and GPT-
NeoX. We conjecture that this is traceable to the
prevalence of mathematics equations in the training
data, but warn that people should not assume that
this means that training on the Pile produces better
out-of-distribution arithmetic reasoning. Razeghi
et al. (2022) show that there is a strong correla-
tion between the frequency of a numerical equation
in the Pile and GPT-J’s performance on that equa-
tion, and we see no reason this would not hold
in GPT-NeoX 20B, FairSeq, and GPT-3. We are
unfortunately unable to investigate this effect in
FairSeq and GPT-3 models because the authors do
not release their training data.

Advanced Knowledge-Based Tasks While GPT-
NeoX and FairSeq both exhibit dominant perfor-
mance on MMMLU compared to GPT-3 in the
five-shot setting (Figures 6 and 11), their perfor-
mance is much closer in the zero-shot setting (Fig-
ure 10). Hendrycks et al. (2021b) find that few-shot
evaluation does not improve performance, but that
appears to be only the case for GPT-3. We view this
as a warning against drawing strong conclusions
about evaluation metrics based only on one model,
and encourage researchers developing new eval-
uation benchmarks to leverage multiple different
classes of models to avoid overfitting their conclu-
sions to a specific model.

5.2 Powerful Few-Shot Learning

Our experiments indicate that GPT-J-6B and GPT-
NeoX-20B benefit substantially more from few-
shot evaluations than the FairSeq models do. When
going from 0-shot to 5-shot evaluations, GPT-J-6B
improves by 0.0526 and GPT-NeoX-20B improves
by 0.0598 while the FairSeq 6.7B and 13B models
improve by 0.0051 and 0.0183 respectively. This
result is statistically significant and robust to pur-
turbations of prompting. While we do not have a
particular explanation for this currently, we view
this as a strong recommendation for our models.

5.3 Limitations

Optimal Training Hyperparameter tuning is an
expensive process, and is often infeasible to do
at full scale for multi-billion parameter models.
Due to the aforementioned limitations, we opted
to choose hyperparameters based on a mixture of
experiments at smaller scales and by interpolating

parameters appropriate for our model size based
on previously published work (Brown et al., 2020).
However, several aspects of both our model ar-
chitecture [Section 2.1] and training setup, includ-
ing the data [Section 3.1] and the tokenizer [Sec-
tion 3.2], diverge significantly from Brown et al.
(2020). As such, it is almost certainly the case
that the hyperparameters used for our model are no
longer optimal, and potentially never were.

Lack of Coding Evaluations Many of the de-
sign choices we made during the development of
this model were oriented towards improving per-
formance on coding tasks. However, we underes-
timated the difficulty and cost of existing coding
benchmarks (Chen et al., 2021), and so were un-
able to evaluate out model in that domain. We hope
to do so in the future.

Data Duplication Finally, the lack of dataset
deduplication could also have had an impact on
downstream performance. Recent work has shown
that deduplicating training data can have a large
effect on perplexity (Lee et al., 2021). While our
experiments show no sign of this, it is hard to dis-
miss it due to the number of researchers who have
found the opposite result.

5.4 Releasing a 20B Parameter LLM

The current status quo in research is that large lan-
guage models are things people train and publish
about, but do not actually release. To the best of
our knowledge, GPT-NeoX-20B is the largest and
most performant dense language model to ever be
publicly released. A variety of reasons for the non-
release of large language models are given by vari-
ous groups, but the primary one is the harms that
public access to LLMs would purportedly cause.

We take these concerns quite seriously. However,
having taken them quite seriously, we feel that they
are flawed in several respects. While a thorough
analysis of these issues is beyond the scope of this
paper, the public release of our model is the most
important contribution of this paper and so an ex-
planation of why we disagree with the prevailing
wisdom is important.

Providing access to ethics and alignment re-
searchers will prevent harm. The open-source
release of this model is motivated by the hope that
it will allow researchers who would not otherwise
have access to LLMs to use them. While there are
negative risks due to the potential acceleration of
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capabilities research, we believe the benefits of this
release outweigh the risks. We also note that these
benefits are not hypothetical, as a number of papers
about the limits and ethics of LLMs has been ex-
plicitly enabled by the public release of previous
models (Zhang et al., 2021; Kandpal et al., 2022;
Carlini et al., 2022; Birhane et al., 2021; nostalge-
braist, 2020; Meng et al., 2022; Lin et al., 2021).

Limiting access to governments and corpora-
tions will not prevent harm. Perhaps the most
curious aspect of the argument that LLMs should
not be released is that the people making such ar-
guments are not arguing they they should not use
LLMs. Rather, they are claiming that other people
should not use them. We do not believe that this
is a position that should be taken seriously. The
companies and governments that have the financial
resources to train LLMs are overwhelmingly more
likely to do large scale harm using a LLM than a
random individual.

Releasing this model is the beginning, not the
end, of our work to make GPT-NeoX-20B widely
accessible to researchers. Due to the size of the
model, inference is most economical on a pair of
RTX 3090 Tis or a single A6000 GPU and fine-
tuning requires significantly more compute. Truly
promoting widespread access to LLMs means pro-
moting widespread access to computing infrastruc-
ture in addition to the models themselves. We plan
to make progress on this issue going forward by
continuing to work on reducing the inference costs
of our model, and by working with researchers to
provide access to the computing infrastructure they
need to carry out experiments on our models. We
strongly encourage researchers who are interested
in studying GPT-NeoX-20B but lack the necessary
infrastructure to reach out to discuss how we can
help empower you.

6 Summary

We introduce GPT-NeoX-20B, a 20 billion param-
eter autoregressive Transformer language model
trained on the Pile (Gao et al., 2020) dataset, and de-
tail the main architectural differences between GPT-
NeoX-20B and GPT-3—most notably the change in
tokenizer, the addition of Rotary embeddings, the
parallel computation of attention and feed-forward
layers, and a different initialization scheme and
hyperparameters. We run extensive evaluations
of GPT-NeoX-20B on natural language and fac-
tual knowledge tasks, and compare it with other

publicly available models, finding it performed
particularly well on knowledge-based and math-
ematical tasks. Finally, we are open sourcing the
training and evaluation code at https://github.
com/EleutherAI/gpt-neox, where readers can
find a link to download the model weights across
the whole training run.
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person for the project. Stella Biderman was the
lead scientist and project manager.

Implementation and Engineering
Implementation of training infrastructure:
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Quentin Anthony, Samuel Weinbach

Scaling experiments and optimization:
Sid Black, Stella Biderman, Quentin Anthony,
Samuel Weinbach

Positional Embeddings:
Sid Black, Eric Hallahan, Michael Pieler

Tokenizer:
Sid Black

Miscellaneous:
USVSN Sai Prashanth, Ben Wang

Scientific Experimentation
Evaluations:
Stella Biderman, Leo Gao, Jonathan Tow,
Sid Black, Shivanshu Purohit, Horace He,
Laurence Golding

Positional Embeddings:
Stella Biderman, Laurence Golding,
Michael Pieler

Tokenizer:
Stella Biderman, Jason Phang, Leo Gao

Broader Impacts
Alignment Implications:
Leo Gao, Connor Leahy, Laria Reynolds,
Kyle McDonell

Environmental Impact:
Stella Biderman, Eric Hallahan

B Full Configuration Details

In Table 1 we attach the full configuration details
used to train GPT-NeoX-20B. The file is available
in .yaml format usable in gpt-neox at https://
github.com/EleutherAI/gpt-neox, where we
also provide documentation describing the role of
each parameter.

Configuration Key Value
attention-dropout 0
bias-gelu-fusion True
checkpoint-activations True
checkpoint-num-layers 1
data-impl mmap
distributed-backend nccl
eval-interval 1000
eval-iters 10
fp16.enabled True
fp16.fp16 True
fp16.hysteresis 2
fp16.initial-scale-power 12
fp16.loss-scale 0
fp16.loss-scale-window 1000
fp16.min-loss-scale 1
gpt-j-residual True
gradient-accumulation-steps 32
gradient-clipping 1.0
hidden-dropout 0
hidden-size 6144
init-method small-init
log-interval 2
lr-decay-iters 150000
lr-decay-style cosine
max-position-embeddings 2048
min-lr 9.7e-06
model-parallel-size 2
no-weight-tying True
norm layernorm
num-attention-heads 64
num-layers 44
optimizer.params.betas [0.9, 0.95]
optimizer.params.eps 1e-08
optimizer.params.lr 9.7e-05
optimizer.type Adam
output-layer-init-method wang-init
output-layer-parallelism column
partition-activations False
pipe-parallel-size 4
pos-emb rotary
rotary-pct 0.25
save-interval 500
scaled-upper-triang-masked-softmax-fusion True
seq-length 2048
split 995,4,1
steps-per-print 2
synchronize-each-layer True
tokenizer-type HFTokenizer
train-iters 150000
train-micro-batch-size-per-gpu 4
vocab-file 20B-tokenizer.json
wall-clock-breakdown False
warmup 0.01
weight-decay 0.01
zero-optimization.allgather-bucket-size 1260000000
zero-optimization.allgather-partitions True
zero-optimization.contiguous-gradients True
zero-optimization.cpu-offload False
zero-optimization.overlap-comm True
zero-optimization.reduce-bucket-size 1260000000
zero-optimization.reduce-scatter True
zero-optimization.stage 1

Table 1: The full configuration details for GPT-NeoX-
20B training
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C Broader Impacts

The current status quo in research is that large lan-
guage models are things people train and publish
about, but do not actually release. To the best of our
knowledge, GPT-NeoX-20B is the largest dense
language model to ever be publicly released with a
several-way tie for second place at 13 billion param-
eters (Artetxe et al., 2021; Xue et al., 2020, 2021)
and many more models at the 10-11B parameter
scale. A variety of reasons for the non-release of
large language models are given by various groups,
but the primary one is the harms that public access
to LLMs would purportedly cause.

We take these concerns quite seriously. However,
having taken them quite seriously, we feel that they
are flawed in several respects. While a thorough
analysis of these issues is beyond the scope of this
paper, the public release of our model is the most
important contribution of this paper and so an ex-
planation of why we disagree with the prevailing
wisdom is important.

Providing access to ethics and alignment re-
searchers will prevent harm. The open-source
release of this model is motivated by the hope that
it will allow researchers who would not otherwise
have access to LLMs to use them. While there are
negative risks due to the potential acceleration of
capabilities research, we believe the benefits of this
release outweigh the risks. We also note that these
benefits are not hypothetical, as a number of papers
about the limits and ethics of LLMs has been ex-
plicitly enabled by the public release of previous
models (Zhang et al., 2021; Kandpal et al., 2022;
Carlini et al., 2022; Birhane et al., 2021; nostalge-
braist, 2020; Meng et al., 2022; Lin et al., 2021).

Limiting access to governments and corpora-
tions will not prevent harm. Perhaps the most
curious aspect of the argument that LLMs should
not be released is that the people making such ar-
guments are not arguing they they should not use
LLMs. Rather, they are claiming that other people
should not use them. We do not believe that this
is a position that should be taken seriously. The
companies and governments that have the financial
resources to train LLMs are overwhelmingly more
likely to do large scale harm using a LLM than a
random individual.

The open-source release of this model is mo-
tivated by the hope that it will allow ethics and
alignment researchers who would not otherwise

have access to LLMs to use them. While there are
negative risks due to the potential acceleration of
capabilities research, we believe the benefits of this
release outweigh the risks of accelerating capabili-
ties research.

C.1 Impact on Capabilities Research and
Products

When discussing the impact of access to technol-
ogy, it is important to distinguish between capaci-
ties research which seeks to push the current state-
of-the-art and research on

We feel the risk of releasing GPT-NeoX-20B
is acceptable, as the contribution of the model to
capabilities research is likely to be limited, for two
reasons.

We ultimately believe that the benefits of releas-
ing this model outweigh the risks, but this argument
hinges crucially on the particular circumstances
of this release. All actors considering releasing
powerful AI models or advancing the frontier of
capabilities should think carefully about what they
release, in what way, and when.

C.2 Impact on Ethics and Alignment
Research

To oversimplify a complex debate, there are
broadly speaking two schools of thought regard-
ing the mitigation of harm that is done by AI al-
gorithms: AI Ethics and AI Alignement. AI Ethics
researchers are primarily concerned with the im-
pact of current technologies or technologies very
similar to current technologies, while AI Align-
ment is primarily concerned with future “generally
intelligent” systems whose capacities greatly out-
class currently existing systems and possess human
and superhuman levels of intelligence. While the
tools, methods, and ideas of these camps are very
different, we believe that increasing access to these
technologies will empower and advance the goals
of researchers in both schools.

C.2.1 The Necessity of Model Access for AI
Ethics

Analyzing and documenting the limitations of mod-
els is an essential aspect of AI ethics research
(Matias, 2020). Work examining and criticizing
datasets (Kreutzer et al., 2022; Dodge et al., 2021;
Birhane et al., 2021), functionality (Smart, 2021;
Zhang et al., 2021; Carlini et al., 2022; Biderman
and Raff, 2022), evaluation and deployment proce-
dures (Biderman and Scheirer, 2020; Talat et al.,
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2022), and more are essential to well-rounded and
informed debate on the value and application of
technology.

However the current centralization of LLM train-
ing also creates a centralization of control of tech-
nology (Sadowski et al., 2021; Whittaker, 2021)
that makes meaningful independent evaluation im-
possible. This means that it is often not possible
to do this kind of work in practice because of the
severe access restrictions companies that own large
language models put on them. While GPT-NeoX
is the 13th largest dense language model at time of
writing only model larger than GPT-NeoX 20B that
is publicly accessible is GPT-3. There are signifi-
cant limitations on people’s ability to do research
on GPT-3 though, as it is not free to use and its
training data is private.

C.2.2 The Usefulness of Large Language
Models in Alignment

LLMs represent a different paradigm than the AI
systems generally studied by alignment researchers
because they are not well-described as coherent
agents or expected utility maximizers. Though
trained to optimize a log-likelihood loss function, at
a high level the goals a LLM pursues are varied and
contradictory, depending on the way it is prompted.
This introduces additional challenges, but may also
enable new approaches to alignment.

GPT-NeoX-20B itself is not the system we need
to align, but we hope it can serve as a publicly
available platform for experiments whose results
might generalize to crucial future work.

The following is a non-exhaustive list of poten-
tial approaches we consider promising for further
investigation.

Mechanistic interpretability. Mechanistic inter-
pretability research (Cammarata et al., 2020) hopes
to gain an understanding into how models accom-
plish the tasks they do, in part in the hopes of de-
tecting problematic or deceptive algorithms imple-
mented by models before these failures manifest
in the real world. Being able to interpret and in-
spect the detailed inner workings of trained models
would be a powerful tool to ensure models are opti-
mizing for the goals we intended (Hubinger et al.,
2021; Koch et al., 2021). Reverse engineering
transformer language models has already yielded
insights about the inner functioning of LMs (El-
hage et al., 2021; nostalgebraist, 2020; Meng et al.,
2022; Dai et al., 2021).

Using a LLM as a reward model. Because they
are trained to predict human writing, LLMs also
appear to develop a useful representation of hu-
man values at the semantic level. Finding a way
to utilise these representations could be a possible
path toward solving the problem of reward robust-
ness in RL and other algorithms which require a
proxy of human judgment (Stiennon et al., 2022;
Wentworth, 2020). Despite fundamental theoretical
limitations on learning human values (Armstrong
and Mindermann, 2018; Kosoy, 2016), value learn-
ing may still be robust enough to align weaker su-
perhuman AIs. Future experiments could explore
the extent to which LLM pretraining improves
downstream reward model robustness and general-
ization.

Natural language transparency. Since LLM
prompts are in a human-readable form, it can
provide insight on the LLM’s expected behavior.
Prompt programming or finetuning can be used to
leverage this fact and force a LLM to execute more
transparent algorithms, such as splitting problems
into steps or explicitly writing an “internal mono-
logue” (Soares, 2021; Gao et al., 2021a; Nye et al.,
2021). Reliability and trustworthiness can present
significant challenges for these approaches.

However, this form of transparency also has its
limits. In particular, models can often respond
unpredictably to prompts, and internal monologues
may become completely detached from the model’s
decision making process if translating between the
model’s ontology and the human ontology is more
complex than simply modeling human monologues
(Christiano et al., 2021).

Simulating agents at runtime. Although LLMs
are not well-described as coherent agents, they can
still be used to generate goal-directed processes.
Given an appropriate prompt (such as a story of a
character working to achieve a goal), LLMs can
predict and thus simulate an agent (Huang et al.,
2022). Simulated agents take representative actions
according to the patterns present in the training
data, similar to behavior cloning. One potential
future research direction is testing whether they
are less susceptible to failure modes that follow
from expected utility maximization, such as Good-
hart failures and power-seeking behavior. However,
other failure modes can be introduced by the LM
training procedure, such as “delusions” or “halluci-
nations” (Ortega et al., 2021; Gao, 2021; Maynez
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et al., 2020). Additionally, simulated agents may be
uncompetitive with optimal agents like those pro-
duced by Reinforcement Learning. An important
research direction is to explore how the beneficial
properties of simulated agents can be maintained
while making them competitive with RL based ap-
proaches.

Tool AI and automated alignment research.
LMs can be used as relatively unagentic tools, such
as OpenAI’s Codex model (Chen et al., 2021) act-
ing as a coding assistant. Because pretrained LLMs
are not directly optimized for the factual accuracy
of their predictions, it is possible they avoid some
of the traditional problems with tool or oracle AI
(Armstrong et al., 2012), such as the incentive
to produce manipulative answers (Demski, 2019).
Tool AI is not a long-term solution to the problem
of alignment, but it could be used to assist align-
ment research or even automate large parts of it.
For example, language models could be used to
help brainstorm alignment ideas more quickly, act
as a writing assistant, or directly generate align-
ment research papers for humans to review. This
line of research also risks accelerating capabilities
research, a concern we discuss more below.

C.3 Differential Impact on Access

Because training large models requires a significant
engineering and capital investment, such models
are often out of reach for small labs and indepen-
dent researchers. As it stands, only large organiza-
tions have access to the latest generation of power-
ful language models (Brown et al., 2020; Rae et al.,
2022; Fedus et al., 2021; Lieber et al., 2021; Tang,
2021). The number of researchers focused primar-
ily on ethics and alignment working at these labs is
much lower than those working on developing new
capabilities.

We feel the risk of releasing GPT-NeoX-20B is
acceptable, as the contribution of the model to ca-
pabilities research is likely to be limited, for two
reasons. Firstly, the organizations pursuing capa-
bilities research most aggressively are unlikely to
benefit from our open-source release of this model
as they have already developed more powerful mod-
els of their own. Secondly, we believe the single
most important piece of knowledge that drives ad-
vancing capabilities research is the knowledge that
scaling LLMs was possible in the first place (Leahy,
2021; Leahy and Biderman, 2021). Whereas the ac-
tual implementation is very fungible (as evidenced

by the large number of parties who have succeeded
in creating their own LLMs in the past two years).
This differential impact, wherein our release is
expected to benefit primarily people who have
less funding and infrastructure, is a key factor
in our decision to release this model publicly.

We ultimately believe that the benefits of releas-
ing this model outweigh the risks, but this argument
hinges crucially on the particular circumstances
of this release. All actors considering releasing
powerful AI models or advancing the frontier of
capabilities should think carefully about what they
release, in what way, and when.

C.4 Environmental Impact
A significant point of concern in some recent work
is the energy usage and carbon emissions associ-
ated with training large language models (Strubell
et al., 2019; Schwartz et al., 2020; Lacoste et al.,
2019; Bender et al., 2021). In particular, Strubell
et al. (2019) estimate that a then-recent paper by
the authors released 626,155 lbs or 284.01 met-
ric tons14 of CO2 (tCO2). As Strubell et al. (2019)
has been widely cited and quoted in the media as
representative of large-scale language models, we
decided to explicitly and carefully track our energy
usage and carbon emissions to see if this is truly a
representative account of NLP emissions.

Throughout the development and training of our
model, we tracked our energy usage and carbon
emissions. We found that the process of develop-
ing and training GPT-NeoX-20B emitted almost
exactly 10% of Strubell et al. (2019)’s estimate,
coming in at a total of 69957 lbs or 31.73 met-
ric tons of CO2. This is roughly the equivalent of
the yearly emissions of the average American or
35 round-trip flights between New York City and
San Francisco. Our systems were based in Illinois,
USA, and consumed energy sourced from the mix
as follows

• 30.40% Coal (0.95tCO2 /MWh)

• 31.30% Gas (0.6078tCO2 /MWh)

• 1.30% Hydroelectric (0 tCO2 /MWh)

• 17.40% Nuclear (0 tCO2 /MWh)

• 0.30% Solar (0 tCO2 /MWh)

• 18.10% Wind (0 tCO2 /MWh)
14We choose to present environmental impact figures in

metric tons to align with standard reporting.
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• 1.30% Other Renewables (0 tCO2 /MWh)

This mixture produces an average of 0.47905
tCO2 /MWh, and we consumed a total of
43.92 MWh of electricity over the course of 1830
hours of training. Scaling, testing, and evaluation
were responsible for the equivalent of another 920
hours on our systems, for a total energy consump-
tion 66.24 MWh and thus the production of just
under 35 metric tons of CO2.

It is noteworthy that Strubell et al. (2019) are
estimating emissions from a neural architecture
search paper, and is therefore not directly com-
parable to ours. The primary motivation for our
comparison is that their number has attracted a lot
of attention and is often taken to be respresenta-
tive of NLP research. In general, we advocate for
more systematic and comprehensive reporting to
improve transparency surrounding this important
topic.

D Architecture Diagram

E Full Evaluation Results

Results for natural language understanding tasks
are shown in Tables 2 and 3, while results for
Hendrycks tasks are found in Tables 10 to 13.

All evaluations had version 0 in the Evaluation
Harness. This information is reported in the output
of the Evaluation Harness and should be used for
ensuring reproducibility of these results, even as
the task implementations themselves may change
to fix bugs.
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Figure 7: Architecture diagram of a single training node.

Figure 8: Zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and OpenAI models on a
variety of language modeling benchmarks.
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Figure 9: Length-normalized zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and
OpenAI models on a variety of language modeling benchmarks.
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

ANLI Round 1 0.324±0.015 0.340±0.015 0.334±0.015 0.326±0.015 0.325±0.015 0.363±0.015
ANLI Round 2 0.340±0.015 0.343±0.015 0.342±0.015 0.308±0.015 0.338±0.015 0.375±0.015
ANLI Round 3 0.355±0.014 0.354±0.014 0.354±0.014 0.340±0.014 0.353±0.014 0.369±0.014
LAMBADA 0.683±0.006 0.720±0.006 0.515±0.007 0.625±0.007 0.693±0.006 0.752±0.006
WSC 0.365±0.047 0.500±0.049 0.375±0.048 0.404±0.048 0.548±0.049 0.548±0.049
HellaSwag 0.518±0.005 0.535±0.005 0.359±0.005 0.429±0.005 0.505±0.005 0.592±0.005
Winogrande 0.640±0.013 0.661±0.013 0.528±0.014 0.594±0.014 0.649±0.013 0.699±0.013
SciQ 0.910±0.009 0.928±0.008 0.843±0.012 0.866±0.011 0.918±0.009 0.949±0.007
PIQA 0.752±0.010 0.779±0.010 0.690±0.011 0.745±0.010 0.767±0.010 0.791±0.009
TriviaQA 0.170±0.004 0.259±0.004 0.050±0.002 0.115±0.003 0.196±0.004 0.409±0.005
ARC (Easy) 0.670±0.010 0.723±0.009 0.514±0.010 0.598±0.010 0.682±0.010 0.762±0.009
ARC (Challenge) 0.340±0.014 0.380±0.014 0.225±0.012 0.275±0.013 0.334±0.014 0.435±0.014
OpenBookQA 0.288±0.020 0.290±0.020 0.172±0.017 0.224±0.019 0.290±0.020 0.336±0.021
HeadQA (English) — — 0.245±0.008 0.278±0.009 0.317±0.009 0.356±0.009
LogiQA 0.209±0.016 0.230±0.017 0.218±0.016 0.198±0.016 0.217±0.016 0.227±0.016
PROST 0.267±0.003 0.296±0.003 0.254±0.003 0.270±0.003 0.288±0.003 0.267±0.003
QA4MRE (2013) 0.373±0.029 0.363±0.029 0.320±0.028 0.370±0.029 0.377±0.029 0.426±0.029

Table 2: Zero-Shot Results on Natural Language Understanding Tasks (GPT-J, GPT-NeoX and GPT-3)
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

ANLI Round 1 0.316±0.015 0.322±0.015 0.331±0.015 0.318±0.015 0.338±0.015 0.340±0.015
ANLI Round 2 0.336±0.015 0.312±0.015 0.334±0.015 0.339±0.015 0.322±0.015 0.330±0.015
ANLI Round 3 0.330±0.014 0.323±0.014 0.333±0.014 0.340±0.014 0.333±0.014 0.347±0.014
LAMBADA 0.388±0.007 0.478±0.007 0.562±0.007 0.632±0.007 0.673±0.007 0.709±0.006
WSC 0.365±0.047 0.471±0.049 0.365±0.047 0.635±0.047 0.615±0.048 0.577±0.049
HellaSwag 0.309±0.005 0.380±0.005 0.448±0.005 0.493±0.005 0.525±0.005 0.554±0.005
Winogrande 0.513±0.014 0.529±0.014 0.600±0.014 0.620±0.014 0.644±0.013 0.674±0.013
SciQ 0.732±0.014 0.737±0.014 0.838±0.012 0.878±0.010 0.895±0.010 0.910±0.009
PIQA 0.668±0.011 0.690±0.011 0.731±0.010 0.751±0.010 0.762±0.010 0.769±0.010
TriviaQA 0.015±0.001 0.019±0.001 0.078±0.003 0.141±0.003 0.221±0.004 0.270±0.004
ARC (Easy) 0.426±0.010 0.468±0.010 0.565±0.010 0.625±0.010 0.665±0.010 0.680±0.010
ARC (Challenge) 0.195±0.012 0.233±0.012 0.263±0.013 0.296±0.013 0.329±0.014 0.345±0.014
OpenBookQA 0.168±0.017 0.190±0.018 0.238±0.019 0.254±0.019 0.292±0.020 0.296±0.020
HeadQA (English) 0.233±0.008 0.233±0.008 0.256±0.008 0.264±0.008 0.280±0.009 0.280±0.009
LogiQA 0.220±0.016 0.230±0.017 0.214±0.016 0.212±0.016 0.232±0.017 0.240±0.017
PROST 0.215±0.003 0.257±0.003 0.257±0.003 0.230±0.003 0.272±0.003 0.252±0.003
QA4MRE (2013) 0.285±0.027 0.335±0.028 0.327±0.028 0.380±0.029 0.370±0.029 0.380±0.029

Table 3: Zero-Shot Results on Natural Language Understanding Tasks (FairSeq Models)

118



GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

ANLI Round 1 0.322±0.015 0.312±0.015 — — — —
ANLI Round 2 0.331±0.015 0.329±0.015 — — — —
ANLI Round 3 0.346±0.014 0.342±0.014 — — — —
LAMBADA 0.662±0.007 0.698±0.006 — — — —
WSC 0.365±0.047 0.385±0.048 — — — —
HellaSwag 0.494±0.005 0.538±0.005 — — — —
Winogrande 0.660±0.013 0.683±0.013 — — — —
SciQ 0.913±0.009 0.960±0.006 — — — —
PIQA 0.756±0.010 0.774±0.010 — — — —
TriviaQA 0.289±0.004 0.347±0.004 — — — —
ARC (Challenge) 0.360±0.014 0.410±0.014 — — — —
ARC (Easy) 0.705±0.009 0.746±0.009 — — — —
OpenBookQA 0.310±0.021 0.326±0.021 — — — —
HeadQA (English) 0.326±0.009 0.385±0.009 — — — —
LogiQA 0.230±0.017 0.220±0.016 — — — —
QA4MRE (2013) 0.366±0.029 0.363±0.029 — — — —

Table 4: Five-Shot Results on Natural Language Understanding Tasks (GPT-J and GPT-NeoX). GPT-3 is omitted due to financial limitations.
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

ANLI Round 1 0.332±0.015 0.336±0.015 0.327±0.015 0.336±0.015 0.305±0.015 0.335±0.015
ANLI Round 2 0.345±0.015 0.350±0.015 0.347±0.015 0.333±0.015 0.340±0.015 0.338±0.015
ANLI Round 3 0.359±0.014 0.347±0.014 0.370±0.014 0.326±0.014 0.367±0.014 0.357±0.014
LAMBADA 0.268±0.006 0.349±0.007 0.427±0.007 0.460±0.007 0.494±0.007 0.518±0.007
WSC 0.365±0.047 0.365±0.047 0.365±0.047 0.356±0.047 0.500±0.049 0.404±0.048
HellaSwag 0.308±0.005 0.379±0.005 0.451±0.005 0.497±0.005 0.531±0.005 0.559±0.005
Winogrande 0.516±0.014 0.538±0.014 0.612±0.014 0.633±0.014 0.657±0.013 0.690±0.013
SciQ 0.758±0.014 0.819±0.012 0.859±0.011 0.875±0.010 0.871±0.011 0.899±0.010
PIQA 0.656±0.011 0.700±0.011 0.731±0.010 0.750±0.010 0.764±0.010 0.769±0.010
TriviaQA 0.044±0.002 0.097±0.003 0.160±0.003 0.225±0.004 0.293±0.004 0.323±0.004
ARC (Easy) 0.453±0.010 0.533±0.010 0.618±0.010 0.664±0.010 0.686±0.010 0.702±0.009
ARC (Challenge) 0.198±0.012 0.231±0.012 0.278±0.013 0.310±0.014 0.359±0.014 0.370±0.014
OpenBookQA 0.184±0.017 0.206±0.018 0.218±0.018 0.258±0.020 0.288±0.020 0.290±0.020
HeadQA (English) 0.235±0.008 0.240±0.008 0.254±0.008 0.266±0.008 0.276±0.009 0.282±0.009
LogiQA 0.218±0.016 0.207±0.016 0.210±0.016 0.214±0.016 0.214±0.016 0.223±0.016
QA4MRE (2013) 0.324±0.028 0.338±0.028 0.338±0.028 0.352±0.028 0.391±0.029 0.387±0.029

Table 5: Five-Shot Results on Natural Language Understanding Tasks (FairSeq Models)
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

1DC 0.088±0.006 0.098±0.007 0.029±0.000 0.001±0.000 0.024±0.000 0.098±0.000
2D+ 0.238±0.010 0.570±0.011 0.006±0.000 0.009±0.000 0.025±0.000 0.769±0.000
2Dx 0.139±0.008 0.148±0.008 0.022±0.000 0.021±0.000 0.058±0.000 0.198±0.000
2D- 0.216±0.009 0.680±0.010 0.013±0.000 0.013±0.000 0.076±0.000 0.580±0.000
3D+ 0.088±0.006 0.099±0.007 0.001±0.000 0.001±0.000 0.003±0.000 0.342±0.000
3D- 0.046±0.005 0.344±0.011 0.001±0.000 0.001±0.000 0.004±0.000 0.483±0.000
4D+ 0.007±0.002 0.007±0.002 0.001±0.000 0.000±0.000 0.001±0.000 0.040±0.000
4D- 0.005±0.002 0.029±0.004 0.000±0.000 0.000±0.000 0.000±0.000 0.075±0.000
5D+ 0.001±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.006±0.000
5D- 0.000±0.000 0.004±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.008±0.000
MATH (Algebra) 0.013±0.003 0.010±0.003 0.003±0.002 0.008±0.003 0.003±0.002 0.008±0.003
MATH (Counting and Probability) 0.011±0.005 0.017±0.006 0.000±0.000 0.004±0.003 0.000±0.000 0.006±0.004
MATH (Geometry) 0.004±0.003 0.017±0.006 0.000±0.000 0.000±0.000 0.002±0.002 0.002±0.002
MATH (Intermediate Algebra) 0.004±0.002 0.001±0.001 0.000±0.000 0.003±0.002 0.006±0.002 0.003±0.002
MATH (Number Theory) 0.007±0.004 0.013±0.005 0.007±0.004 0.000±0.000 0.006±0.003 0.011±0.005
MATH (Pre-Algebra) 0.010±0.003 0.018±0.005 0.007±0.003 0.006±0.003 0.008±0.003 0.014±0.004
MATH (Pre-Calculus) 0.005±0.003 0.005±0.003 0.004±0.003 0.000±0.000 0.002±0.002 0.004±0.003

Table 6: Zero-Shot Results on Basic Arithmetic and MATH (GPT-J, GPT-NeoX, and GPT-3)
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

1DC 0.001±0.001 0.000±0.000 0.000±0.000 0.011±0.002 0.024±0.003 0.001±0.001
2D+ 0.005±0.002 0.001±0.001 0.002±0.001 0.009±0.002 0.019±0.003 0.020±0.003
2Dx 0.020±0.003 0.004±0.001 0.018±0.003 0.023±0.003 0.036±0.004 0.028±0.004
2D- 0.005±0.002 0.002±0.001 0.006±0.002 0.013±0.002 0.013±0.003 0.015±0.003
3D+ 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001
3D- 0.002±0.001 0.001±0.001 0.002±0.001 0.002±0.001 0.002±0.001 0.002±0.001
4D+ 0.001±0.001 0.000±0.000 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001
4D- 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
5D+ 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
5D- 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
MATH (Algebra) 0.000±0.000 0.000±0.000 0.001±0.001 0.003±0.002 0.004±0.002 0.003±0.001
MATH (Counting and Probability) 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.004±0.003 0.000±0.000
MATH (Geometry) 0.000±0.000 0.000±0.000 0.000±0.000 0.002±0.002 0.000±0.000 0.000±0.000
MATH (Intermediate Algebra) 0.000±0.002 0.000±0.002 0.000±0.000 0.001±0.001 0.006±0.002 0.002±0.002
MATH (Number Theory) 0.000±0.000 0.000±0.000 0.000±0.000 0.002±0.002 0.000±0.000 0.004±0.003
MATH (Pre-Algebra) 0.000±0.000 0.000±0.000 0.003±0.002 0.002±0.002 0.001±0.001 0.000±0.000
MATH (Pre-Calculus) 0.000±0.000 0.000±0.000 0.000±0.000 0.002±0.002 0.000±0.000 0.000±0.000

Table 7: Zero-Shot Results on Basic Arithmetic and MATH (FairSeq Models)
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

1DC 0.192±0.009 0.191±0.009 — — — —
2D+ 0.880±0.007 0.992±0.002 — — — —
2Dx 0.282±0.010 0.452±0.011 — — — —
2D- 0.817±0.009 0.942±0.005 — — — —
3D+ 0.357±0.011 0.599±0.011 — — — —
3D- 0.497±0.011 0.819±0.009 — — — —
4D+ 0.058±0.005 0.152±0.008 — — — —
4D- 0.092±0.006 0.151±0.008 — — — —
5D+ 0.009±0.002 0.033±0.004 — — — —
5D- 0.021±0.003 0.059±0.005 — — — —
MATH (Algebra) 0.032±0.005 0.049±0.006 — — — —
MATH (Counting and Probability) 0.036±0.009 0.030±0.008 — — — —
MATH (Geometry) 0.027±0.007 0.015±0.005 — — — —
MATH (Intermediate Algebra) 0.024±0.005 0.021±0.005 — — — —
MATH (Number Theory) 0.044±0.009 0.065±0.011 — — — —
MATH (Pre-Algebra) 0.052±0.008 0.057±0.008 — — — —
MATH (Pre-Calculus) 0.013±0.005 0.027±0.007 — — — —

Table 8: Five-Shot Results on Basic Arithmetic and MATH (GPT-J and GPT-NeoX). GPT-3 is omitted due to financial limitations.
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

1DC 0.019±0.003 0.024±0.003 0.029±0.004 0.032±0.004 0.046±0.005 0.046±0.005
2D+ 0.005±0.002 0.004±0.001 0.006±0.002 0.029±0.004 0.034±0.004 0.051±0.005
2Dx 0.001±0.001 0.025±0.004 0.025±0.003 0.025±0.003 0.049±0.005 0.053±0.005
2D- 0.007±0.002 0.011±0.002 0.008±0.002 0.013±0.003 0.018±0.003 0.030±0.004
3D+ 0.002±0.001 0.002±0.001 0.001±0.001 0.003±0.001 0.001±0.001 0.003±0.001
3D- 0.002±0.001 0.004±0.001 0.003±0.001 0.003±0.001 0.002±0.001 0.003±0.001
4D+ 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
4D- 0.001±0.001 0.000±0.000 0.000±0.000 0.001±0.001 0.000±0.000 0.000±0.000
5D+ 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
5D- 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
MATH (Algebra) 0.023±0.004 0.010±0.003 0.013±0.003 0.014±0.003 0.017±0.004 0.012±0.003
MATH (Counting and Probability) 0.008±0.004 0.004±0.003 0.015±0.006 0.017±0.006 0.015±0.006 0.017±0.006
MATH (Geometry) 0.000±0.000 0.013±0.005 0.006±0.004 0.015±0.005 0.015±0.005 0.006±0.004
MATH (Intermediate Algebra) 0.010±0.003 0.002±0.002 0.007±0.003 0.010±0.003 0.011±0.003 0.004±0.002
MATH (Number Theory) 0.019±0.006 0.009±0.004 0.007±0.004 0.011±0.005 0.028±0.007 0.019±0.006
MATH (Pre-Algebra) 0.013±0.004 0.008±0.003 0.010±0.003 0.011±0.004 0.021±0.005 0.013±0.004
MATH (Pre-Calculus) 0.002±0.002 0.002±0.002 0.004±0.003 0.000±0.000 0.002±0.002 0.000±0.000

Table 9: Five-Shot Results on Basic Arithmetic and MATH (FairSeq Models)
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Figure 10: Zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and OpenAI models on
Hendrycks et al. (2021a).

Figure 11: Five-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and OpenAI models on
Hendrycks et al. (2021a). API limits we were unable to evaluate on the OpenAI API. Instead, we report numbers
from Hendrycks et al. (2021a) with model sizes corrected.
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

Abstract Algebra 0.260±0.044 0.230±0.042 0.170±0.038 0.220±0.042 0.220±0.042 0.220±0.042
Anatomy 0.274±0.039 0.319±0.040 0.207±0.035 0.289±0.039 0.274±0.039 0.348±0.041
Astronomy 0.243±0.035 0.329±0.038 0.237±0.035 0.211±0.033 0.237±0.035 0.382±0.040
Business Ethics 0.290±0.046 0.280±0.045 0.360±0.048 0.330±0.047 0.300±0.046 0.390±0.049
Clinical Knowledge 0.272±0.027 0.291±0.028 0.223±0.026 0.234±0.026 0.253±0.027 0.317±0.029
College Biology 0.285±0.038 0.271±0.037 0.271±0.037 0.299±0.038 0.208±0.034 0.347±0.040
College Chemistry 0.240±0.043 0.160±0.037 0.270±0.045 0.290±0.046 0.210±0.041 0.250±0.044
College Computer Science 0.270±0.045 0.250±0.044 0.310±0.046 0.270±0.045 0.240±0.043 0.260±0.044
College Mathematics 0.260±0.044 0.240±0.043 0.220±0.042 0.160±0.037 0.200±0.040 0.170±0.038
College Medicine 0.197±0.030 0.283±0.034 0.237±0.032 0.202±0.031 0.225±0.032 0.289±0.035
College Physics 0.206±0.040 0.284±0.045 0.304±0.046 0.324±0.047 0.255±0.043 0.235±0.042
Computer Security 0.270±0.045 0.290±0.046 0.250±0.044 0.240±0.043 0.320±0.047 0.350±0.048
Conceptual Physics 0.255±0.029 0.294±0.030 0.264±0.029 0.260±0.029 0.268±0.029 0.294±0.030
Econometrics 0.237±0.040 0.289±0.043 0.289±0.043 0.246±0.040 0.246±0.040 0.228±0.039
Electrical Engineering 0.359±0.040 0.303±0.038 0.338±0.039 0.276±0.037 0.310±0.039 0.414±0.041
Elementary Mathematics 0.254±0.022 0.283±0.023 0.243±0.022 0.272±0.023 0.249±0.022 0.312±0.024
Formal Logic 0.341±0.042 0.294±0.041 0.262±0.039 0.349±0.043 0.270±0.040 0.294±0.041
Global Facts 0.250±0.044 0.220±0.042 0.240±0.043 0.240±0.043 0.300±0.046 0.290±0.046
High School Biology 0.252±0.025 0.300±0.026 0.235±0.024 0.232±0.024 0.271±0.025 0.335±0.027
High School Chemistry 0.202±0.028 0.236±0.030 0.246±0.030 0.241±0.030 0.197±0.028 0.232±0.030
High School Computer Science 0.250±0.044 0.210±0.041 0.190±0.039 0.240±0.043 0.220±0.042 0.290±0.046
High School European History 0.261±0.034 0.255±0.034 0.224±0.033 0.285±0.035 0.261±0.034 0.303±0.036
High School Geography 0.202±0.029 0.227±0.030 0.217±0.029 0.207±0.029 0.242±0.031 0.348±0.034
High School Government and Politics 0.228±0.030 0.228±0.030 0.212±0.030 0.181±0.028 0.212±0.030 0.326±0.034
High School Macroeconomics 0.285±0.023 0.328±0.024 0.272±0.023 0.277±0.023 0.277±0.023 0.303±0.023
High School Mathematics 0.219±0.025 0.263±0.027 0.196±0.024 0.230±0.026 0.167±0.023 0.248±0.026

Table 10: Zero-Shot Results on Hendrycks Tasks, Part 1 (GPT-J, GPT-NeoX and GPT-3)
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

High School Microeconomics 0.277±0.029 0.294±0.030 0.235±0.028 0.265±0.029 0.239±0.028 0.307±0.030
High School Physics 0.272±0.036 0.298±0.037 0.199±0.033 0.298±0.037 0.199±0.033 0.219±0.034
High School Physiology 0.273±0.019 0.283±0.019 0.209±0.017 0.217±0.018 0.246±0.018 0.352±0.020
High School Statistics 0.292±0.031 0.319±0.032 0.241±0.029 0.278±0.031 0.255±0.030 0.278±0.031
High School US History 0.289±0.032 0.309±0.032 0.255±0.031 0.260±0.031 0.240±0.030 0.368±0.034
High School World History 0.283±0.029 0.295±0.030 0.278±0.029 0.262±0.029 0.270±0.029 0.321±0.030
Human Aging 0.265±0.030 0.224±0.028 0.368±0.032 0.336±0.032 0.296±0.031 0.327±0.031
Human Sexuality 0.397±0.043 0.405±0.043 0.374±0.042 0.427±0.043 0.397±0.043 0.481±0.044
International Law 0.264±0.040 0.298±0.042 0.182±0.035 0.207±0.037 0.207±0.037 0.331±0.043
Jurisprudence 0.278±0.043 0.250±0.042 0.287±0.044 0.278±0.043 0.259±0.042 0.370±0.047
Logical Fallacies 0.294±0.036 0.227±0.033 0.239±0.034 0.221±0.033 0.245±0.034 0.252±0.034
Machine Learning 0.223±0.040 0.268±0.042 0.241±0.041 0.286±0.043 0.295±0.043 0.232±0.040
Management 0.233±0.042 0.282±0.045 0.184±0.038 0.214±0.041 0.320±0.046 0.456±0.049
Marketing 0.303±0.030 0.321±0.031 0.308±0.030 0.282±0.029 0.308±0.030 0.491±0.033
Medical Genetics 0.310±0.046 0.340±0.048 0.260±0.044 0.300±0.046 0.330±0.047 0.430±0.050
Miscellaneous 0.275±0.016 0.299±0.016 0.257±0.016 0.269±0.016 0.284±0.016 0.450±0.018
Moral Disputes 0.283±0.024 0.289±0.024 0.263±0.024 0.263±0.024 0.277±0.024 0.301±0.025
Moral Scenarios 0.237±0.014 0.232±0.014 0.238±0.014 0.273±0.015 0.238±0.014 0.249±0.014
Nutrition 0.346±0.027 0.379±0.028 0.301±0.026 0.281±0.026 0.291±0.026 0.353±0.027
Philosophy 0.260±0.025 0.293±0.026 0.215±0.023 0.267±0.025 0.244±0.024 0.367±0.027
Prehistory 0.244±0.024 0.272±0.025 0.244±0.024 0.269±0.025 0.284±0.025 0.324±0.026
Professional Accounting 0.262±0.026 0.234±0.025 0.202±0.024 0.255±0.026 0.238±0.025 0.287±0.027
Professional Law 0.241±0.011 0.267±0.011 0.261±0.011 0.256±0.011 0.259±0.011 0.261±0.011
Professional Medicine 0.276±0.027 0.287±0.027 0.221±0.025 0.239±0.026 0.265±0.027 0.324±0.028
Professional Psychology 0.284±0.018 0.275±0.018 0.245±0.017 0.225±0.017 0.257±0.018 0.335±0.019
Public Relations 0.282±0.043 0.345±0.046 0.255±0.042 0.327±0.045 0.364±0.046 0.364±0.046
Security Studies 0.363±0.031 0.376±0.031 0.367±0.031 0.347±0.030 0.384±0.031 0.392±0.031
Sociology 0.279±0.032 0.284±0.032 0.328±0.033 0.303±0.033 0.274±0.032 0.368±0.034
US Foreign Policy 0.340±0.048 0.360±0.048 0.330±0.047 0.330±0.047 0.380±0.049 0.500±0.050
Virology 0.355±0.037 0.361±0.037 0.307±0.036 0.319±0.036 0.337±0.037 0.386±0.038
World Religions 0.333±0.036 0.386±0.037 0.316±0.036 0.310±0.035 0.374±0.037 0.398±0.038

Table 11: Zero-Shot Results on Hendrycks Tasks, Part 2 (GPT-J, GPT-NeoX, and GPT-3)
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

Abstract Algebra 0.260±0.044 0.180±0.039 0.230±0.042 0.250±0.044 0.240±0.043 0.260±0.044
Anatomy 0.178±0.033 0.207±0.035 0.185±0.034 0.170±0.032 0.259±0.038 0.237±0.037
Astronomy 0.270±0.036 0.237±0.035 0.243±0.035 0.263±0.036 0.296±0.037 0.257±0.036
Business Ethics 0.330±0.047 0.410±0.049 0.340±0.048 0.350±0.048 0.380±0.049 0.340±0.048
Clinical Knowledge 0.215±0.025 0.264±0.027 0.226±0.026 0.249±0.027 0.223±0.026 0.264±0.027
College Biology 0.285±0.038 0.201±0.034 0.243±0.036 0.222±0.035 0.271±0.037 0.306±0.039
College Chemistry 0.310±0.046 0.290±0.046 0.350±0.048 0.300±0.046 0.280±0.045 0.240±0.043
College Computer Science 0.200±0.040 0.250±0.044 0.260±0.044 0.250±0.044 0.300±0.046 0.280±0.045
College Mathematics 0.190±0.039 0.170±0.038 0.230±0.042 0.200±0.040 0.230±0.042 0.250±0.044
College Medicine 0.243±0.033 0.237±0.032 0.249±0.033 0.254±0.033 0.237±0.032 0.260±0.033
College Physics 0.216±0.041 0.245±0.043 0.216±0.041 0.275±0.044 0.343±0.047 0.216±0.041
Computer Security 0.240±0.043 0.290±0.046 0.300±0.046 0.240±0.043 0.230±0.042 0.320±0.047
Conceptual Physics 0.260±0.029 0.255±0.029 0.247±0.028 0.243±0.028 0.247±0.028 0.204±0.026
Econometrics 0.246±0.040 0.272±0.042 0.246±0.040 0.281±0.042 0.219±0.039 0.263±0.041
Electrical Engineering 0.283±0.038 0.303±0.038 0.234±0.035 0.276±0.037 0.310±0.039 0.290±0.038
Elementary Mathematics 0.246±0.022 0.214±0.021 0.233±0.022 0.233±0.022 0.246±0.022 0.198±0.021
Formal Logic 0.278±0.040 0.302±0.041 0.278±0.040 0.310±0.041 0.286±0.040 0.333±0.042
Global Facts 0.200±0.040 0.210±0.041 0.190±0.039 0.150±0.036 0.220±0.042 0.160±0.037
High School Biology 0.248±0.025 0.255±0.025 0.268±0.025 0.226±0.024 0.274±0.025 0.235±0.024
High School Chemistry 0.217±0.029 0.207±0.029 0.256±0.031 0.281±0.032 0.217±0.029 0.266±0.031
High School Computer Science 0.240±0.043 0.230±0.042 0.270±0.045 0.240±0.043 0.350±0.048 0.280±0.045
High School European History 0.230±0.033 0.333±0.037 0.279±0.035 0.261±0.034 0.273±0.035 0.230±0.033
High School Geography 0.263±0.031 0.273±0.032 0.222±0.030 0.258±0.031 0.207±0.029 0.253±0.031
High School Government and Politics 0.254±0.031 0.290±0.033 0.228±0.030 0.233±0.031 0.218±0.030 0.187±0.028
High School Macroeconomics 0.200±0.020 0.272±0.023 0.254±0.022 0.269±0.022 0.326±0.024 0.256±0.022
High School Mathematics 0.204±0.025 0.189±0.024 0.170±0.023 0.226±0.025 0.200±0.024 0.193±0.024

Table 12: Zero-Shot Results on Hendrycks Tasks, Part 1 (FairSeq Models)
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

High School Microeconomics 0.248±0.028 0.256±0.028 0.244±0.028 0.248±0.028 0.269±0.029 0.227±0.027
High School Physics 0.238±0.035 0.219±0.034 0.258±0.036 0.245±0.035 0.232±0.034 0.166±0.030
High School Physiology 0.235±0.018 0.272±0.019 0.266±0.019 0.284±0.019 0.250±0.019 0.261±0.019
High School Statistics 0.222±0.028 0.241±0.029 0.269±0.030 0.250±0.030 0.287±0.031 0.241±0.029
High School US History 0.240±0.030 0.284±0.032 0.299±0.032 0.299±0.032 0.314±0.033 0.294±0.032
High School World History 0.283±0.029 0.232±0.027 0.270±0.029 0.245±0.028 0.300±0.030 0.316±0.030
Human Aging 0.274±0.030 0.309±0.031 0.323±0.031 0.291±0.031 0.296±0.031 0.274±0.030
Human Sexuality 0.252±0.038 0.366±0.042 0.328±0.041 0.359±0.042 0.359±0.042 0.351±0.042
International Law 0.157±0.033 0.223±0.038 0.240±0.039 0.281±0.041 0.264±0.040 0.231±0.038
Jurisprudence 0.241±0.041 0.269±0.043 0.287±0.044 0.241±0.041 0.213±0.040 0.278±0.043
Logical Fallacies 0.196±0.031 0.221±0.033 0.233±0.033 0.196±0.031 0.245±0.034 0.221±0.033
Machine Learning 0.232±0.040 0.295±0.043 0.348±0.045 0.232±0.040 0.259±0.042 0.241±0.041
Management 0.223±0.041 0.311±0.046 0.214±0.041 0.291±0.045 0.340±0.047 0.262±0.044
Marketing 0.295±0.030 0.231±0.028 0.286±0.030 0.303±0.030 0.333±0.031 0.329±0.031
Medical Genetics 0.250±0.044 0.310±0.046 0.310±0.046 0.280±0.045 0.270±0.045 0.300±0.046
Miscellaneous 0.258±0.016 0.301±0.016 0.264±0.016 0.249±0.015 0.284±0.016 0.268±0.016
Moral Disputes 0.269±0.024 0.246±0.023 0.220±0.022 0.260±0.024 0.269±0.024 0.272±0.024
Moral Scenarios 0.255±0.015 0.236±0.014 0.273±0.015 0.238±0.014 0.241±0.014 0.253±0.015
Nutrition 0.252±0.025 0.261±0.025 0.297±0.026 0.297±0.026 0.330±0.027 0.304±0.026
Philosophy 0.199±0.023 0.219±0.023 0.228±0.024 0.222±0.024 0.238±0.024 0.270±0.025
Prehistory 0.290±0.025 0.222±0.023 0.253±0.024 0.228±0.023 0.296±0.025 0.235±0.024
Professional Accounting 0.262±0.026 0.220±0.025 0.209±0.024 0.170±0.022 0.238±0.025 0.266±0.026
Professional Law 0.261±0.011 0.261±0.011 0.256±0.011 0.256±0.011 0.259±0.011 0.261±0.011
Professional Medicine 0.239±0.026 0.254±0.026 0.254±0.026 0.206±0.025 0.221±0.025 0.195±0.024
Professional Psychology 0.245±0.017 0.247±0.017 0.242±0.017 0.248±0.017 0.278±0.018 0.252±0.018
Public Relations 0.236±0.041 0.245±0.041 0.264±0.042 0.227±0.040 0.291±0.044 0.291±0.044
Security Studies 0.322±0.030 0.331±0.030 0.331±0.030 0.335±0.030 0.408±0.031 0.359±0.031
Sociology 0.234±0.030 0.234±0.030 0.259±0.031 0.229±0.030 0.234±0.030 0.323±0.033
US Foreign Policy 0.250±0.044 0.300±0.046 0.300±0.046 0.310±0.046 0.370±0.049 0.330±0.047
Virology 0.289±0.035 0.301±0.036 0.319±0.036 0.355±0.037 0.295±0.036 0.331±0.037
World Religions 0.292±0.035 0.263±0.034 0.287±0.035 0.292±0.035 0.269±0.034 0.339±0.036

Table 13: Zero-shot Results on Hendrycks Tasks, Part 2 (FairSeq Models)
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F Tokenizer Analysis

Both tokenizers share 36938 out of 50257 tokens, a ∼73.5% overlap in tokens. In this section, we perform
comparison between the GPT-NeoX-20B tokenizer to the GPT-2 tokenizer using the validation set of the
Pile.

In Table 15, we show the resulting number of tokens from tokenizing each component of the Pile’s
validation set with both tokenizers, and the ratio of GPT-NeoX-20B tokens to GPT-2 tokens.

We observe that the GPT-NeoX-20B tokenizer represents all Pile components using fewer or very
closely comparable numbers of tokens. The largest percentage improvement in token counts are in the
EuroParl, GitHub, and PubMed Central components, with a more than 20% savings in the number of
tokens needed to represent that component. We highlight that arXiv, GitHub, and StackExchange—subsets
with large code components—can be represented with meaningfully fewer tokens with the GPT-NeoX-20B
tokenizer compared to the GPT-2 tokenizer. Overall, the GPT-NeoX-20B tokenizer represents the Pile
validation set with approximately 10% fewer tokens compared to the GPT-2 tokenizer.

Given that the GPT-NeoX-20B tokenizer is tweaked to better tokenize whitespace, we also perform a
comparison between the two tokenizers excluding whitespace. We perform the same analysis as the above,
but exclude all whitespace tokens from our computations, only counting the non-whitespace tokens. A
token is considered a whitespace token if it consists only of whitespace characters. The results are shown
in Table 16 in the Appendix. We observe that the GPT-NeoX-20B tokenizer still uses 5% fewer tokens to
represent the Pile validation set compared to the GPT-2 tokenizer. As expected, the token ratios for certain
components such as GitHub and StackExchange become closer to even once the whitespace characters
are excluded.

GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

Pile (val) 383,111,734 342,887,807 0.89501
C4 173,669,294 173,768,876 1.001
C4 excl. Space 168,932,391 171,003,008 1.012

Table 14: Number of tokens from tokenizing the AllenAI C4 (en) validation set. The GPT-NeoX-20B tokenizer
uses approximately the same number of tokens to represent C4 as the GPT-2 tokenizer.

While we evaluated our tokenizer using the validation set for the Pile, the Pile components would still
be considered in-domain for the tokenizer and may not provide the most informative comparison point.
To perform an out-of-domain comparison, we perform the same analysis using the AllenAI replication of
C4,15, another popular pretraining corpus for large language models. As above, we use the validation set
for our analysis. Our results are shown in Table 14. We find that the GPT-NeoX-20B tokenizer tokenizes
the C4 validation set to approximately the same number of tokens as the GPT-2 tokenizer. When excluding
all whitespace tokens, the GPT-NeoX-20B requires approximately 1% more tokens to represent the corpus
compared to the GPT-2 tokenizer.

F.1 Tokenizer Comparisons
F.1.1 Longest Tokens
We show in Table 17 the 10 longest tokens in each tokenizer vocabulary. We exclude consideration of
tokens that comprise only symbols or whitespace characters. We observe that for the GPT-2 tokenizer,
many of the longest tokens appear to reflect artifacts in the tokenizer training data, likely with certain
websites or web-scrapes being overrepresented in the training data. For the GPT-NeoX-20B tokenizer, we
observe that most of the longest tokens are scientific terms, likely arising from the PubMed components
of the Pile.

F.1.2 Worst Case Word Tokenization Comparison
We consider the words for which there is the greatest discrepancy in the resulting token length between
the two tokenizers, where one tokenizer needs many tokens to represent while the other tokenizer uses

15https://github.com/allenai/allennlp/discussions/5056
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GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

arXiv 41,020,155 34,704,315 0.84603
BookCorpus2 2,336,388 2,365,633 1.01252
Books3 42,819,036 43,076,832 1.00602
DM Mathematics 7,699,527 7,413,775 0.96289
Enron Emails 480,500 433,867 0.90295
EuroParl 3,519,584 2,808,275 0.79790
FreeLaw 21,098,168 18,687,364 0.88573
GitHub 42,986,216 33,021,839 0.76820
Gutenberg (PG-19) 6,729,187 6,428,946 0.95538
HackerNews 2,578,933 2,551,720 0.98945
NIH ExPorter 776,688 739,558 0.95219
OpenSubtitles 5,431,529 5,446,485 1.00275
OpenWebText2 31,993,480 30,813,744 0.96313
PhilPapers 1,879,206 1,750,928 0.93174
Pile-CC 53,415,704 53,392,389 0.99956
PubMed Abstracts 8,708,180 8,215,529 0.94343
PubMed Central 56,874,247 43,534,166 0.76545
StackExchange 22,708,643 19,000,198 0.83669
USPTO Backgrounds 10,217,886 9,727,223 0.95198
Ubuntu IRC 3,341,287 2,771,066 0.82934
Wikipedia (en) 12,614,087 12,692,048 1.00618
YoutubeSubtitles 3,883,103 3,311,907 0.85290

Total 383,111,734 342,887,807 0.89501

Table 15: Number of tokens from tokenizing the Pile validation set. The GPT-NeoX-20B tokenizer uses fewer
tokens to represent the Pile overall, with the biggest gains in whitespace heavy datasets such as arXiv, GitHub and
StackExchange.

GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

arXiv 38,932,524 33,561,364 0.86204
BookCorpus2 2,233,367 2,262,609 1.01309
Books3 40,895,236 41,198,424 1.00741
DM Mathematics 7,214,874 6,929,066 0.96039
Enron Emails 374,978 373,498 0.99605
EuroParl 3,482,120 2,780,405 0.79848
FreeLaw 17,766,692 17,434,708 0.98131
GitHub 29,338,176 27,558,966 0.93936
Gutenberg (PG-19) 5,838,580 5,827,408 0.99809
HackerNews 2,312,116 2,299,848 0.99469
NIH ExPorter 776,619 739,543 0.95226
OpenSubtitles 5,428,118 5,445,721 1.00324
OpenWebText2 30,849,218 29,723,143 0.96350
PhilPapers 1,872,347 1,743,627 0.93125
Pile-CC 51,305,080 51,281,909 0.99955
PubMed Abstracts 8,676,790 8,185,417 0.94337
PubMed Central 44,508,570 40,722,151 0.91493
StackExchange 17,414,955 16,712,814 0.95968
USPTO Backgrounds 9,882,473 9,601,385 0.97156
Ubuntu IRC 3,220,797 2,659,225 0.82564
Wikipedia (en) 11,874,878 11,986,567 1.00941
YoutubeSubtitles 3,589,042 3,046,451 0.84882

Total 337,787,550 322,074,249 0.95348

Table 16: Number of tokens from tokenizing the Pile validation set, excluding whitespace tokens.

relatively few tokens. We define a word as a contiguous string delimited by whitespace or punctuation
(as defined by strings.punctuation in Python). We perform this analysis at the component level. We
only consider words that occur at least 10 times within the given component. We show in Table 18 a
representative example from the Pile-CC corpus.

G Tokenization Examples

In Figures 12 and 17, we show examples of tokenized documents from the Pile, comparing the GPT-2
tokenizer to ours.
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GPT-2 GPT-NeoX-20B

rawdownloadcloneembedreportprint Ġimmunohistochemistry
BuyableInstoreAndOnline Ġimmunohistochemical
cloneembedreportprint Ġtelecommunications
ĠRandomRedditorWithNo Ġimmunofluorescence
Ġtelecommunications Ġimmunosuppressive
channelAvailability ĠBytePtrFromString
Ġdisproportionately Ġmultidisciplinary
ĠTelecommunications Ġhistopathological
ĠguiActiveUnfocused Ġneurodegenerative
ItemThumbnailImage Ġindistinguishable

Table 17: Ten longest tokens (excluding tokens comprising mainly symbols, numbers and spaces) in tokenizer
vocabularies. “Ġ” indicates a word delimiter.

GPT-2 Worst-case Tokenization
Word GPT-2 Tokenization GPT-NeoX-20B Tokenization

hematopoietic (6) hematopoietic (1) hematopoietic
adenocarcinoma (6) adenocarcinoma (1) adenocarcinoma
MERCHANTABILITY (5) MERCHANTABILITY (1) MERCHANTABILITY
CONSEQUENTIAL (5) CONSEQUENTIAL (1) CONSEQUENTIAL
oligonucleotides (5) oligonucleotides (1) oligonucleotides
cytoplasmic (5) cytoplasmic (1) cytoplasmic
corticosteroids (4) corticosteroids (1) corticosteroids
neurodegenerative (4) neurodegenerative (1) neurodegenerative
asymptotic (4) asymptotic (1) asymptotic
aneurysm (4) aneurysm (1) aneurysm

GPT-NeoX-20B Worst-case Tokenization
Word GPT-2 Tokenization GPT-NeoX-20B Tokenization

Schwarzenegger (1) Schwarzenegger (5) Schwarzenegger
Bolshevik (1) Bolshevik (4) Bolshevik
crowdfunding (1) crowdfunding (4) crowdfunding
misogyny (1) misogyny (4) misogyny
McAuliffe (1) McAuliffe (4) McAuliffe
unstoppable (1) unstoppable (4) unstoppable
Timberwolves (1) Timberwolves (4) Timberwolves
excruciating (1) excruciating (4) excruciating
Kaepernick (1) Kaepernick (4) Kaepernick
Valkyrie (1) Valkyrie (4) Valkyrie

Table 18: Worst case word tokenization with respective tokenizers. We show cases where one tokenizer requires
many more tokens to represent a word compared to the other tokenizer.

GPT-2 Tokenization
253 tokens

–-←↩
abstract: ’The maximal minors of a $p\times (m + p)$-matrix of univariate polynomials of degree
$n$ with indeterminate coefficients are themselves polynomials of degree $np$. The subalgebra
generated by their coefficients is the coordinate ring of the quantum Grassmannian, a singular
compactification of the space of rational curves of degree $np$ in the Grassmannian of $p$-

planes in ($m + p$)-space. These subalgebra generators are shown to form a sagbi basis. The
resulting flat deformation from the quantum Grassmannian to a toric variety gives a new “Grö

bner basis style” proof of the Ravi-Rosenthal-Wang formulas in quantum Schubert calculus. The
coordinate ring of the quantum Grassmannian is an algebra with straightening law, which is
normal, Cohen-Macaulay, Gorenstein and Koszul, and the ideal of quantum Plücker relations has a
quadratic Gröbner basis. This holds more generally for skew quantum Schubert varieties. These
results are well-known for the classical Schubert varietie

GPT-NeoX-20B Tokenization
229 tokens

–-←↩
abstract: ’The maximal minors of a $p\times (m + p)$-matrix of univariate polynomials of degree
$n$ with indeterminate coefficients are themselves polynomials of degree $np$. The subalgebra
generated by their coefficients is the coordinate ring of the quantum Grassmannian, a singular
compactification of the space of rational curves of degree $np$ in the Grassmannian of $p$-

planes in ($m + p$)-space. These subalgebra generators are shown to form a sagbi basis. The
resulting flat deformation from the quantum Grassmannian to a toric variety gives a new “Grö

bner basis style” proof of the Ravi-Rosenthal-Wang formulas in quantum Schubert calculus. The
coordinate ring of the quantum Grassmannian is an algebra with straightening law, which is
normal, Cohen-Macaulay, Gorenstein and Koszul, and the ideal of quantum Plücker relations has a
quadratic Gröbner basis. This holds more generally for skew quantum Schubert varieties. These
results are well-known for the classical Schubert varietie

Figure 12: Pile (arXiv) Tokenization Example
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GPT-2 Tokenization
224 tokens

←↩
←↩
**THE TRAP**←↩
←↩
Beverley Kendall←↩
←↩
Copyright © Beverley Kendall 2014←↩
←↩
Published by Season Publishing LLC←↩
←↩
This is a work of fiction. Names, characters, places and incidents are products of the author
’s imagination or are used fictitiously and are not to be construed as real. Any resemblance to
actual events, locales, organizations, or persons, living or dead, is completely coincidental.
←↩←↩
www.beverleykendall.com←↩←↩
Cover Design © Okay Creations, Sarah Hansen←↩←↩
All rights reserved. Except as permitted under the U.S. Copyright Act of 1976, no part of this
publication may be reproduced, distributed or transmitted in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the author

.←↩
←↩
** License Statement **←↩
←↩
This ebook is licensed for your personal enjoyment only. This ebook may not be re-sold or given
away to other people. If you would like to share this book with another person, please purchase
an additional copy for each reader. If

GPT-NeoX-20B Tokenization
228 tokens

←↩
←↩
**THE TRAP**←↩
←↩
Beverley Kendall←↩
←↩
Copyright © Beverley Kendall 2014←↩
←↩
Published by Season Publishing LLC←↩
←↩
This is a work of fiction. Names, characters, places and incidents are products of the author
’s imagination or are used fictitiously and are not to be construed as real. Any resemblance to
actual events, locales, organizations, or persons, living or dead, is completely coincidental.
←↩←↩
www.beverleykendall.com←↩←↩
Cover Design © Okay Creations, Sarah Hansen←↩←↩
All rights reserved. Except as permitted under the U.S. Copyright Act of 1976, no part of this
publication may be reproduced, distributed or transmitted in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the author

.←↩
←↩
** License Statement **←↩
←↩
This ebook is licensed for your personal enjoyment only. This ebook may not be re-sold or given
away to other people. If you would like to share this book with another person, please purchase
an additional copy for each reader. If

Figure 13: Pile (BookCorpus2) Tokenization Example
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GPT-2 Tokenization
477 tokens

o?←↩
True←↩
Suppose -3*t = 1 + 8. Let s(d) = d**3 + 6*d**2 + 2*d + 1. Let u be s(t). Suppose 10 = 5*z, 5*a +
0*z = -z + u. Is 4 a factor of a?←↩

True←↩
Suppose 5*l = r - 35, -2*r + 5*l - 15 = -70. Is r a multiple of 4?←↩
True←↩
Suppose 2*l + 11 - 1 = 0. Does 15 divide (-2)/l - 118/(-5)?←↩
False←↩
Suppose 3*k - 3*f + 0*f - 72 = 0, -25 = -5*f. Is 9 a factor of 2/(-4) + k/2?←↩
False←↩
Suppose 6*w + 25 = w. Let t(c) = c + 9. Let u be t(w). Suppose -u*z = -3*z - 10. Is z a multiple
of 5?←↩

True←↩
Let j = 81 + -139. Let i = j + 101. Is 11 a factor of i?←↩
False←↩
Let q(s) = s**3 + 4*s**2 - s + 2. Let u be q(-4). Let o(w) = w**2 + w - 6. Let t be o(u).
Suppose -3*l - 39 = -3*d - 2*l, 0 = 3*d - 2*l - t. Does 9 divide d?←↩

False←↩
Suppose -2*b + 39 + 13 = 0. Is b a multiple of 14?←↩
False←↩
Let q = -7 + 12. Suppose 8*l = q*l + 81. Suppose 129 = 4*f - l. Is 13 a factor of f?←↩
True←↩
Suppose 0 = -4*n + j + 33, 4*n - n + 4*j = 20. Let c = 5 - n. Is 35*1 - (-6)/c a multiple of 11?
←↩
True←↩
Let g(m) = m**2 - 2*m - 3. Let k be g(3). Let j be

GPT-NeoX-20B Tokenization
468 tokens

o?←↩
True←↩
Suppose -3*t = 1 + 8. Let s(d) = d**3 + 6*d**2 + 2*d + 1. Let u be s(t). Suppose 10 = 5*z, 5*a +
0*z = -z + u. Is 4 a factor of a?←↩

True←↩
Suppose 5*l = r - 35, -2*r + 5*l - 15 = -70. Is r a multiple of 4?←↩
True←↩
Suppose 2*l + 11 - 1 = 0. Does 15 divide (-2)/l - 118/(-5)?←↩
False←↩
Suppose 3*k - 3*f + 0*f - 72 = 0, -25 = -5*f. Is 9 a factor of 2/(-4) + k/2?←↩
False←↩
Suppose 6*w + 25 = w. Let t(c) = c + 9. Let u be t(w). Suppose -u*z = -3*z - 10. Is z a multiple
of 5?←↩

True←↩
Let j = 81 + -139. Let i = j + 101. Is 11 a factor of i?←↩
False←↩
Let q(s) = s**3 + 4*s**2 - s + 2. Let u be q(-4). Let o(w) = w**2 + w - 6. Let t be o(u).
Suppose -3*l - 39 = -3*d - 2*l, 0 = 3*d - 2*l - t. Does 9 divide d?←↩

False←↩
Suppose -2*b + 39 + 13 = 0. Is b a multiple of 14?←↩
False←↩
Let q = -7 + 12. Suppose 8*l = q*l + 81. Suppose 129 = 4*f - l. Is 13 a factor of f?←↩
True←↩
Suppose 0 = -4*n + j + 33, 4*n - n + 4*j = 20. Let c = 5 - n. Is 35*1 - (-6)/c a multiple of 11?
←↩
True←↩
Let g(m) = m**2 - 2*m - 3. Let k be g(3). Let j be

Figure 14: Pile (DM Mathematics) Tokenization Example
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GPT-2 Tokenization
430 tokens

<at-dialog title="vm.title" on-close="vm.onClose">←↩
<at-form state="vm.form" autocomplete="off" id="external_test_form">←↩

<at-input-group col="12" tab="20" state="vm.form.inputs" form-id="external_test"></at-
input-group>←↩

<at-action-group col="12" pos="right">←↩
<at-action-button←↩

variant="tertiary"←↩
ng-click="vm.onClose()"←↩

>←↩
::vm.strings.get(’CLOSE’)←↩

</at-action-button>←↩
<at-action-button←↩

variant="primary"←↩
ng-click="vm.onSubmit()"←↩
ng-disabled="!vm.form.isValid || vm.form.disabled"←↩

>←↩
::vm.strings.get(’RUN’)←↩

</at-action-button>←↩
</at-action-group>←↩

</at-form>←↩
</at-dialog>←↩

GPT-NeoX-20B Tokenization
257 tokens

<at-dialog title="vm.title" on-close="vm.onClose">←↩
<at-form state="vm.form" autocomplete="off" id="external_test_form">←↩

<at-input-group col="12" tab="20" state="vm.form.inputs" form-id="external_test"></at-
input-group>←↩

<at-action-group col="12" pos="right">←↩
<at-action-button←↩

variant="tertiary"←↩
ng-click="vm.onClose()"←↩

>←↩
::vm.strings.get(’CLOSE’)←↩

</at-action-button>←↩
<at-action-button←↩

variant="primary"←↩
ng-click="vm.onSubmit()"←↩
ng-disabled="!vm.form.isValid || vm.form.disabled"←↩

>←↩
::vm.strings.get(’RUN’)←↩

</at-action-button>←↩
</at-action-group>←↩

</at-form>←↩
</at-dialog>←↩

Figure 15: Pile (GitHub) Tokenization Example

135



GPT-2 Tokenization
178 tokens

Theresa May is expected to appoint an EU ambassador who “believes in Brexit” in the wake of the
current Brussels representative’s decision to quit after being cut adrift by Downing Street.
←↩
←↩
Sir Ivan Rogers on Tuesday announced his resignation as Britain’s ambassador in Brussels after
it was made clear Mrs May and her senior team had “lost confidence” in him over his “pessim

istic” view of Brexit.←↩
←↩
Government sources made clear that Sir Ivan had “jumped before he was pushed” and that Number
10 believed his negative view of Brexit meant that he could not lead the negotiations after the
Prime Minister triggers Article 50.←↩
←↩
In a 1,400-word resignation letter to his staff leaked on Tuesday night, Sir Ivan launched a
thinly-veiled attack on the "muddled thinking" in Mrs May’s Government.

GPT-NeoX-20B Tokenization
170 tokens

Theresa May is expected to appoint an EU ambassador who “believes in Brexit” in the wake of the
current Brussels representative’s decision to quit after being cut adrift by Downing Street.
←↩
←↩
Sir Ivan Rogers on Tuesday announced his resignation as Britain’s ambassador in Brussels after
it was made clear Mrs May and her senior team had “lost confidence” in him over his “pessim

istic” view of Brexit.←↩
←↩
Government sources made clear that Sir Ivan had “jumped before he was pushed” and that Number
10 believed his negative view of Brexit meant that he could not lead the negotiations after the
Prime Minister triggers Article 50.←↩
←↩
In a 1,400-word resignation letter to his staff leaked on Tuesday night, Sir Ivan launched a
thinly-veiled attack on the "muddled thinking" in Mrs May’s Government.

Figure 16: Pile (OpenWebText2) Tokenization Example

GPT-2 Tokenization
268 tokens

Carotid endarterectomy: operative risks, recurrent stenosis, and long-term stroke rates in a
modern series.←↩

To determine whether carotid endarterectomy (CEA) safely and effectively maintained a durable
reduction in stroke complications over an extended period, we reviewed our data on 478
consecutive patients who underwent 544 CEA’s since 1976. Follow-up was complete in 83% of
patients (mean 44 months). There were 7 early deaths (1.3%), only 1 stroke related (0.2%). Peri

operative stroke rates (overall 2.9%) varied according to operative indications: asymptomatic, 1
.4%; transient ischemic attacks (TIA)/amaurosis fugax (AF), 1.3%; nonhemispheric symptoms (NH),
4.9%; and prior stroke (CVA), 7.1%. Five and 10-year stroke-free rates were 96% and 92% in the
asymptomatic group, 93% and 87% in the TIA/AF group, 92% and 92% in the NH group, and 80% and
73% in the CVA group. Late ipsilateral strokes occurred infrequently (8 patients, 1.7%). Late
deaths were primarily cardiac related (51.3%). Stro

GPT-NeoX-20B Tokenization
250 tokens

Carotid endarterectomy: operative risks, recurrent stenosis, and long-term stroke rates in a
modern series.←↩

To determine whether carotid endarterectomy (CEA) safely and effectively maintained a durable
reduction in stroke complications over an extended period, we reviewed our data on 478
consecutive patients who underwent 544 CEA’s since 1976. Follow-up was complete in 83% of
patients (mean 44 months). There were 7 early deaths (1.3%), only 1 stroke related (0.2%). Peri

operative stroke rates (overall 2.9%) varied according to operative indications: asymptomatic, 1
.4%; transient ischemic attacks (TIA)/amaurosis fugax (AF), 1.3%; nonhemispheric symptoms (NH),
4.9%; and prior stroke (CVA), 7.1%. Five and 10-year stroke-free rates were 96% and 92% in the
asymptomatic group, 93% and 87% in the TIA/AF group, 92% and 92% in the NH group, and 80% and
73% in the CVA group. Late ipsilateral strokes occurred infrequently (8 patients, 1.7%). Late
deaths were primarily cardiac related (51.3%). Stro

Figure 17: Pile (PubMed Abstracts) Tokenization Example
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