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Message from the General Chair and the Program Chairs

Welcome to *SEM 2021, the Joint Conference on Lexical and Computational Semantics! The conference
celebrates a small jubilee, with its 10th edition, and we are pleased to present this volume containing the
accepted long and short papers.

*SEM 2021 was held as a virtual conference following ACL-IJCNLP 2021, on August 5-6, 2021, due to
the exceptional circumstances imposed by the COVID-19 pandemic.

Since its first edition in 2012, *SEM has become a major venue to present recent advances in all
areas of lexical and computational semantics, including semantic representations, semantic processing,
multilingual semantics, and others. *SEM is sponsored by SIGLEX, the ACL Special Interest Group on
the Lexicon.

*SEM 2021 received 78 submissions in 10 areas:

* Theoretical and formal semantics

* Sentiment analysis and argument mining

» Semantics in NLP applications

* Semantic composition and sentence-level semantics

* Resources and evaluation

* Psycholinguistics, cognitive linguistics and semantic processing

* Multilinguality

* Lexical semantics and word representations

* Commonsense reasoning and natural language understanding
We compiled an exciting program across all these areas. This year saw a particularly strong batch of
submissions; finally, 30 papers were accepted — 21 long papers and 9 short papers.

The submitted papers were carefully evaluated by a program committee led by 20 area chairs, who
coordinated a panel of 174 reviewers. Each submission was reviewed by three reviewers, who were
encouraged to discuss any divergence in evaluations. The papers in each area were subsequently assessed
by the area chairs, who added meta-reviews to explain their accept/reject suggestions. The final selection
was made by the program co-chairs after an independent check of all the reviews, meta-reviews, and
discussions with the area chairs. The reviewers’ recommendations were also used to shortlist a set of
papers nominated for the Best Paper Award.

We are also very excited to have two excellent keynote speakers: Diyi Yang (Georgia Institute of
Technology) discussing the inclusion of social factors into natural language processing models, and
Felix Hill (DeepMind) talking about learning embodied language.

We are deeply thankful to all area chairs and reviewers for their invaluable help in the selection of
the program, for their readiness in engaging in thoughtful discussions about individual papers, and for
providing valuable feedback to the authors. We are grateful to our Publicity chair, Yashar Mehdad
(Facebook Al), who set up and regularly updated *SEM’s website and publicized it through social media.
We thank the Publication Chair, Mark-Christoph Miiller (HITS), for his help with the compilation of the
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proceedings, and the ACL-IJCNLP 2021 workshop organizers for all the valuable help and support with
organisational aspects of the conference. Finally, we thank all our authors and presenters for making
*SEM 2021 such an exciting event. We hope you will find the content of these proceedings as well as
the program of *SEM 2021 enjoyable, interesting and inspirational!

Vivi Nastase and Ivan Vuli¢, Program Co-Chairs

Lun-Wei Ku, General Chair
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Invited Talk: Why Do Embodied Language Learning?
Felix Hill
Deep Mind

Abstract: In this talk, I’ll give some good reasons to study language learning and processing in the
context of an embodied or situated agent. Learning in an embodied context is fundamentally different
from other ML settings. Working out how to perceive and move in addition to understanding and using
language can be a substantial additional burden for the learner. However, I will show that it can also bring
important benefits. The embodied learner sees the world from an egocentric perspective, is necessarily
located at a specific place at a given time, exerts some control over the learning data it encounters, and
confronts face-on the relationship between language and the physical world. These factors place strong
constraints on the learner’s experience, which can in turn lead to more human-like learning outcomes. Our
findings suggest that embodied learning may play an important role in convincingly replicating human
linguistic intuitions and behaviours in a machine.

Bio: Felix Hill is a Research Scientist at DeepMind, and leads a team focusing on grounded language
learning and processing. He has a Masters degree in pure mathematics from the University of Oxford,
and a Masters in Psycholinguistics and PhD in Computer Science from the University of Cambridge. His
graduate studies focused on representation-learning in neural network models of language, on which he
worked with many great collaborators including Ivan Vuli¢, Douwe Kiela, Yoshua Bengio, Kyunghyun Cho
and Jason Weston. At DeepMind, he has focused on developing better learning, meta-learning, reasoning,
memory systems and generalization in agents that explore and interact with simulated environments.
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Invited Talk: Seven Social Factors in Natural Language Processing:
Theory and Practice
Diyi Yang
Georgia Institute of Technology

Abstract: Recently, natural language processing (NLP) has had increasing success and produced
extensive industrial applications. Despite being sufficient to enable these applications, current NLP
systems often ignore the social part of language, e.g., who says it, in what context, for what goals. In this
talk, we take a closer look at social factors in language via a new theory taxonomy, and its interplay with
computational methods via two lines of work. The first one studies what makes language persuasive by
introducing a semi-supervised method to leverage hierarchical structures in text to recognize persuasion
strategies in good-faith requests. The second part demonstrates how various structures in conversations
can be utilized to generate better summaries for everyday interaction. We conclude by discussing several
open-ended questions towards how to build socially aware language technologies, with the hope of getting
closer to the goal of human-like language understanding.

Bio: Diyi Yang is an assistant professor in the School of Interactive Computing at Georgia Tech. She
is broadly interested in Computational Social Science, and Natural Language Processing. Diyi received
her PhD from the Language Technologies Institute at Carnegie Mellon University. Her work has been
published at leading NLP/HCI conferences, and also resulted in multiple award nominations from EMNLP,
ICWSM, SIGCHI and CSCW. She is named as a Forbes 30 under 30 in Science, a recipient of IEEE Al
10 to Watch, and has received faculty research awards from Amazon, Facebook, JPMorgan Chase, and
Salesforce.
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Did the Cat Drink the Coffee?
Challenging Transformers with Generalized Event Knowledge

Paolo Pedinotti
University of Pisa

Giulia Rambelli
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Alessandro Lenci
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Abstract

Prior research has explored the ability of com-
putational models to predict a word seman-
tic fit with a given predicate. While much
work has been devoted to modeling the typ-
icality relation between verbs and arguments
in isolation, in this paper we take a broader
perspective by assessing whether and to what
extent computational approaches have access
to the information about the typicality of en-
tire events and situations described in language
(Generalized Event Knowledge).

Given the recent success of Transformers Lan-
guage Models (TLMs), we decided to test
them on a benchmark for the dynamic estima-
tion of thematic fit. The evaluation of these
models was performed in comparison with
SDM, a framework specifically designed to in-
tegrate events in sentence meaning representa-
tions, and we conducted a detailed error analy-
sis to investigate which factors affect their be-
havior. Our results show that TLMs can reach
performances that are comparable to those
achieved by SDM. However, additional anal-
ysis consistently suggests that TLMs do not
capture important aspects of event knowledge,
and their predictions often depend on surface
linguistic features, such as frequent words, col-
locations and syntactic patterns, thereby show-
ing sub-optimal generalization abilities.

1 Introduction

People can discriminate between typical (e.g., A
cop arrested a thief) and atypical events (e.g., A
thief arrested a cop) and exploit this ability in on-
line sentence processing to anticipate the upcoming
linguistic input. Brains have been claimed to be
“prediction machines” (Clark, 2013) and psycholin-
guistic research has shown that a crucial ingredient

1

Enrico Santus
Bayer Pharmaceuticals
esantus@gmail.com

Philippe Blache
Aix-Marseille University
blache@lpl-aix.fr

of such predictive ability is the knowledge about
events and their typical participants stored in hu-
man semantic memory, also referred to as Gener-
alized Event Knowledge (GEK) by McRae and
Matsuki (2009). To make an example, if we were
asked to think about things that are played with a
guitar, we would quickly and more or less unani-
mously think of words such as song, piece or riff.

Computational models of predicate-argument
typicality, generally referred to as thematic fit in the
psycholinguistic literature (McRae et al., 1998), ex-
tract typical arguments from parsed corpora. How-
ever, GEK is not just storing relations between
words: The fact that this knowledge is generalized
— that is, it is based on an abstract representation
of what is typical — allows us to easily classify
new argument combinations as typical or atypi-
cal. Furthermore, psycholinguistic studies (Bick-
nell et al., 2010; Matsuki et al., 2011) have shown
that humans are able to combine and dynamically
update their expectations during sentence process-
ing: for example, their expectations given the se-
quence The barber cut the __differ from the ones
given The lumberjack cut the __, since the integra-
tion of knowledge “cued” by the agent argument
with the verb will lead to the activation of differ-
ent event scenarios. In Distributional Semantics,
sophisticated models of the GEK have been pro-
posed to make predictions on upcoming arguments
by integrating the cues coming from the verb and
the previously-realized arguments in the sentence
(Lenci, 2011; Chersoni et al., 2019). Since such
knowledge is acquired from both first-hand and
linguistic experience (McRae and Matsuki, 2009),
an important assumption of this literature is that,
at least for its linguistic subset”, the GEK can be
modeled with distributional information extracted
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from corpora (Chersoni et al., 2017, 2021).

Language Models are trained to make predic-
tions given a context, and thus, they can also
be viewed as models of GEK. This approach is
promising if one considers the success of recent
Transformer-based Language Models (henceforth
TLMS), which are trained on huge corpora and
contain a massive number of parameters. Even if
these models receive extensive training and have
been shown to capture linguistic properties (Jawa-
har et al., 2019; Goldberg, 2019), it is not obvious
whether they acquire the aspects of GEK that have
been modeled explicitly in previous approaches.
To the best of our knowledge, Transformers have
never been tested on dynamic thematic fit model-
ing, nor their performance has been compared with
traditional distributional models. Our current work
is addressing this issue.

Contributions:

1. we propose a methodology to adapt TLMS to
the dynamic estimation of thematic fit, using a
dataset that contains several types of argument
combinations differing for their typicality;

2. we present a comprehensive evaluation of var-
ious TLMS on this task, performed by com-
paring them to a strong distributional baseline;

3. we conduct further analysis aimed at identi-
fying the potential limitations of TLMS as
models of GEK.

Our results are relevant for researchers interested in
assessing the linguistic abilities of TLMS, as well
as those working on applications involving TLMS,
such as text generation.

2 Related Work

In its classical form, the thematic fit estimation task
consists in comparing a candidate argument or filler
(e.g., wine) with the typical fillers of a given verb
role (e.g., agent, patient, etc.), either in the form
of exemplars previously attested in a corpus (Erk,
2007; Vandekerckhove et al., 2009; Erk et al., 2010)
or in the form of a vector-based prototype (Baroni
and Lenci, 2010; Sayeed and Demberg, 2014; Say-
eed et al., 2015; Greenberg et al., 2015a,b; Sayeed
et al., 2016; Santus et al., 2017; Chersoni et al.,
2020). Additionally, recent studies explored the
use of masked language modeling with BERT for
scoring the candidate arguments (Metheniti et al.,

2020). Performance in the thematic fit task is typ-
ically measured with the correlation between the
output scores of the model and human-elicited typ-
icality judgments for verb-argument pairs (McRae
etal., 1998; Ferretti et al., 2001; Pad6, 2007; Zhang
et al., 2019; Marton and Sayeed, 2021).

In the simplest and most common version of
this task, the typicality of verb argument-pairs is
evaluated in isolation. Thematic fit is instead a
dynamic concept: The expectations for an argu-
ment in a given verb role do not depend just on the
verb, but also on the compositional combination
with the other arguments in the sentence (Bicknell
et al., 2010). To check the ability of computational
models to account for the compositional update of
argument expectations, Lenci (2011) framed the
problem as a binary classification task: A system
is presented a sentence pair, with one sentence ex-
pressing a typical real-world situation (The journal-
ist is checking the report) and the other sentence
expressing a plausible but less typical one (The
mechanic is checking the report), and the task is
to assign a higher thematic fit/typicality score to
the former. Notice that the two sentences differ
only for one argument, and that the “atypical” one
might, however, be a common filler with respect to
the verb target role (e.g., report is a typical patient
for check, it is just less plausible in combination
with mechanic as an agent).

Several models have tried to tackle the “dy-
namic” version of the thematic fit task, either based
on classical distributional spaces (Chersoni et al.,
2016, 2019) or on more sophisticated neural net-
work architectures (Tilk et al., 2016; Hong et al.,
2018). On the evaluation side, those works made
use of the experimental materials of the study by
Lenci (2011), which are, however, limited to agent-
verb-patient triples. The recently-introduced DT-
Fit dataset (Vassallo et al., 2018) is, in compari-
son, larger in size and provides more variety of
fillers and roles (including instruments, locations
and time). Other studies introduced larger datasets,
but focused on more specific notions of event plau-
sibility (e.g. the plausibility depending on the phys-
ical properties of the participants) (Wang et al.,
2018; Porada et al., 2019; Ko et al., 2019).

3 Experimental Settings

3.1 Dataset

The DTFit (Vassallo et al., 2018) dataset has been
specifically designed for the evaluation of dynamic



thematic fit. ! The dataset contains pairs of tuples
that differ only for one element, which can be ei-
ther a typical or atypical filler of a given role in
the event described by the tuple (cf. Table 1). The
dataset includes tuples of different lengths, and the
typicality of a given argument depends on its inter-
action with all the other elements. For each tuple,
the authors collected typicality judgments by ask-
ing English native speakers how common was the
event described. Scores range from 1 (very atypi-
cal) to 7 (very typical). The dataset mainly targets
knowledge about professions, but also other typical
everyday situations (e.g., what a dog typically eats,
what a grandmother typically does).

The authors created several datasets, which dif-
fer with respect to the semantic role of the can-
didate filler. For our experiments, we selected
the datasets created by the authors for the follow-
ing relations: {Instrument, Time, Location }pr;.
Additionally, from the original dataset containing
agent-verb-patient triples, we derived two datasets,
that we named Agentprg; and Patientprg. In
Agentprg;, the tuples forming a pair differ with re-
spect to the typicality of the agent. In Patientp;,
they differ for the typicality of the patient. We thus
get a total of five datasets, each of which covers a
different semantic relation. The latter two datasets
have the same properties of the others, but they
put stronger emphasis on the dynamic nature of
thematic fit, as the atypical filler is still a typical
complement of the verb alone. Conversely, the
atypical candidate fillers in the other datasets are
appropriate fillers of the role, but, in most cases,
they do not relate to the other elements of the tuple.
Therefore, Agentprg; and Patientprg; are more
challenging for computational models, as the typ-
icality of a filler can only be determined through
the composition of the verb with another argument.
Accordingly, models have to update their predic-
tions by accurately taking into account the whole
context.

For each tuple in DTFit, the task for our models
is to predict the upcoming argument on the basis
of the previous ones. Models were evaluated in
terms of Spearman correlation between the human
ratings and the models’ scores. Moreover, we per-
formed a second evaluation for Agentprg;; and Pa-
tientp i, consisting of measuring the accuracy of
each system in assigning a higher thematic fit score

'All the datasets used for the experiments described in this

paper can be found at the link: https://github.com/
giuliarambelli/transformers_thematic_fit.

Role Tuple Typical Atypical
Agent __mix paint painter cook
Patient tailor sew dress wound
Instrumentcook clean fish _ knife sponge
Time cat chase bird __  hunting marriage
Location sailor mop deck _ boat  theatre

Table 1: Examples of tuples from DTFit.

to typical tuples. To the best of our knowledge, the
only attempts to test computational models on this
dataset have been done by the authors of the orig-
inal paper and by Chersoni et al. (2019). In both
works, distributional prototype models of thematic
fit have been used.

3.2 Models

In our experiments, we compared the performance
of TLMS with the Structured Distributional Model
(SDM), which has been recently shown to be an
efficient model for the dynamic estimation of the-
matic fit (Chersoni et al., 2019).

3.2.1 Structured Distributional Model

The Structured Distributional Model (SDM)
proposed by Chersoni et al. (2019) combines word
embeddings and formal semantics to specifically
represent GEK and the dynamic construction of
sentence meaning. Like traditional distributional
models of thematic fit, it builds a prototype repre-
sentation for a given role (e.g., the typical patient
of sing) from its typical fillers, but its novelty is
that the fillers are retrieved from an external re-
source called Distributional Event Graph (hence-
forth, DEG). DEG represents GEK as a graph
automatically built from parsed corpora, where the
nodes are words associated to a numeric vector,
and the edges are labeled with syntactic relations
and weighted using statistic association measures.
Thus, given a lexical cue w, it is possible to iden-
tify the events in which w takes part and to retrieve
words related to w on both the paradigmatic and
the syntagmatic axis.

The formal structure at the basis of SDM con-
sists of two semantic structures: the linguistic con-
dition (LC), a context-independent tier of meaning
that represents the lexical items in a sentence, and
the active context (AC), which accumulates con-
textual information activated by lexical items. The
crucial aspect of SDM is that it associates a vector
representation to these formal structures: LC is
the sum of the embeddings of the lexical items of



a sentence; Ab, for each syntactic slot, is repre-
sented as the centroid vector built out of the role
vectors 71, ..., 7, available in AC, corresponding
to the syntactic associates of the lexical items that
have been already processed.

In our implementation of SDM, the DEG was
constructed by extracting syntactic relations from a
concatenation of the ukWaC corpus (Baroni et al.,
2009), a dump of Wikipedia 2018 and the British
National Corpus (Leech, 1992). The final graph
contains words with a minimum frequency of 300
and events with a minimum frequency of 30. We
used as lexical embeddings the publicly-available
FastText vectors extracted from Wikipedia.> For
our experiments, we built a semantic representation
for each tuple in the dataset, like in Chersoni et al.
(2019). We used the information in LC and AC
to assign a typicality score to each candidate filler
of a role in the dataset. The scoring function for a
given role filler is the following:

- _— - =

cos(f, LC(sent)) + cos(f, AC(sent))
2

)

where f is the embedding of the candidate filler;
LC/(sent) is a vector obtained from the sum of the
embeddings of the verb and of the argument other
than f; AC stands for the updated expectation pro-
totype for the role filled by f. In other words, we
quantify the typicality of an argument given a tuple
as the average of i.) the cosine similarity between
the argument embedding and the additive combi-
nation of the other argument vectors (L_C), and
ii.) the cosine similarity between the argument em-
bedding and the prototype vector representing the
active context (A_C’). In the cases where AC' cannot
be derived (because DEG does not store syntac-
tic relations involving the context words), we take
only the cosine between f and LC(sent) as the
final score.

3.2.2 Transformer-based Language Models

We experimented with four TLMS to test how dif-
ferent architectures, training objectives, and sizes
of the training corpus affect performance.’

BERT (Devlin et al., 2019) consists of a series of
stacked Transformer encoders. It was trained using
both a masked language modeling objective (i.e.,

Mhttps://fasttext.cc/docs/en/
english-vectors.html

3For all experiments involving TLMS, we use pre-trained
models available in the HuggingFace’s Python library Trans-
formers (Wolf et al., 2019).

predicting a masked word from its left- and right-
context), and a next sentence prediction objective
(i.e., whether a sentence follows another sentence
or not), on a combination of the BooksCorpus and
English Wikipedia (13GB in total). The model uses
WordPiece vocabulary. To test if the model size can
affect BERT performance, we used both the base
(Number of layers=12, Hidden size=768) and the
large (L=24, H=1024) versions.

RoBERTa (Liu et al., 2019), which we used in
the 1arge version, is based on the same architec-
ture as BERT, but it was trained on a much larger
corpus (160GB) and without the next sentence pre-
diction objective. In our experiments, we used the
large version (L=24, H=1024).

In contrast with the bidirectional nature of BERT
and RoBERTa, GPT2 (Radford et al., 2019) is a
uni-directional LM, which means that the training
objective is to predict the next word, given all of
the previous ones. It was trained on WebText, for a
total of 8 million documents of data (40 GB). We
employed the medium version of GPT2 (LL.=24,
H=1024). We chose GPT2-medium since its di-
mensions are comparable to those of BERT and
RoBERTa large. Moreover, both ROBERTa and
GPT2 make use of a Byte-Pair Encoding tokenizer.

For our investigation, we designed the experi-
ment as follows. First, we derived simple sentences
from the tuples by adding definite articles to the
words, [CLS] at the beginning of the input and a pe-
riod to signal the end of the sentence (e.g., [CLS]
The tailor sewed the dress.). Then,
we masked the candidate filler (dress in the exam-
ple) and we computed the probability distribution
of the entire model’s vocabulary for that position.
The model typicality score is the probability as-
signed to the candidate filler, when the candidate
filler is included in the model’s vocabulary. In
case a word to be scored is not included in the
vocabularies of all the models that we used, we
decided to disregard its tuple and the respective
typical/atypical counterpart. For this reason, the
final results only take in consideration a subset of
the original datasets, which varies from model to
model. Additionally, we computed a baseline for
each Transformer model, where the model is pre-
vented from attending to the other tokens in the
sequence when making predictions.



SDM BERT-base(line) BERT-large ROBERTA-large GPT-2 medium

Coverage
Agentprri 105/134 0.58 0.46 (0.1)
Patientprr 323/402 0.62 0.59 (0.06)
Instrumentprg;  31/100  0.58 0.52 (0.08)
Timeprr 89/100 0.58 0.63 (0.06)
Locationprsy  115/150  0.65 0.72 (0.06)

0.53 0.64 -
0.64 0.64 0.63
0.53 0.5 0.5
0.64 0.66 0.66
0.71 0.73 0.74

Table 2: Spearman Correlation for the DTFit datasets.
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Figure 1: Correlation of elicited judgments and model-derived scores for Agentprg; (a-b) and Patientpyg; (c-d)

datasets.

4 Results and Analysis

In this section, we provide the results of the exper-
iments on the DTFit datasets. Since the models
cover different portions of the original tuples, we
performed the evaluation over the common pairs.

Table 2 reports the correlation scores for all the
five datasets.* Values in brackets refer to the Spear-
man correlation obtained by the baseline. As the
baseline scores are very similar across models, we
reported the results only for BERT-base.

At a glance, we observe that both SDM and
TLMS obtain quite strong correlations, going from
0.46 to a maximum of 0.74 across datasets and

“We do not computed GPT-2 scores for Agentprey, as the
model cannot make predictions based on context because the
candidate filler occurs at the beginning of the sentence.

models. Specifically, we notice that TLMS tend to
reach higher performances compared to the distri-
butional approach. However, a marginally signif-
icant improvement of the correlations over SDM
is obtained only for Locationprgi (p < 0.05 for
Locations, p < 0.1 for the other roles).> This re-
sult is interesting, considering that SDM is trained
on a really small corpus compared to TLMS (for
instance, RoOBERTa is trained on 160 GB of text).
Another remark is that even if TLMS differ for ar-
chitecture, training objective and data, BERT-large,
RoBERTa and GPT-2 tend to achieve very similar
performances, while correlation scores are lower
for BERT-base.

As there is no significant difference between

5The p-value was computed with Fisher’s r-to-z transfor-
mation, one-tailed test.



SDM and TLMS results, we plotted an example
of the relationship between the human ratings and
the model-derived scores to provide a better picture
of the models’ predictions. For visualization pur-
poses, we applied a logarithmic transformation to
the scores. For Agentprg;;, we observe that SDM
and BERT-large have a different trend. In the for-
mer (see Figure 1a), the majority of the points fol-
low a roughly linear relationship, and there is a
small variation around the regression line (with few
outliers). On the contrary, BERT-large scores show
more variance (Figure 1b). This trend is confirmed
(even if it is less evident) for Patientprg;, where
both SDM (Figure 1c) and BERT-large (Figure
1d) have a large amount of variance, and quite a
few outliers. To verify these observations, we com-
pared the sum of the BERT-large residuals with that
of SDM (we first normalized the models’ scores
with min-max scaling in order to make them com-
parable). For both subsets, the sum of residuals is
higher for BERT-large than SDM, which is espe-
cially the case for Agentprgi (31.43 versus 17.85;
67.04 versus 63.47 for Patientprg;).

Finally, we also performed a binary classifica-
tion task for Agentprg;; and Patientprgi. In this
case, we evaluated models on their ability to assign
a higher score to the filler in the typical condition.
As shown in Table 3 (left columns), the accuracy
values are always high and the TLMS scores are
comparable with the SDM ones.

S Do Transformers Really Encode GEK?

The above results prima facie suggest that TLMS
are able to model the dynamic interaction between
the sentence elements to compute the typicality
value of a candidate filler. However, analyzing the
errors of the TLMS can be revealing of how they
make their predictions.

Table 4 presents some of the Patientprg; pairs
where BERT-base prefers the atypical filler. In all
these cases, BERT simply seems to rely on frequent
verb objects, without composing and integrating
the verb expectations with information from other
elements of the context (the agent in this case),
which is a key aspect of human GEK and is re-
flected in the typicality judgments. However, we
cannot make any claims about the event knowledge
of TLMS from these examples alone, as only in
some cases (such as The cat drank the coffee) the
atypical tuples evoke events unlikely to take place
in the real world (i.e., it may happen frequently that

DTFit Wang2018
Agent Patient| Agent Patient
SDM 89 91 .65 .66
BERT-base 77 .85 76 .63
BERT-large 83 8 | 77 .65
ROBERTA-large .89 91 76 73
GPT-2 medium - .90 - .64

Table 3: Accuracy in the binary classification task for
DTFit (agent and patient roles) and Wang2018 datasets.

a chemist pours the juice, even if this is not a typ-
ical action for a chemist). To better understand if
this can lead TLMS to make really implausible pre-
dictions, we carried out an additional experiment
where we tested the models on a diagnostic dataset
controlled for the frequency of the association be-
tween the verb and the filler. In this experiment,
we also tried to address the question of whether
TLMS rely more heavily on the local context when
making predictions.

Furthermore, TLMS’ natural preference for
what is more frequent could help them in the typ-
icality task, as a typical event is often a frequent
one. Their good performance could be due to the
fact that they memorize frequent sequences during
training. Therefore we tested TLMS on a different
dataset, in which atypical but physically plausible
events (e.g., The cloth erased the cream) are distin-
guished from atypical and implausible ones (e.g.,
The cloth erased the house). Frequency effects on
performance should be alleviated in this setting,
as both types of events in the dataset are atypical
and, hence, rare. This task requires fine-grained
knowledge of the properties of arguments, which
is still an important component of GEK.

Additionally, different frequency variations in
the training data could influence TLMS perfor-
mance. Since the models’ knowledge of the world
is mediated by language, it is likely that an argu-
ment filler may or may not be predicted depending
on the frequency of the word chosen to refer to it.
We investigated this issue by testing the models on
another diagnostic dataset obtained by replacing
typical fillers with low-frequency synonyms.

The last question we explored is whether TLMS
can be influenced by the way statements of event
typicality are syntactically expressed. So, we eval-
uated TLMS by feeding them with sentences en-
coding typical events with a transformed and more
complex syntactic form than the one used in the
DTFit experiments.



Tuple Expected

Preferred

mason mix
climber climb

chemist pour __
cat drink

cement (H=6.65, M=-8.41)
rock (H=6.8, M=-5.29)
blacksmith pour __ metal (H=6.5, M=-4.03)
compound (H=6.25, M=-8.4) juice (H=2.75, M=-5.18)
milk (H=5.6, M=-2.89)

soup (H=1.95, M=-5.54)
staircase (H=5.6, M=-4.05)
wine (H=1.6, M=-1.6)

coffee (H=1.45, M=-3.65)

Table 4: Examples of errors (BERT-base, Patientpyr;). H= Human score, M=Model’s log probability.

I. TLMS seem to prefer frequent collocations,
but only when they are plausible. Errors re-
ported in Table 4 suggest the tendency of TLMS
to predict frequent complements of the verbs, ir-
respective of whether they are coherent with the
rest of the tuple. We questioned to what extent
salient local word co-occurrences make the models
“blind” to the rest of the context and thus com-
promise the plausibility of their predictions. To
investigate this behavior, we generated a new di-
agnostic dataset. The dataset is a small (31 pairs)
subset of Patientprr;, where the atypical filler in
each pair was replaced with another noun that has
a very strong association with the verb in the tuple.
We computed the association between the verb and
its direct objects using Local Mutual Information
(LMI) (Evert, 2008). Since LMI is computed by
multiplying the Pointwise Mutual Information and
the frequency of the two words in a grammatical
relation, it assigns higher values to combinations
that are both common and informative. We chose
the new atypical fillers among the words with the
highest LMIs. We chose words that give rise to odd
events when integrated with the rest of the context.
To approximate the word distributions encountered
in the training data, we extracted LMI values from
a 2018 dump of English Wikipedia and we evalu-
ated only the BERT model (base and large) on the
new dataset, as Wikipedia is a considerable part
of the training only for this model. Examples of
the new test pairs are the following: The terrorist
released the hostage/ album, The truck hit the car/
ball, The soldier heard the command/ case.

To evaluate BERT performance, we computed
the accuracy scores on the diagnostics dataset in
the same way as in the main experiment (binary
classification task). Results show that the models
generally assign low probabilities to atypical fillers.
They choose the atypical event in some cases (9
in BERT-base, 6 in large), but mainly when the
contrast between the atypical event and our ex-
pectations is less evident (The smuggler sold the
property is preferred to weapon, The soldier throw
the ball is preferred to bomb).

As already observed in the main experiment,
BERT seems to be able to look beyond salient lo-
cal associations and build representations of global
events flexibly. However, this issue should be fur-
ther explored for the other roles as well. For in-
stance, given the sentence The engineer completed
the project in the __, the models must consider more
contextual elements to make the correct prediction.

On the other hand, even if SDM design aims
at capturing this aspect of GEK, the manipula-
tions we made in this dataset cause a drop in the
model performance (14 pairs out of 31 are classi-
fied wrongly). This drop is probably due to aspects
of the implementation such as data sparsity. Specif-
ically, if there are no events in which the subject
occurs with a direct object, the prototype of the pa-
tient is built only from the verb’s most associated
patients, disregarding the fact they are implausible
given the whole context.

II. TLMS know more about what is typical
than what is possible. The use of typicality
datasets such as DTFit for the estimation of the
models’ GEK has some limitations. TLMS’ ability
to reproduce combinations encountered frequently
during training could be the reason for high perfor-
mances in the typicality task, since what is most
typical often occurs most frequently. However,
GEK is not just memory of exemplars, but it re-
quires fine-grained knowledge of the properties of
objects and it involves reasoning processes such as
abstraction and comparison between objects and
prototypical concepts.

To evaluate TLMS on a setting where frequency
variations in the training corpus have a minor im-
pact, we used the dataset realized by Wang et al.
(2018) (henceforth, Wang2018). This dataset rep-
resents a benchmark for the task of semantic physi-
cal plausibility (Bagherinezhad et al., 2016), that
is, distinguishing an atypical but physically plau-
sible event such as The student climbed the ship
from an atypical and physically implausible one
such as The student climbed the water. The dataset
contains agent-verb-patient (SVO) triples divided



into plausible and implausible. From the original
dataset, which contains 1, 540 plausible and 1, 540
implausible triples, we derived two subsets contain-
ing pairs of triples differing either for the agent or
for the patient role filler (obtaining 222 and 394
pairs respectively).

Table 3 reports the resulting accuracy values. In
general, the models’ scores are lower than in the
typicality task (min. 0.64, max. 0.77), and in some
cases they are not much higher than random per-
formance. Moreover, in many cases the models
could be facilitated by the existence of an associ-
ation between the plausible filler and the verb of
the event, as in The ant built the wall and in The
chair absorbed the water. Nevertheless, the results
demonstrate that the notion of plausibility is harder
to model compared to typicality, and invite caution
when making claims about TLMS world and event
knowledge. In fact, the results suggest that even
if it were true that TLMS develop some general-
ization skills from training, they still miss many
predictions about possible events, which instead
humans easily make on the basis of their common-
sense knowledge.

This dataset is also difficult for SDM, which ob-
tains scores lower than those of the TLMS (0.65 for
Agent and 0.66 for Patient). Even if SDM should
be better at reproducing generalization through the
construction of prototypical fillers, the model’s
distributional representations seem to fail to cap-
ture the specific properties that are relevant for the
dataset items, namely physical properties of objects
(liquid-solid, large-small, etc.). The lack of such
properties constitutes a limitation of distributional
models of word meaning based on text data only,
which is why, in previous studies, world knowl-
edge was explicitly injected into the models for the
physical plausibility task (Wang et al., 2018).

III. TLMS do not extend fit judgments to low
frequency synonyms. To test whether TLMS
consider an entity more or less likely to take part
in an event depending on the word used to refer to
that entity, we evaluated them on a new diagnostic
dataset of 39 pairs, generated from a subset of Pa-
tientprr;;. In this setting, the typical filler in each
pair was replaced with a low-frequency word that is
semantically related to the original one. To choose
an appropriate substitute, we first extracted a set
of synonyms according to two lexical resources
(WordNet, Lexico.com). Then, we picked a word
that 1) is less frequent than the original filler and

2) has a frequency lower than 300, 000. For the
same reasons described in the first additional ex-
periment, we extracted statistics from a 2018 dump
of English Wikipedia and evaluated only BERT
on the new dataset. Examples of substitutions are
the following: The botanist examined the plant —
flora, The waiter cleared the restaurant — tavern,
The veterinarian examined the dog — puppy. It
is interesting to observe that these variations pose
serious difficulties to the models, as their accu-
racy on the diagnostics dataset is close or lower to
the random level (BERT-base: 0.37, BERT-large:
0.53). For example, BERT considers The terrorist
released the captive as less probable than The ter-
rorist released the /book, and the same occurs for
The mother prepared the provisions/gun, and The
carver built the bust/house.

These results cast doubts that current TLMS
can constitute plausible models of event knowl-
edge: they tend to reproduce the patterns that are
frequently observed in the data, and their good
performance is disrupted once these are replaced
with semantically equivalent, but less frequent ones.
This means that they lack the abstract semantic
knowledge of human subjects, whose predictions
are more flexible thanks to inference mechanisms
such as generalization to concepts sharing seman-
tic features. At least in principle, models aiming
at building prototypes of ideal role fillers (such as
the distributional models of thematic fit) are more
cognitively realistic, since they are less dependent
on specific words. However, they may still show
sub-optimal performance in this diagnostic dataset
as they are based on the quality of the distributional
representations, which is lower for words that have
low frequency in corpora. This is confirmed by the
performance of SDM on the dataset (the accuracy
is 0.51).

transitive cleft wh-interrogative

Agentprri 0.64 -0.13 0.62
PatientDTpn 0.64 % 0.51
Instrumentprre 0.5  0.10 0.6
TimeDTFu 0.66 0.33 0.64
Locationpr; 0.73 0.67 0.73

Table 5: Spearman Correlation for DTFit datasets us-
ing RoBERTa-large and input sentences with different
word orders.

IV. TLMS can be influenced by the surface
structure of sentences Finally, we analyzed to
what extent TLMS’ ability to predict the fit of a



word in a given role arises from the observation of
recurrent word order patterns during pre-training
(e.g., the fact that an actor’s award-winning event
is canonically expressed with active sentences, in
which award follows the words actor and won),
rather than being based on a deep understanding of
the semantic relations between the words.

To explore this issue, we modified DTFit tuples
to create two different versions of the dataset, each
with examples of a syntactic construction different
from the English canonical word order. Specifi-
cally, we experimented with cleft (It was the award
that the actor won, It was on the ring that the
boxer delivered the punch) and wh-interrogative
sentences (Which award did the actor win?, On
which ring did the boxer deliver the punch?).

We evaluated this new set of sentences using
RoBERTa-large (cf. Table 5). We observe that
the model is not particularly affected by the inter-
rogative structure. Conversely, the model suffers
from the cleft construction for all semantic roles ex-
cept for Location (p=0.67). If we ask the model to
generate the most likely words to appear in that po-
sition, we observe that word predictions in the new
construction are more general and less dependent
on the GEK associated with the other words in the
sentence, proving that TLMS are affected by the
surface syntactic shape of the linguistic input, since
the cleft construction is less frequent and presents
a less canonical word order. For instance, given
the sentence It was with the [MASK] that the guard
opened the door, ROBERTa generates the following
possible fillers: gun (P=0.044), crowd (P=0.020),
sword (P=0.016), and then key (P=0.016), while
in the active sentence key is correctly predicted as
the most probable word (P=0.22). In this specific
case, it seems that the model only looks at the word
nearby (guard) to make a prediction, disregarding
the entire context. Generally, the agent role shows
the worst results, obtaining —0.13. Note that SDM
is not affected by these variations by design, since
its predictions are based on semantic roles derived
from the syntactic analysis of the sentence, which
is explicitly provided to the model.

6 Conclusions

In this paper, we tested Transformer-based Lan-
guage Models on tasks related to Generalized Event
Knowledge. In the main experiment, we evalu-
ated their ability to model event typicality, that is,
discern typical from atypical events, on a dataset

designed for this task, DTFit. Results show that
TLMS scores positively correlate with human judg-
ments. However, they do not significantly out-
perform the distributional prototype-based model
(SDM) that we selected for comparison. This con-
firms the ability of SDM to dynamically update the
semantic representation of a sentence, which was
recently shown for the challenging task of logical
metonymy interpretation (Rambelli et al., 2020).

However, we decided to go beyond the simple
evaluation against human judgments. We carried
out several additional small-scale experiments with
the specific aim to understand which factors could
affect the predictions of TLMS. The results sug-
gest that models are often too dependent on what
they observe during training and lack some key
aspects of human event knowledge. In particular,
we observed that, in some cases, they are unable
to compose all elements of the input to make pre-
dictions, and they tend to rely more on salient local
associations between words. However, further anal-
ysis is needed. Secondly, their performance drop
on the physical plausibility task, which requires the
ability to infer physical properties necessary for an
object to participate in a given event. Lastly, their
probabilities are dependent on the specific words
that have to be predicted rather than on their mean-
ing, and on the canonical word order in which these
words tend to occur. Noticeably, even a distribu-
tional model of event knowledge (SDM) showed
similar limitations, generally likely to be due to
data sparsity and inherent limitations of distribu-
tional representations obtained from text data.

To conclude, we believe that the experiments we
reported are the first step towards a deep investi-
gation of “how general” is the Generalized Event
Knowledge in computational models. Future work
might include the creation of a larger version of
our diagnostic datasets, in order to make available
to NLP researchers a more robust benchmark for
tasks related to Generalized Event Knowledge.
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Abstract

Transformer-based language models (LMs)
continue to advance state-of-the-art perfor-
mance on NLP benchmark tasks, including
tasks designed to mimic human-inspired “com-
monsense” competencies. To better under-
stand the degree to which LMs can be said
to have certain linguistic reasoning skills, re-
searchers are beginning to adapt the tools and
concepts of the field of psychometrics. But to
what extent can the benefits flow in the other
direction? L.e., can LMs be of use in predicting
what the psychometric properties of test items
will be when those items are given to human
participants? We gather responses from numer-
ous human participants and LMs (transformer-
and non-transformer-based) on a broad diag-
nostic test of linguistic competencies. We then
use the responses to calculate standard psy-
chometric properties of the items in the di-
agnostic test, using the human responses and
the LM responses separately. We then deter-
mine how well these two sets of predictions
match. We find cases in which transformer-
based LMs predict psychometric properties
consistently well in certain categories but con-
sistently poorly in others, thus providing new
insights into fundamental similarities and dif-
ferences between human and LM reasoning.!

1 Introduction

The current generation of transformer-based lan-
guage models (TLMs) (Vaswani et al., 2017) con-
tinues to surpass expectations, consistently achiev-
ing state-of-the-art results on many natural lan-
guage processing (NLP) benchmark tasks. Espe-
cially surprising is their remarkable performance
on benchmark tasks designed to assess “common-
sense” reasoning (e.g., Wang et al., 2018, 2019),

'Code and data to reproduce our experiments can be found
on Github: https://github.com/Advancing-Machine-Human-
Reasoning-Lab/transformer-psychometrics
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possibly owing to their ability to encode and re-
trieve a surprising amount of structural knowledge
(Goldberg, 2019; Hu et al., 2020; Cui et al., 2020;
Petroni et al., 2019; Davison et al., 2019), despite
initial worries that all connectionist language mod-
els in general would suffer the same limitations
as previous generations (Sun, 1992, 1995; McClel-
land, 1995; Klahr, 1999; McLaughlin, 2009).

Understanding how TLMs reason is a complex
task made more difficult by the fact that the sizes of
contemporary TLMs are so large as to effectively
render them black boxes. As such, researchers are
continually searching for new methods to under-
stand the strengths and limitations of TLMs. One
promising approach is to draw from psychometrics,
a sub-field of psychology particularly suited to deal-
ing with perhaps the most mysterious black box of
them all: the human mind. Psychometrics is con-
cerned with psychological measurement—i.e., how
to measure latent attributes like reasoning skills,
attitudes, and personality traits. Psychometricians
have developed tools to measure such properties
even when the mechanisms that give rise to them
are not fully understood, thus suggesting a possi-
ble fruitful application of those tools to complex
artificial black boxes like TLMs. Although some
have called for bridging the gap between psycho-
metrics and Al (Bringsjord and Schimanski, 2003;
Bringsjord, 2011; Bringsjord and Licato, 2012;
Dowe and Hernandez-Orallo, 2012; Hernandez-
Orallo et al., 2016; Wilcox et al., 2020), the amount
of work attempting to do so is limited: although
some existing work attempts to use advances in
psychometrics to benefit the study of TLMs, none
to our knowledge have used SOTA TLMs (or even
LMs in general) to benefit psychometrics.

To illustrate, assume that someone wishes to de-
sign a test to assess the degree to which a person
possesses mastery of some cognitive skill S. A
good place to start is for a panel of experts to de-
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sign a set of test items (questions) Z, such that they
believe solving Z requires S. However, although
many NLP benchmarks tend to consider this suffi-
cient, the items in Z only have face validity, in that
they only have been demonstrated to superficially
test for S. To go beyond face validity, one must
assess Z’s psychometric properties by establishing
their validity (how well the items actually measure
the phenomenon S they purport to measure), relia-
bility (how stable the items are as measurements),
and fairness (how well the items are free from bi-
ases against certain sub-populations of subjects).”
But establishing these psychometric properties can
be prohibitively costly, requiring large numbers of
human participants to answer the items in Z and it-
eratively refine them. This drawback motivates the
central research question of our paper: Can TLMs
be used to predict psychometric properties of
test items? If so, the benefit for psychometric prac-
titioners> is enormous, as it can reduce the need
for multiple rounds of costly empirical testing. But
the benefits for NLP are significant as well: know-
ing how the psychometric properties of items differ
when applied to artificial versus human populations
will give us unique insight into how they solve such
problems, and how they can be improved.

Main Contributions of this Paper: We present
the first exploration into how well TLMs can be
used to predict certain psychometric properties of
linguistic test items. To do this, we identified a
subset of items from the GLUE broad coverage di-
agnostic (Wang et al., 2018), and collected human
responses on these items in order to assess simple
psychometric properties, designing a novel user
validation procedure to do so. We then assess the
performance of 240 LMs on these diagnostic items.
Our resulting analysis clearly shows that TLMs ex-
cel in modeling psychometric properties in certain
sub-categories of linguistic skills, thus providing
fruitful directions for future work.

2 Related Work

What reason do we have to suspect that TLMs can
predict the psychometric properties of test items?
Although TLMs were not primarily designed to
compute in a human-like way, there are some rea-

“Note however that we focus only on validity and reliabil-
ity in this work.

3In other words, professionals responsible for designing
standardized tests or other evaluations meant to assess latent
attributes of individuals.
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sons to suspect that they may have the ability to
effectively model at least some aspects of human
linguistic reasoning: They consistently demonstrate
superior performance (at least compared to other
LMs) on human-inspired linguistic benchmarks
(Wang et al., 2018, 2019), and they are typically
pre-trained using a lengthy process designed to em-
bed deep semantic knowledge, resulting in efficient
encoding of semantic relationships (Zhou et al.,
2020; Petroni et al., 2019; Davison et al., 2019; Cui
et al., 2020). Common optimization tasks for pre-
training transformers, such as the masked LM task
(Devlin et al., 2018) are quite similar to the word
prediction tasks that are known to predict children’s
performance on other linguistic skills (Borovsky
et al., 2012; Neuman et al., 2011; Gambi et al.,
2020). Finally, TLMs tend to outperform other
LMs in recent work modeling human reading times,
eye-tracking data, and other psychological and psy-
cholinguistic phenomena (Merkx and Frank, 2021;
Schrimpf et al., 2020b,a; Hao et al., 2020; Bhatia
and Richie, 2020; Laverghetta Jr. and Licato, 2021;
Laverghetta Jr. et al., 2021).

There are many studies probing TLMs in various
ways, a body of work sometimes called “BERTol-
ogy” (Rogers et al., 2021; Belinkov and Glass,
2019). However, work explicitly bridging psycho-
metrics with Al is less common. Xue (2019) aug-
mented the DINA (De La Torre, 2009) and DINO
(Templin and Henson, 2006) cognitive diagnostic
models (Sessoms and Henson, 2018) with a feed-
forward neural network that used a semi-supervised
learning objective. The architecture achieved su-
perior results to multiple baselines. Ahmad et al.
(2020) created a deep learning architecture for ex-
tracting psychometric dimensions related to health-
care, specifically numeracy, literacy, trust, anxiety,
and drug experiences. Their architecture did not
use transformers, and relied instead on a sophisti-
cated combination of convolutional and recurrent
layers in order to extract representations of emo-
tions, demographics, and syntactic patterns, among
others. Eisape et al. (2020) examined the corre-
lation between human and LM next-word predic-
tions and proposed a procedure for achieving more
human-like cloze probabilities. In NLP, methods
from item response theory (IRT) (Reckase, 2009)
have been particularly popular. Lalor et al. (2018)
used IRT models to study the impact of question
difficulty on the performance of deep models on
several NLP tasks. In a follow-up study, Lalor and



Yu (2020) used IRT models to estimate the com-
petence of LSTM (Hochreiter and Schmidhuber,
1997) and BERT models during training. This al-
lowed them to create a dynamic curriculum learn-
ing (Bengio et al., 2009) algorithm, which achieved
superior performance to the same models trained
using a static scheduler for several tasks. Sedoc
and Ungar (2020) used IRT to efficiently assess
chat-bots. Martinez-Plumed et al. (2019) used IRT
to analyze the performance of machine learning
classifiers in a supervised learning task. IRT has
also been used to evaluate machine translation sys-
tems (Otani et al., 2016) and speech synthesizers
(Oliveira et al., 2020), and also in computer vision
(RichardWebster et al., 2018).

This literature clearly indicates that there has
been a lot of interest in applying psychometrics
to Al So far, most of this effort has focused on
specific use cases, and has not attempted to broadly
assess commonalities between machine and human
reasoning. Most similar to our current work is Lalor
et al. (2019), who showed that deep models could
achieve a strong correlation with IRT parameters
fitted using human data on several NLP datasets.
However, they compared the human responses to
LSTMs and neural semantic encoders (Munkhdalai
and Yu, 2017), and did not consider TLMs. Fur-
thermore, they focused on the SNLI dataset, which
is less challenging than the GLUE diagnostic and
does not group questions based on fine-grained lin-
guistic competencies.

Besides the GLUE diagnostic, other taxonomies
have been proposed, such as TaxiNLI (Joshi et al.,
2020b). Although TaxiNLI includes some types of
reasoning which have no clear analogue in GLUE,
many of their categories are quite similar.* Since
the TaxiNLI questions were also taken from the
MNLI dataset, we were concerned they would be
too easy for some of the larger TLMs we planned to
evaluate. We, therefore, chose to focus specifically
on the challenging GLUE diagnostic set and leave
TaxiNLI for future work.

3 Gathering Language Model Data

The GLUE and SuperGLUE benchmarks (Wang
etal., 2018, 2019) are suites of NLP tasks designed
to test the general linguistic capabilities of LMs.
Included as part of the GLUE benchmark is a set
of diagnostic questions, called the broad coverage

“Both GLUE and TanxiNLI test for temporal reasoning,
but place them at different levels in the taxonomy.
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diagnostic, which are all formatted as natural lan-
guage inference (NLI) problems. NLI problems
consist of two sentences: a premise (p) and hypoth-
esis (h), and solving such a problem involves as-
sessing whether p textually entails h. There are typ-
ically three choices: either p does textually entail
h (entailment), p entails that h is impossible (con-
tradiction), or h’s truth can not be determined from
p alone (neutral). The NLI task is therefore quite
general and can encompass a wide variety of other
“commonsense” reasoning tasks. The broad cover-
age diagnostic was manually curated by linguistics
and NLP experts and is meant to assess broad psy-
cholinguistic competencies of LMs across multiple
categories. For instance, the propositional structure
category contains questions that exploit proposi-
tional logic operators; e.g., p = “The cat sat on
the mat.” and h = “The cat did not sit on the mat.”
The diagnostic covers four main categories of lin-
guistic competencies: lexical semantics, predicate-
argument structure, logic, and knowledge and com-
mon sense. These categories are further divided
into multiple sub-categories, each of which covers
a specific and interesting phenomenon in language.
The GLUE diagnostic thus aims to be a compre-
hensive test of linguistic reasoning skills, making
it suitable for our present study.

To evaluate our models, we selected a subset of
the GLUE diagnostic questions that were a mem-
ber of only one sub-category, to better isolate fac-
tors. In most cases, there were enough questions
in a single sub-category that we could just drop all
questions that belonged to multiple sub-categories,
further details on this preprocessing can be found
in Appendix A. After performing preprocessing,
we had 811 remaining diagnostic questions encom-
passing 20 sub-categories. Each sub-category had
at least 15 questions, and we selected 7 of the sub-
categories to use in our experiments:

1. morphological negation (MN)

2. prepositional phrases (PP)

. lexical entailment (LE)

. quantifiers (Q)

. propositional structure (PS)

. richer logical structure (RLS)

. world knowledge (WK)



We selected these 7 sub-categories based on
how much the average performance of the LMs
improved after pre-training and finetuning. A sub-
stantial performance improvement indicated the
category was solvable by the models, and would
therefore provide a meaningful comparsion to the
human data. We gathered responses to the diagnos-
tic from a wide array of TLMs, including BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
T5 (Raffel et al., 2020), ALBERT (Lan et al., 2020),
XLNet (Yang et al., 2019), ELECTRA (Clark et al.,
2020), Longformer (Beltagy et al., 2020), Span-
BERT (Joshi et al., 2020a), DeBERTa (He et al.,
2020), and ConvBERT (Jiang et al., 2020). Each
of these models differs from the others along one
or more factors, including underlying architecture,
pre-training objective and data, or the general cat-
egory the model belongs to (autoregressive, au-
toencoding, or sequence-to-sequence). For most
of these models we used the Transformers (Wolf
et al., 2020) implementation, the exception being
TS, which was implemented in PyTorch Lightning
(Falcon and .al, 2019). We use LSTM-based LMs
(Hochreiter and Schmidhuber, 1997) as a baseline,
further details on the LMs can be found in Ap-
pendix A.

We used the SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), and ANLI (Nie et al., 2020)
training and dev sets to finetune our models. We
found that the amount of finetuning data had a
significant impact on final diagnostic performance.
Therefore, to increase the variance in our results as
much as possible we used the following training
set partitions for all model configurations:

* SNLI alone

* MNLI alone

* SNLI + MNLI

e SNLI + MNLI + ANLI

Both the train and dev sets were shuffled before
every trial. We finetuned our models for between
5 to 10 epochs. We used the reported Matthews
correlation (Matthews, 1975) on the dev set during
training to determine when the performance had sat-
urated; when this correlation stopped consistently
increasing for at least a few dev set evaluations we
stopped training. We evaluated on the dev set every
15,000 steps. All the transformer’s key hyperparam-
eters were selected in a similar way to the study
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by Lalor et al. (2019). For all models, we used a
learning rate of 1% 107> and a max sequence length
of 175. Since running even a small grid search to
optimize the hyperparameters of each model would
have dramatically increased the number of trials,
we instead chose to fix these hyperparameters to be
similar to what was used in prior work (e.g. Devlin
et al., 2018). We also found that nearly all mod-
els consistently achieved a Matthews correlation of
about 0.5 or higher on the dev set, and thus con-
cluded that our hyperparameters were suitable. It is
important to note that our goal in finetuning was not
to completely optimize the model’s performance
on these NLI datasets. Rather, since the diagnostic
is formatted as an NLI task, we hoped that finetun-
ing would help the models to learn what the output
labels should be.’ To evaluate these models, we
experimented with four different training regimes:

* Zero shot: The model is initialized with ran-
dom weights in the hidden layers and is eval-
uated on the diagnostic without any training.
This is meant to test whether there is any prop-
erty of the architecture itself which is useful
for solving the diagnostic.

* Pre-train, no finetune: The model is pre-
trained but not finetuned.

* No pre-train, finetune: The model weights
are initialized randomly, but we finetune the
model before evaluating it.

* Pre-train and finetune: The model is pre-
trained and finetuned.

For BERT, we experimented with both Devlin
et al.’s pre-trained models, and a BERT model we
trained from scratch. Our BERT model had an iden-
tical architecture to bert-base and was pre-trained
on Google’s One Billion Words corpus (Chelba
et al., 2014). We used the same hyperparameters
from the BERT paper (Devlin et al., 2018), using a
learning rate of 4 x 10>, a max sequence length of
128, a warmup ratio of 0.01, and a weight decay of
0.01. We used the Transformers library to pre-train
this model, and saved every end-of-epoch check-
point. We pre-trained for 52 epochs and used every
10th checkpoint to gather diagnostic data separately.
This allowed us to study the effect pre-training had
on diagnostic performance.

SFinetuning T5 is necessary to avoid random output.



In summary, this process allowed us to vary the
underlying architecture, the number of trainable
parameters, and the amount of finetuning data used
in each trial. This allowed us to treat each trained
model as effectively being a different “individual”
(and we will refer to them as such), which might
have a radically different cognitive profile from its
counterparts. For example, a roberta-base model
that was pre-trained and finetuned on all 3 NLI
datasets might produce very different response pat-
terns than a roberta-large model evaluated zero-
shot. We used three Tesla V100 GPUs with 32GB
of video memory each, as well as preemptable
GPUs on Google Colab,® to train all models. Wher-
ever possible, we used Apex’ to speed up training.

4 Human Studies

As our purpose in gathering this LM data was to
evaluate it against human performance, we addi-
tionally ran a human study. To do this, we recruited
workers on Amazon Mechanical Turk (mTurk®) to
complete our subset of GLUE diagnostic questions.
While mTurk makes conducting large-scale human
studies convenient, there are also well-documented
problems with participants not completing tasks in
good faith (Berinsky et al., 2014, 2016; Keith et al.,
2017). There are multiple techniques for filtering
out bad-faith participants, such as the use of “atten-
tion check” questions, sometimes called “instruc-
tional manipulation checks” (Hauser and Schwarz,
2015), which are designed so that a good-faith par-
ticipant would be unlikely to get them incorrect.
But this alone would not suffice for our purposes
here, as we want a certain amount of low-scoring
participants on some sub-categories, so that the
population variances on sub-category items would
better reflect their actual variances.” Therefore, we
designed a procedure for distinguishing bad-faith
from low-performing participants.

We first obtained attention checks from the
ChaosNLI dataset (Nie et al., 2020), which gath-
ered over 450,000 human annotations on questions
from SNLI and MNLI. Since each question in
ChaosNLI was annotated by 100 different workers,
if inter-annotator agreement for a given question is

Shttps://colab.research.google.com

"https://github.com/NVIDIA/apex

8https://www.mturk.com

°If we only kept high-performing participants, the item
variances would be skewed to be low and roughly the same,
which would not reflect the true variances we would expect to
see from a large population of good-faith participants.
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high, we conclude that question is likely extremely
easy to solve. These questions were also in the
same format as the diagnostic questions, which
made it less likely that workers would realize they
were being given an attention check. We gathered
36 questions from ChaosNLI where the agreement
for the correct label was at least 90%. The labels
for this subset were perfectly balanced. These were
enough questions to ensure that each phase of our
trials used a unique set of attention check questions.

The human studies were split up into 5 phases,
and workers who did sufficiently well in a given
phase were given a qualification to continue to the
next phase:

1. On-boarding: A qualifying HIT (human
intelligence task) open to any worker located
in the United States, who had completed at
least 50 HITs with an approval rating of at
least 90%. The HIT consisted of 5 attention
check questions, given to each worker in the
same order. We gathered responses from up
to 200 workers.

. Phase 1: Included questions from morpho-
logical negation, and 3 attention checks. We
gathered up to 45 responses.

. Phase 2: Included questions from lexical
entailment and prepositional phrases, as well
as 6 attention checks. We gathered up to 36
responses.

. Phase 3: Included questions from quantifiers
and propositional structure, as well as 6
attention checks. We gathered up to 27
responses.

. Phase 4: Included questions from richer log-
ical structure and world knowledge, as well
as 6 attention checks. We gathered responses
from all accepted workers from Phase 3.

In each phase, questions were randomly ordered,
except for attention checks which were spread
evenly throughout the survey. We used Qualtrics'’
to create the surveys for each HIT and collect the
responses. Participants were first presented with

https://www.qualtrics.com



instructions for the task and some examples, which
were based on the instructions originally given to
annotators for the MNLI dataset.'! The questions
from each category were a randomly chosen subset
of 15 questions tested on the LMs for that cate-
gory, balanced for each label. For each question,
workers also had to provide a short justification
statement on why they believed their answer was
correct, which was used to help filter out bad faith
participants. To validate the responses to our sur-
veys, we developed the following authentication
procedure:

Stage 1: Look for duplicate IPs or worker IDs,
indicating that the worker took the HIT more than
once. If there are any, reject the second and future
HITs, but keep the first submission.

Stage 2: If the worker’s overall score was less
than 40%, reject the HIT. If their overall score was
greater than 60%, accept the HIT. For workers who
scored between 40% and 60%, we still rejected
the HIT if they got less than 75% of the attention
checks correct.

Stage 3: Finally, examine the justifications of all
workers not previously rejected. Here we were look-
ing for simple, but clear, reasons for why work-
ers chose their answer. We included this step be-
cause we found in a pilot study that workers some-
times provided nonsensical justifications for their
answers even when they did well on the survey,
making it unclear whether they were truly pay-
ing attention. We checked that the justifications
appeared relevant to the question (some workers
seemed to paste random text from other websites
into the justification), that they did not paste part
of the question for their justification, that they did
not use the same justification for every question,
and that they did not use short nonsensical phrases
for their justification (some workers simply wrote
“good” or “nice” as their justification). This allowed
us to keep some low-scoring participants who had
put genuine effort into the task.

Manual inspection of the resulting responses sug-
gested that workers who passed stage 3 consistently
gave higher quality responses than those who did
not. These workers gave more detailed justifica-
tions that clearly articulated their thought process,
often citing specific details from the question. On
the other hand, workers who failed to give good jus-
tifications also tended to perform quite poorly, gen-

https://myu-mll.github.io/GLUE-human-
performance/mnli.html
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erally scoring at or below random chance, which
further indicated that they were not actually paying
attention. We, therefore, believe the use of justifi-
cations helped us gather higher-quality responses.
Further details on the human study can be found in
Appendix B.

5 Experimental Results

Using the procedures described in §3 and §4,
we gathered results from 27 human participants
and 240 neural LMs (183 transformer-based and
57 LSTM-based). In addition to the LSTMs, we
also include a true random baseline which simply
guesses randomly on every question. In the follow-
ing experiments, we use the human performance
on each category as the basis for analyzing the per-
formance of the artificial populations, specifically
in terms of how well each artificial population’s
responses correlate with the human data.

Category Dy Dy, Dgr
MN -0.28, <0.5 | 0.27,>0.5 | -0.14, >0.5
PP 0.86, <0.001 | 0.47, <0.1 | 0.42,<0.5
LE 0.62, <0.05 | 0.17,>0.5 | -0.22, <0.5

Q 0.57, <0.05 | -0.22, <0.5 | 041, <0.5
PS 0.93, <0.001 | 0.27, <0.5 | 0.37,<0.5
RLS 0.28,<0.5 | -0.03,>0.5 | -0.37, <0.5
WK 0.79, <0.001 | 0.46, <0.1 | -0.25, <0.5

Table 1: Given Dy, Spearman correlation and p-values
were calculated with transformer-based (D7), LSTM-
based (Dp), and random (Dp) estimates of problem
difficulty (percentage of the population that got the
item correct). Note here we have bolded cells whose
correlations (absolute values) were highest, but their p-
values were not always significant.

5.1 Classical Test Theory

We began by examining how well TLMs could
predict simple problem difficulty in the human
data. This measure comes from classical test theory
and is calculated simply as how many members
of the population get a given item right. For each
item ¢ in a given sub-category in our subset of the
GLUE diagnostic, we calculated the percentage
of human participants who got that question cor-
rect (DY), and then the corresponding percentage
for the TLMs (D%), LSTM-based LMs (D?), and
the random baseline (D}é). We then calculated the
Spearman correlation (Spearman, 1961) between

¢, and each of the other populations. Results
are shown in Table 1. In almost all cases, TLMs
achieve a much stronger correlation with the human



data than either baseline, and most were statistically
significant. The main exceptions are morphological
negation (MN) and richer logical structure (RLS),
both of which fail to produce strong correlations.
As we will see, this pattern will repeat in other
measurements as well.

IIC-based Clustering An important idea in psy-
chometrics is that questions that rely on the same
skills should have similar chances of being an-
swered correctly by a given participant (Rust and
Golombok, 2014). Whether questions rely on sim-
ilar skills can be tested using the inter-item cor-
relation (IIC) between two items, where high IIC
suggests that the items rely on similar underlying
reasoning skills. Thus, it can be assumed that if
items cluster together when using IIC as a distance
metric, they rely on similar underlying cognitive
skills. To explore this, given a correlation measure
cranging from -1 to 1, we convert it into a distance
metric by taking 1 — c. We use this metric to apply
k-medoids clustering to the diagnostic questions,
using the silhouette method (Rousseeuw, 1987) to
find the optimal number of clusters. For each sub-
category, we perform clustering using human, trans-
former, LSTM, and random data separately (H,
T, L, and R respectively). We use the k-medoids
implementation from scikit-learn extra'? and use
scikit-learn (Pedregosa et al., 2011) to calculate the
silhouette coefficient.

After clustering, for each pair of items (7, j) we
define CD as 1 if ¢ and j are in the same cluster as
determmed by dataset D € {H,T, L, R}. Finally,
to determine how well clusters from the LM re-
sponses match the human responses, we calculate
Pearson correlation (Pearson, 1895) between C'
and each of CT, C'L, and C'E. Results are shown
in Table 2. Similar to Table 1, we see statistically
significant correlations from TLMs in every sub-
category, except for morphological negation (MN),
where TLMs again achieve only weak correlation.

Per Model Analysis The previous results give
us some insights into the performance of the entire
TLM population. However, individual transformers
might differ somewhat in the specific skills they
are proficient in. To study this, we performed the
same simple problem difficulty experiment, but
this time only used the diagnostic results from a
single transformer architecture (for instance just
BERT). We did this for each architecture, and then

Zhttps://github.com/scikit-learn-contrib/scikit-learn-extra
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Figure 1: Change in correlation for each TLM archi-
tecture on each category, compared to the entire TLM
population. Best viewed in color.

on each diagnostic sub-category, we computed the
difference between the single architecture’s cor-
relation and the overall correlation from Table 1.
The heatmap in Figure 1 shows the results, with
cooler colors indicating a stronger decrease in cor-
relation and warmer colors indicating a stronger
increase. In many cases, the correlation is almost
the same as the value reported in Table 1. However,
in some cases the difference is striking. For ex-
ample, RoBERTa gets a much stronger correlation
on morphological negation than any other model.
Overall, it appears that most models are achieving
close to the mean correlation, but there are a few
significant differences.

Category Cr Cy, Cr
MN 0.18, <0.1 | 0.40, <0.001 | -0.14, <0.5
PP 0.31, <0.01 | -0.15,<0.5 | -0.01,>0.5
LE 0.31, <0.01 | -0.03,>0.5 | -0.16, <0.5

Q 0.24, <0.05 | -0.01,>0.5 | 0.06, >0.5
PS 0.51, <0.001 | 0.03,>0.5 0.04, >0.5
RLS 0.46, <0.001 | -0.07, <0.5 | 0.04, >0.5
WK 0.28, <0.01 0.00, >0.5 | -0.09, <0.5

Table 2: Pearson correlation and p-values for how well
items clustered using human responses match the clus-
ters which used transformer-based (Cr), LSTM-based
(Cp), and random (C'g) items.

5.2 Item Response Theory

Models from classical test theory have an impor-
tant shortcoming: they provide no clear way to
separate the characteristics of the test taker and the
test items. In practice, the observed performance
on a test is affected by both the test taker and the
test itself. This intuition is formalized in a psycho-



metrics approach known as item response theory
(IRT), in which both item characteristics and in-
dividual ability are modeled and used to predict
performance (Baker and Kim, 2004). IRT models
are often regarded as more informative than classi-
cal models and have become standard tools when
designing evaluation scales. Formally, let j be an
individual taking a test, ¢ be an item on that test,
and 0; be that individual’s latent ability. Then the
probability that j answers ¢ correctly is defined as:

1—02‘

P(y; = 1[0;) :Ci‘i‘m

()
Where a;, b;, and c; are item parameters and y; = 1
indicates a correct answer. a; is the discrimination
parameter, which refers to how effective the item is
for picking out high versus low ability test takers.
b; is the difficulty parameter, which models how
easy or difficult the item is. Finally, ¢; is the prob-
ability of guessing correctly. If both guessing and
discrimination are held constant, we get the one-
parameter or Rasch model (Rasch, 1993). Given a
large number of human responses to a set of items,
parameters for IRT models can be estimated us-
ing the marginal maximum likelihood method and
expectation maximization (Bock and Aitkin, 1981).

Since TLMs correlated well with humans using
the classical techniques we tested, we wished to
examine whether this would still hold using IRT
models. To do this, we used the diagnostic results
from each population to fit Rasch models. We used
the Itm R package to fit all models (Rizopoulos,
2006). This gave us separate difficulty parameter
estimates b; for each item ¢, for each population.
To determine how well the difficulty parameters
matched between populations, we calculated the
Pearson correlation between the b; using our hu-
man response data (H), and the b; obtained using
the other populations (7°, L, R). Results are shown
in Table 3. As before, TLMs consistently get a
stronger correlation than either baseline on most
sub-categories, except for morphological negation
(MN) and richer logical structure (RLS). Interest-
ingly, LSTM-based LMs achieved statistically sig-
nificant and stronger correlations than TLMs on
certain sub-categories: world knowledge (WK) and
prepositional phrases (PP). The only other experi-
ment where LSTM-based LMs achieved stronger
correlation was reported in Table 2, where they
achieved superior correlation to TLMs on morpho-
logical negation (MN).
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Category Dy Dy, Dgr
MN 0.08, >0.5 0.29, <0.5 | 0.19, >0.5
PP 048, <0.1 | 0.69, <0.01 | -0.25, <0.5
LE 0.88, <0.001 | -0.06, >0.5 | 0.14,>0.5

Q 0.61, <0.05 | 0.03,>0.5 | 0.12,>0.5
PS 0.61, <0.05 | 0.05,>0.5 | -0.25, <0.5
RLS 0.16, >0.5 -0.05, >0.5 | -0.31, <0.5
WK 0.52, <0.05 | 0.59, <0.05 | -0.1,>0.5

Table 3: Pearson correlation and p-values for
transformer-based (D7), LSTM-based (D), and ran-
dom (Dp) estimates of problem difficulty computed
using Rasch models.

6 Discussion

Our analysis has revealed some interesting patterns
that would have been difficult to discern using tra-
ditional evaluation metrics. Overall, TLMs perform
consistently better than either of our baselines in
modeling human psychometric properties. How-
ever, this improvement is also not uniform across
all psycholinguistic categories. In fact, we have
found some regularities in this regard. For instance,
TLMs failed to achieve a strong correlation on mor-
phological negation in all cases. This might be
explained by two facts: there is little relative vari-
ance in the human responses in this sub-category,
and the average accuracy of human participants
was above 90%, as opposed to LM accuracy of
55%. This sub-category also tests for reasoning
over negation, which prior studies found that trans-
formers struggle with (Rogers et al., 2021). This
ability to analyze the specific kinds of reasoning
transformers have become proficient in is a clear
advantage psychometrics have over typical NLP
evaluations. The NLP community is becoming in-
creasingly aware of the need to construct more
fine-grained evaluation benchmarks (Wang et al.,
2018; Joshi et al., 2020b), and we believe our work
complements these efforts nicely.

Of course, this study also has limitations. The
number of human participants in our study was
somewhat small compared to typical psychometrics
studies, which makes it difficult to draw stronger
conclusions. One of the main criticisms IRT models
draw is that they can require thousands of responses
to get good estimates of the latent parameters (Min
and Aryadoust, 2021). As stated earlier, practical
limitations on population size is a common problem
in psychometrics research, one which our present
work hopes to alleviate somewhat. Future work will
need to repeat our experiments with much larger



population sizes, and also take measures to ensure
sufficient diversity in the study population (e.g.,
age, income, education level, English fluency, etc.).
Improvements in the computational efficiency of
TLMs is likely also necessary for our approach to
be practical, as it is unlikely most pyschometricians
have access to extensive GPU resources. One possi-
ble solution would be to identify a subset of TLMs
that preserves the psychometric properties of the
entire population, which might allow us to achieve
similar results with fewer models.

Furthermore, although we reported in detail on
certain psychometrics measures where our method
demonstrated promising results for TLMs, it is
worth reporting that certain other measures we ex-
amined did not appear to align well. For example,
item-total correlations using human data did not
appear to correlate with any LM data better than
with the random baseline. Likewise, our LMs failed
to predict average inter-item correlations between
either random subsets of items or our diagnostic
sub-categories. More work is needed to better un-
derstand why.

Finally, while our experiments have given us
some insights into the validity and reliability of the
diagnostic items, it is unclear whether our approach
can allow us to measure their fairness. Although it
is an important property, fairness is somewhat more
controversial than other psychometric properties,
in part because there are multiple interpretations
of what constitutes test bias (Warne et al., 2014).
Being able to probe the fairness of items would
have interesting downstream applications. For in-
stance, it might indicate whether a diagnostic gives
an unfair advantage to certain types of classifiers.

7 Conclusion

We believe our work offers a clear path forward for
bridging psychometrics and Al. The use of psycho-
metrics measures gives us a more nuanced under-
standing of the latent abilities of LMs than single-
valued measures like accuracy or F can provide.
Furthermore, the increasingly powerful ability of
TLMs to model human “commonsense” reasoning
and knowledge suggests new ways to predict psy-
chometrics properties of test items, reducing the
need for costly human empirical data.
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A Additional Details on Language Model
Experiments

To create the subset of the GLUE diagnostic, there
were three cases where we needed to merge mem-
bers of one sub-category into another to prevent
overlap:

1. negation and double negation questions were
merged into morphological negation.
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2. symmetry/collectivity was merged into core
arguments.

3. Questions in both world knowledge and
named entities were merged into named enti-
ties.

Each of these was cases where the sub-categories
overlapped highly. For a full listing of the sub-
categories and their descriptions, see (Wang et al.,
2018). We experimented with multiple different
snapshots of each TLM, which differed in the num-
ber of trainable parameters. We obtained these snap-
shots from HuggingFace.'®> For each model we
used a smaller version, designated with the small
or base suffix, and a larger version, designated with
the base or large suffix. For example, for BERT we
experimented with both bert-base and bert-large,
where bert-large had more trainable parameters.
For ALBERT, we used the base and xxlarge ver-
sions.

For the LSTMs, we used a PyTorch implemen-
tation designed specifically for NLI.!* We initial-
ized the LSTM-based LMs with GloVe word em-
beddings (Pennington et al., 2014). We ran a non-
exhaustive grid search to generate a population of
LSTMs, changing the number of recurrent layers,
size of the hidden layers, learning rate, and dropout
(Srivastava et al., 2014) probability.

B Human Study Details

We paid workers the following amount for each
phase:

* On-boarding: $0.50
* Phase 1: $3.60
e Phase 2: $7.20
* Phase 3: $7.20

e Phase 4: $7.20

Our payment structure was designed to incen-
tivize workers to put forth their best effort when
completing the task. Workers were informed that
successfully completing each task would award
them the opportunity to earn additional payment
on each subsequent phase. However, if on a given
phase a worker failed our authentication protocol

Bhttps://huggingface.co/models
"*https://github.com/pytorch/examples/tree/master/snli



we rejected their work and did not pay them. Work-
ers were informed before starting every study that
we would evaluate the quality of their work, and
that it might be rejected if we found evidence that
they did not put forth an honest effort.
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Abstract

Just as the meaning of words is tied to the com-
munities in which they are used, so too is se-
mantic change. But how does lexical seman-
tic change manifest differently across different
communities? In this work, we investigate the
relationship between community structure and
semantic change in 45 communities from the
social media website Reddit. We use distri-
butional methods to quantify lexical semantic
change and induce a social network on commu-
nities, based on interactions between members.
We explore the relationship between semantic
change and the clustering coefficient of a com-
munity’s social network graph, as well as com-
munity size and stability. While none of these
factors are found to be significant on their own,
we report a significant effect of their three-way
interaction. We also report on significant word-
level effects of frequency and change in fre-
quency, which replicate previous findings.

1 Introduction

The mechanisms and patterns of semantic change
have a long history of study in linguistics (e.g.,
Paul, 1886; Bloomfield, 1933; Blank, 1999). How-
ever, historical accounts of semantic change typi-
cally consider meaning at the language level and,
as Clark (1996) points out, referring to Lewis’s
(1969) account of convention, the meaning of a
word “does not hold for a word simpliciter, but
for a word in a particular community”. This gives
rise questions of how semantic change manifests
differently in different communities. In this work,
we explore relationship between semantic change
and several community characteristics, including
social network structure.

Social network analysis has long been a tool of
sociolinguists studying variation and change (e.g.,
Bloomfield, 1933; Milroy and Milroy, 1985; Eck-
ert, 1988), but our work differs somewhat from that
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tradition in both methodology and focus. Sociolin-
guists typically work with the social networks of
individuals—their ego networks—how many peo-
ple each speaker is connected to, what kind of re-
lationships they have and, sometimes, how people
in their immediate network are connected to each
other. The ego network is convenient for sociolin-
guists using ethnographic methods; it is usually
infeasible to recreate the entire social network of a
large community (Sharma and Dodsworth, 2020).
By studying online communities, we are able to
define and compute several community-level struc-
tural characteristics including size, stability, and
social network clustering (Section 5).

Another way that our work differs from the vari-
ationist approach is that we consider change on
the level of meaning. With a few exceptions (e.g.,
Hasan, 2009), sociolinguistic research studies varia-
tion in linguistic form (phonology, morphology and
syntax). Indeed, mainstream sociolinguists have ex-
pressed skepticism that semantics can be a proper
subject of variational analysis at all (Lavandera,
1978; Weiner and Labov, 1983), since the received
definition of linguistic variation concerns multiple
forms expressing the same content—i.e., different
ways of saying the same thing. With semantics at
the top of the traditional linguistic hierarchy, there
is no higher-order constant to which two meanings
can refer. In this work, we instead consider seman-
tic shift, which refers to changes in the meaning of
a given lexical form (Newman, 2015).

For more traditional sociolinguistic variables, so-
cial indexicality—the association of a variant with
social identities and ideology—is the main factor
that mediates diffusion (Eckert, 2019). Since se-
mantic variation can itself carry social and idealog-
ical meaning (Hasan, 2009), there is good reason to
think that it may be sensitive to some of the same
aspects of community structure.

The focus on semantic shift is also made possible
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by computational methodology—we model word
meaning with distributional semantics (Section 4),
which allows us to quantify short-term lexical se-
mantic shifts at the community level.

In this study, we model the social networks of
45 English-language communities from the social
media website Reddit,! and use diachronic word
vectors to measure semantic change between two
time periods one year apart. Then, we use a multi-
stage linear mixed effects statistical model to test
the effect of various community features on word-
level semantic change.

2 Related work

In this section, we review work that uses compu-
tational methods to study linguistic variation and
change in social context.

Distributional semantics Distributional meth-
ods, which model the meaning of a word with the
contexts in which it appears, are a popular way to
detect and quantify semantic change.”> Several re-
cent studies use distributional semantics to examine
short-term semantic shift at the community level.
Azarbonyad et al. (2017) use diachronic word vec-
tors to study semantic change in political and media
discourse, including in UK parliamentary debates,
finding that word meaning changes differently de-
pending on the political viewpoint of the speaker.
Stewart et al. (2017) use diachronic word vectors
to measure semantic change in the VKontakte so-
cial network during the Russia-Ukriaine crisis and
find that changes in word frequency are predictive
of semantic shift. Del Tredici et al. (2019) stud-
ied short-term semantic shift in the /r/LiverpoolFC
community on Reddit, empirically validating the
diachronic word vector model proposed by Kim
et al. (2014) by correlating cosine distance between
vectors from two different time periods with seman-
tic change judgments collected from members of
the community. In another study Del Tredici and
Fernandez (2017) find variations in word mean-
ing across different Reddit communities, including
communities organized around the same topic.

Social network analysis In an early example of
using social network analysis to study the language
online communities, Paolillo (1999) categorizes
the relationships of users of an IRC channel as

"https://www.reddit.com
2See Tahmasebi et al. (2018), Tang (2018), and Kutuzov
et al. (2018) for recent surveys.
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strong or weak ties, based on interaction frequency.
They find that tie strength predicts the use of some
online and community-specific forms but not others
and conjecture that this difference is related the
social meaning of those forms. Kooti et al. (2012)
examined early Twitter conventions for attributing
the source tweet to someone else (i.e., indicating
that it is a retweet). They examined social network
features, such as the size of a user’s ego network,
but did not find such features to be very predictive
of convention adoption compared to global trends.

Communication games in a laboratory setting
have also been used to examine the effect of so-
cial network structure on linguistic change. Raviv
et al. (2019) quantified the communicative success,
systematicity and stability of languages developed
by “communities” of participants, but did not find
a significant effect across the three different net-
work structures that were tested. Lev-Ari (2018)
found that individuals with larger real-world ego
networks had less malleable semantic representa-
tions in the lab, and use computer simulations to
argue that individuals with smaller ego networks
therefore play an important role in the community-
level propagation of linguistic change.

3 Data

To investigate semantic change in different com-
munities, we use comments collected from the
social media website Reddit.> On Reddit, users
create posts, which consist of a link, image, or
user-generated text, along with a comment section.
Comments are threaded: users can comment on the
post or reply to another user’s comment.

Reddit is divided into forums called subreddits,
which are typically organized around a topic of
interest. While some forums—especially those
organized around relatively niche topics—have a
small tightly-knit community of users, others have
a much looser community structure, with any given
user posting and commenting infrequently.

Our dataset consists of comments from 45 ran-
domly selected subreddits that were active in the
years 2015-2017. In addition to the subreddit cor-
pora, we created a generic Reddit corpus, consist-
ing of comments sampled from every subreddit,
including communities not in our sample. For both
the generic corpus and the community-specific cor-
pora, we constructed separate datasets for 2015
and 2017, leaving a one-year gap between them.

3Obtained from pushshift.io (Baumgartner et al., 2020).



The generic corpus consists of 55M comments for
2015 and 54M for 2017. For each of the selected
subreddits, we sampled comments from 2015 and
2017 to construct two datasets of 5.4M tokens each
(averaging 158K comments).*

4 Semantic change model

In this section, we describe how we quantify seman-
tic change. We adopt a modeling procedure similar
to that of Del Tredici et al. (2019), which is adapted
from Kim et al. (2014)’s diachronic skip-gram with
negative sampling (SGNS) model (Section 4.1).
We define naive cosine change for the community-
specific and “generic” lexicons (Section 4.2). In
Section 4.3, we use a control procedure adapted
from Dubossarsky and Weinshall (2017) to account
for noise in the naive metric.

4.1 Diachronic SGNS

The strategy laid out by Kim et al. (2014) is to train
a standard skip-gram language model on a corpus
from some time period ¢, and then for each sub-
sequent time period ¢, 1, initialize a model with
the same architecture with word vectors from time
period ¢,,.°> Del Tredici et al. (2019) adapts this pro-
cedure for a low-data setting by first training a base
model on some large corpus, and initializing the g
model with vectors from that model. We follow the
same framework. We train a base model, M 2015,
on the generic 2015 corpus. Then, for each com-
munity, ¢, M. 2015 is initialized with word vec-
tors from M¢ 2015 and trained on the community-
specific 2015 corpus. Then, M, 2917 is initial-
ized from M, 2015 and trained on the community-
specific 2017 corpus. Additionally, we train a
generic 2017 model, M 2017, which is initialized
from Mg 2015 and trained on the generic 2017 cor-
pus. See the supplementary materials for details on
vocabulary and skip-gram model hyperparameters.

In the following, will write @, for the word
vector from M, 4, corresponding word w.

“See Appendix A and B for details on com-
munity selection and data preprocessing. Code for
downloading the data and the running experiments
can be found at https://github.com/GU-CLASP/
semantic-shift-in-social-networks.

31t is not clear in the original paper if the ¢, 1 model is
initialized with only the word vectors from the previous time
period, or if internal weights and context vectors are included
as well. It seems that most subsequent implementations only
carry over the word vector weights, though, which allows for
more flexibility with the vocabulary. We follow this approach.
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4.2 Naive cosine change

We define naive cosine change as the angular dis-
tance between corresponding word vectors from
the two different time periods.®

For a community ¢, naive cosine change is de-
fined for all words in the vocabulary as follows:

cos ™1 (cos sim (W, 2015, We,2017))

AP (w) = -
(D
where
cos sim(vy,vg) = vz 2)
v [lf[va]l
Generic naive cosine change, A¢”, is defined anal-

ogously.

Generally speaking, naive cosine change has a
strong track record as a semantic change metric,
performing well in both human-annotated and syn-
thetic evaluations (Hamilton et al., 2016b; Shoe-
mark et al., 2019; Schlechtweg et al., 2020). Espe-
cially relevant to this work, Del Tredici et al. (2019)
found cosine change to correlate with aggregated
semantic change judgments collected from mem-
bers of the /r/LiverpoolFC community on Reddit.

Model drift can distort cosine change, although
this is mainly a problem with many serially-trained
time periods (Shoemark et al., 2019). In a pilot
study, we experimented with post-hoc aligned vec-
tor spaces and a neighborhood-based change metric
(Hamilton et al., 2016a), but found minimal differ-
ences from the naive metric.

A more serious concern for our purposes is the
fact that naive cosine change is inherently biased to-
wards words that appear in more variable contexts.
In the following section, we examine this issue
more closely and define a rectified change metric
that controls for noise. We discuss other limitations
of the model in the final discussion section.

4.3 Rectified change score

Consider Figure 1 (left). Although naive cosine
change ranges a priori from O to 1, very few words
score below 0.1. Even some of the most common
function words have naive cosine change above
0.2. Dubossarsky and Weinshall (2017) demon-
strate that this bias is due to differences in the vari-
ance of different words’ context distributions—if

®Some authors use 1 — cos sim as the cosine change

metric, but angular distance is easier to interpret since it is a
distance metric and ranges from 0 to 1.



a word appears in highly variable contexts, the
SGNS model is more likely to pick up on differ-
ences between time periods, even if those differ-
ences are mere happenstance and not reflective of
actual change. This is especially a problem in our
case where the amount of data is relatively small.

We adapt the shuffle control condition described
by Dubossarsky and Weinshall (2017) to address
this problem. For each subreddit, we shuffle the
2015 and 2017 corpora together and split them
randomly to create pseudo-diachronic corpora with
two “time periods”. Then, we train diachronic
SGNS models just as before, including initializing
the “first” model with word vectors from Mg 2015.
We do this n = 10 times for each community,
giving us, for each sample ¢, and each vocabulary
item w, a pseudo-naive cosine change, A% (w).
Since no genuine change can possibly have taken
place between the shuffled corpora, AP (w) is a
sample from the noise distribution that contributes
to w’s naive cosine change, based purely on the
nosiness of its context distribution in c.

Next, we take the mean, Z.,, and sample stan-
dard deviation (using Bessel’s correction of n — 1
degrees of freedom), s, ,,, of the samples and com-
pute rectified change, which we define as the ¢-
statistic of the genuine naive cosine change, given
the estimated noise distribution:The resulting met-
ric, although it is still more variable for less fre-
quent words, is unbiased by the variance of the
underlying context distribution (Figure 1, right).

AP (w) = Zew
Sewy/1+1/n

We perform this same procedure with the generic
change models (shuffling together the generic 2015
and 2017 corpora) and define generic rectified
change, A7, analogously.

Ac(w) 3)

Afw)

' .
7.5 -5.0

10.0
log frequency

'
5.0

) .
100 7.5
log frequency

Figure 1: Naive cosine change versus rectified change
for words in the /r/toronto subreddit.
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A rank A*  rank  freq.
possibly 0.333 1 4.19 81 7.78
; 0.316 2 0.30 2519 33.89
definitely  0.316 3 2.23 450  29.68
heck 0.314 4 2.58 311 2.19
except 0.314 5 1.60 860 14.78
2016 0.260 303  11.19 1 1.54
rentals 0.245 576 10.91 2 1.53
foreign 0.218 1414 9.84 3 4.60
admission  0.221 1330 9.83 4 1.23
screening  0.245 582 9.34 5 1.21

Table 1: Top five tokens from /r/toronto, according to
naive cosine change and rectified change. Frequency is
per 100k tokens.

Rectified change is a measure of how much
higher (or lower) the measured naive cosine change
is than would be expected if the word’s underlying
context distribution hadn’t changed at all. In other
words, it quantifies the strength of the evidence that
the word has changed. In our setup with 10 sam-
ples from the noise distribution, rectified change
scores above 4.781 correspond to a 99.95% confi-
dence that the change detected by the diachronic
SGNS model was genuine. In addition to the ana-
lytical reasons for preferring rectified change and
previous empirical work on historical change, we
note that the highest scoring words for each com-
munity in our data are intuitively more varied and
community-specific for rectified change. The naive
cosine change frequently ranks words with some
kind of rhetorical or discourse connective function
as the having changed the most (see Table 1 for
examples).

5 Community features

In this section we characterize the structural fea-
tures of the online communities in our dataset.
Many of the features we define use the notion of ac-
tive members. For a community ¢ and time period
t, the active members, U, , is the set of members
who made at least 10 posts in that period.

Size The size of a community may have an ef-
fect on semantic change. In communication game
experiments, Raviv et al. (2019) found that larger
communities of participants developed linguistic
structure faster and more consistently than when
they were grouped in smaller communities.

We define community size, S2015 = |Uc2015
as the number of active members in 2015.

)

Stability Community stability may also have an
effect on semantic change. For example, communi-
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ties with stable membership have a better chance of
building up community-specific common ground.
On the other hand, stable communities may experi-
ence less change if such change tends to come from
new community members, as some studies have
suggested (Danescu-Niculescu-Mizil et al., 2013).

We define community stability as the Jaccard
index between the sets of active members in 2015
and 2017. This metric, ranging from 0 to 1, cap-
tures how similar the community membership is
between the two time periods.

_ ’UC,to N UC,tl‘
’Ucﬂfo U Uc,tl‘

Mean posts P15 is the average number of posts
per active members over the course of 2015.

“4)

5.1 Social network model

In this section, we define our model of social net-
work structure and a measure of network connec-
tivity, which we consider along with the other com-
munity features. First, we give some background
and motivation for including this feature.

Social network connectivity can have seemingly-
contradictory influences on linguistic change.
Bloomfield (1933) observed that densely connected
networks and strong social ties have a conservative
influence on an individual’s speech.
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It is not clear whether this pattern will hold for
semantic change since, as discussed by Sharma and
Dodsworth (2020), different variables respond dif-
ferently to different social network structures. We
must also consider the evidence that an encounter
with a novel or subtly unfamiliar word usage gives
a speaker about the community’s lexical common
ground (Stalnaker, 2002; Clark, 1996). In more
densely connected communities, such an exposure
is better evidence that other speakers have been
exposed to similar uses of the same word, either
by the same speaker or, especially in the case of
communities on social media, to the very same oc-
currence. For this reason, it could be that semantic
change occurs faster in communities with dense
clusters of strong social ties.

Clustering coefficient For each community, we
define a graph model of its social network. For
a,b € Ug 2015, let I(a, b) be the number of interac-
tions between a and b in that community in 2015.
Interactions are considered undirected (regardless
of who is replying to whom) and we don’t consider
self-replies, meaning that I(a,b) = I(b,a) and
I(a,a) = 0. The two networks are thus defined:

G = {{a,b} [ I(a,b) > 1} ()

Note that we do not consider a top-level com-



ment to be an interaction between the commenter
and the creator of the post for two reasons: First,
posts frequently do not contain any text written
by the author—they are often just a link or photo.
Second, the author of the post is not always the ad-
dressee of top-level comments, whereas in replies
to comments, the author of the parent comment is
always salient (though replies may of course be
made with a wider audience in mind).

The clustering coefficient (Watts and Strogatz,
1998), measures the graph’s tendency to form
dense, interconnected clusters of nodes. For an
individual, ¢, the clustering coefficient C" is de-
fined as the proportion of possible connections that
exist between individuals connected to i in G:

ci - ik} €Glj ke NGO}
IN@I(IN(@)] = 1)

where N (i) = {j € U | {i,j} € G} is the neigh-
borhood of i. The clustering coefficient for the
community as a whole is the mean clustering coef-
ficient of its members:

(6)

2icu O

Co =
U]

(7
Note that C" is precisely the measure of ego net-
work density used in many sociolinguistic stud-
ies (Milroy, 1987), meaning that we would expect
communities with higher clustering coefficients to
exhibit less sociolinguistic change. We don’t know
whether the same effect holds for semantic change.

6 Predictive model

We perform an exploratory analysis of the data
using multi-stage regressions and model selection
by backwards elimination with semantic change,
as measured by A*, as the dependent variable.’

Since we fit the mixed effects model at the word
level, in addition to the community-level indepen-
dent variables described in Section 5, we consider
two word-level features as fixed effects. See Ta-
ble 2 for the full list of fixed effects.

Word frequency Since word frequency known
to interact with semantic change (Hamilton et al.,
2016b). we include the frequency of the token in
the 2015 community corpus (fo15) as a feature.

"The use of stepwise regression has been criticized for
being a fallacious method for one-shot hypothesis testing but
is a legitimate way to investigate the explanatory capacity of
predictors. See https://dynamicecology.wordpress.com/
2013/10/16/in-praise-of-exploratory-statistics/ for a discus-
sion of the issue.
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Change in frequency Additionally, we include
the change in frequency between 2015 and 2017
(fa = fo017 — fo015) as a feature since previous
work suggests that increases in the frequency of
a word often accompany semantic change (Wi-
jaya and Yeniterzi, 2011; Kulkarni et al., 2015;
Del Tredici et al., 2019).

Effect Varies by

Mean posts (2015) Psp15  community

Size (2015) S2015  community
Stability T community
Clustering C community
Frequency (2015) f2015  token, community
Change in Frequency fa token, community
Generic rectified change A token

Rectified change A token, community

Table 2: Fixed effect inputs to the statistical model.
Rectified change is the dependent variable.

Community intercepts In addition to fixed ef-
fects, we use community-level random intercepts
under the hypothesis that community topics have
idiosyncratic reasons or lexical reasons for differ-
ences in semantic change rates to do with the com-
munity topics themselves, which we do not model.

6.1 Detecting multicollinearity

Before fitting the full model with interactions,
we checked for multicollinearity via linear regres-
sions with the standard 1m function in R as well
as the variance inflation factor (VIF) calculation
provided by the car package in R. All the pre-
dictors were scaled and centered (n = 201240
word-community combinations). We found that
the distribution of A* is fat-tailed (it is likely %-
distributed). Nevertheless, it is bell-shaped and
large enough that this should not be a problem.
We ran a regression under the hypothesis A* ~
So015 + T + C + P15 + A + fao15 + fa (see
Table 2) and calculated the VIF on this model. We
found that Pog15 had VIF higher than 2, the cutoff
from Zuur et al. (2010). Removing it produced
VIFs below the cutoff for the other predictors.®
We fit a linear mixed effects model (using the
lmer command from the 1me4 package in R;
Bates et al., 2015) with the remaining predictors

8Initially we defined a separate clustering metric Cyeax
for the weak ties network, analogous to the network defined in
Section 5.1 but with edges between community members with
exactly one interaction. However, this features was highly
colinear with C' and had a very high VIF when we tested it at
this stage, so it was also excluded from further analysis.



in order to take into account the individual seman-
tic change characteristics of community and word.
(Model code and output will be placed on the web
upon publication.)

We performed a regression on the model equa-
tion A} ~ (1|community) + Soo15* T * C' + Af *
f2015 * Ay; that is, we included interactions among
the community-level and word-level predictors.

6.2 Results

For the regression results (table 3), we do not report
statistical significance directly from 1mer. Instead,
using R’s anova function, we performed back-
wards elimination model selection (by stepwise
removal of interactions and factors), and we report
statistical significance based on p-values derived
from the y? log-likelihood ratio between models.

We found that all word-level fixed effects and
their three-way interaction were significant at p <
0.05 in the model in terms of a x? likelihood
ratio test. The three-way word-level interaction
A% - f2015 - fa had a p-value too small to rep-
resent (x2(4) = 6380.751) relative to a model
with all predictors without the interaction (so terms
AZ + fo015 + fa) along with all the other pre-
dictors and interactions. Relative to the model
without the three-way word level interaction, re-
moving each word-level predictor individually
yielded pax, = 7.059 x 1078 (x*(1) = 362.759),
Dfaos = 1.605 x 10726 (x2(1) = 113.587), and
ps, Was too small to measure (x*(2) = 2070.095).

The three-way interaction for the community-
level features was significant at p 0.014
(x?(4) = 12.530), but none of the two-way interac-
tions or the individual predictors were significant.’

We plotted the three-way interaction in Figure 3.
Clustering coefficient and size are held at the mean
and plus or minus one standard deviation from the
mean. At low levels of clustering, all levels of
size have a positive linear relationship on rectified
change with respect to increasing stability.

At mean levels of clustering, the lower and mean
levels of size retain the positive relationship but flat-
ten out, and the high size level becomes negative.
At one standard deviation above the mean for clus-
tering, only the lowest size level remains positively
sloped relative to stability. Confidence intervals
increase dramatically as clustering increases (as
there are fewer examples with higher coefficients).

°This means that all the individual predictors and two-way
interactions must be part of the model, but their significant
effect is conditioned on one another.
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Predictor Coefficient SE
(intercept) 0.250 0.069
S2015 -0.076  0.146
T 0.041 0.046
C -0.022 0.107
Sao15 - T -0.088  0.076
S2015 - C -0.017 0.192
T-C -0.132  0.056
Sa015 - T - C -0.056 0.112
f2015 -0.014  0.007
fa 0.462 0.005
AL 0.055 0.003
fa015 - fa -0.026  0.001
foo15 - AG -0.012  0.006
fa - AL 0.251 0.004
foo1s - fa - AG -0.014  0.000

Table 3: Fixed effect coefficients of the mixed effects
model with standard errors. p-values for some predic-
tors are reported in the text.

Predicted values of rectified_change

C=-1.01 C=-0.01 c

ge

0.01

Etoz

[ @

rectified_chan

Figure 3: Plot of three-way interaction between
community-level predictors vs. the rectified change us-
ing the gge f fects package. Each panel represents a
fixed value for the clustering coefficient, specifically -1
st.dev. from the mean, the mean, and 1 st.dev from the
mean. Similarly, each line represents the same three
values for the size. The x-axis in each panel represents
the group stability.

The effect of the random intercept is small (o2 =
0.019, SD = 0.138). This is the extent to which the
type of community causes the intercept of rectified
change to vary.

7 Discussion and conclusions

We conducted an exploratory statistical analysis
of the relationship between semantic change and
several word- and community-level predictive fea-
tures. Rectified semantic change, our independent



variable, protects the results from certain system-
atic biases inherent in the traditional cosine change
metric. By looking at online communities, we were
able to compute a clustering coefficient on the so-
cial network graph of each community, as well as
several other community-level structural features.

Community features and semantic change We
found all three word-level features to be signifi-
cant. Together with the intercept, fo dominates
the mixed-effects model, with greater changes in
frequency associated with higher semantic change.
This is in line with previous findings (Wijaya and
Yeniterzi, 2011; Kulkarni et al., 2015; Del Tredici
etal., 2019), but our study is the first to demonstrate
this effect while controlling for noise effects.

Although the effect is much smaller, there is a
negative relationship between semantic change and
baseline frequency, f. This agrees with previous
results about historical change (Hamilton et al.,
2016a; Dubossarsky and Weinshall, 2017), but we
note that, while we cannot compare the regression
coefficients directly, it appears that frequency may
have a much smaller effect on semantic change in
the short-term setting; however, testing this hypoth-
esis would require further research.

Semantic change in the generic lexicon also
predicts community-level change, though it has a
smaller effect than fa. The interaction between fa
and A suggests that changes in frequency can pre-
dict whether generic lexicon changes in meaning
will be picked up by a particular community.

We found that the three-way interaction between
size, stability, and clustering, was significant: For
communities with low clustering, there is a pos-
itive linear relationship between stability and se-
mantic change (regardless of community size). For
communities with average or high clustering, how-
ever, the positive relationship between stability and
change only appears to hold for smaller communi-
ties. Note, however that the confidence intervals
increase dramatically as clustering increases, since
our sample of communities found fewer examples
with high clustering.

We did not find significant correlations for any
of the community-level features on their own. It is
possible that a larger study with more communities
or a more diverse set of communities would reveal
some more universal effect, but we cannot make
any conclusions from these results. The fact that
the three-way interaction has a significant effect
while none of the individual features did on their

33

own demonstrates the complexity of relationship
between structural community characteristics and
semantic change.

Assumptions and limitations of the semantic
change model In spite of our efforts to control
for biases of cosine change, there are still some
caveats when interpreting the results.

Like most distributional models of semantics, the
diachronic SGNS model associates each word form
with a single vector, meaning it is not sensitive to
polysemy or homonymy. If a word with multiple
senses undergoes changes in the relative frequency
with which those senses are used, this would be re-
flected in the vector representation of the token that
both senses are associated with, even if the mean-
ing of either sense hasn’t changed on its own.'”
However, many theories of semantic change em-
phasize the role of changing sense distributions as
a mechanism for lexical semantic change, so it is
not necessarily contrary to our aims of quantifying
semantic change over the lexicon.

A related weakness of distributional semantics
has to do with the distinction between meaning-
in-use and lexical meaning. Even if we assume
that distributional context is a faithful (if noisy)
representation of the situated meaning of a word
(cf. Liicking et al., 2019; Bisk et al., 2020; Bender
and Koller, 2020), it might not capture the word’s
full meaning potential (Norén and Linell, 2007)—
in the extreme, a word may have common ground
semantic content that could be activated, but that
happens not to appear in the corpus.

Moreover, changes in the topics discussed by the
community may cause changes in the context dis-
tribution of words that don’t reflect actual change
in meaning. Consider the words at the top of the
list for /r/toronto (Table 1). It’s possible that some
of those words appear due to changes in the socio-
political topics people were discussing on the fo-
rum between 2015 and 2017. Similarly, the top
word, 2016, presumably still refers to the same
year, though the year itself went from being in the
future to being in the past. Whether or not such a
change counts as a change in meaning is naturally
beyond the scope of this paper.

10Contextualized word representations (Peters et al., 2018;
Devlin et al., 2019) don’t have this shortcoming and have
recently been used to investigate semantic change (Giulianelli
et al., 2020; Vani et al., 2020), but extracting one vector per
occurrence is computationally expensive and has therefore
only been applied to small sets of target words.



Future work This work offers some insight into
how semantic change and community structure in-
teract, but there are still many open questions, in-
cluding how these results generalize to communi-
ties in different communicative settings and over
different time frames. Future work should take
a closer look at the kinds of change (e.g., Blank,
1999) taking place. For example, are the meanings
of words broadening or narrowing? How are ex-
isting community-level communicative resources
used to create new word uses? Given that we can
identify statistically significant changes in meaning
over a relatively short period of time, it would also
be interesting to investigate the circumstances of
individual changes. For example, do community
members with more central social network position
tend to innovate more? How are early innovative
uses received by the community? Is there a cor-
relation between semantic change in a given time
period and the frequency of explicit word meaning
negotiation (Myrendal, 2019) in the same period?
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A Subreddit selection

We randomly selected 50 subreddits from the set of
all forums with at least 15,000 comments per month
for each of the 36 months in the 2015-2017 period.
We initially selected 50 subreddits but excluded five
from further analysis: two which were primarily
non-English, two with particularly short average
comment lengths, and one where our procedure
for identifying template-generated posts failed (see
Section B for details).

B Data preprocessing

Below we describe the preprocessing procedure
we used to prepare training data for our diachronic
SGNS models.

Duplicate comments Before any text normaliza-
tion steps (described below), we sought to remove
duplicate template-generated posts by bots and
moderating tools. Since this automated content
frequently appears in only one of the two time pe-
riods, it can have an outsized effect on the cosine
change score of words included in the template.

We identified these posts by comparing the tail
(after the first 50 characters) any two posts of more
than 50 characters in length. Posts marked as du-
plicate under this criteria were discarded (keeping
one such post in each category). This preserves
“natural” human-written duplicates, which tend to
be short, while catching most template-generated
content, where form-filled deviations tend to be rel-
egated to the beginning of the post. Unfortunately,
this criteria missed posts by a bot in the /r/jailbreak
subreddit, resulting rectified semantic change score
outliers for certain words in the bot’s template. As
a result, we excluded this community from analysis
in the mixed-effects model.

Normalization and tokenization The text of
comments was normalized as follows. We removed
markdown formatting, extracting only rendered
text. We exclude the content of block quotes, code
blocks, and tables. We tokenized comments using
the SpaCy tokenizer with the default English model
(version 2.2.3). We lower-cased all tokens and re-
moved whitespace, including linebreaks. Addition-
ally, we removed tokens containing certain char-
acters present in the 2015 data but absent in 2017,
apparently due to text encoding changes made by
Reddit. The removed characters were mostly emo-
jis and certain Hangul graphemes and none were
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particularly common in our data (see [link] for a
list of excluded characters).

C Vocabulary and SGNS training
proceedure

For each community ¢ we maintain a separate vo-
cabulary, V.. Words with at least 50 occurances in
both the 2015 and 2017 time periods are included
in the vocabulary. Likewise, the generic Reddit
models have vocabulary Vi, which includes words
with at least 500 occurances in both time periods.

All models were trained with the Gensim (v.
3.8.1) SGNS implementation, with 200 dimen-
sional vectors for 50 epochs (for both the generic
and community-spcefic models). For all other hy-
perparameters, we maintain the default hyperpa-
rameters (length 5 context window, 5 negative sam-
ples per word, inital learning rate of 0.025, subsam-
pling threshold of 1 x 107, and negative sampling
distribution exponent of 0.75).

For M. 2015, we randomly initialize vectors for
words in V. \ Viz. Words in Viz \ V. have no vector
representation in M. 2015 or M. 2017.
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Abstract

Many new books get published every year, and
only a fraction of them become popular among
the readers. So the prediction of a book suc-
cess can be a very useful parameter for pub-
lishers to make a reliable decision. This ar-
ticle presents the study of semantic word as-
sociations using the word embedding of book
content for a set of Roget’s thesaurus concepts
for book success prediction. In this work, we
discuss the method to represent a book as a
spectrum of concepts based on the association
score between its content embedding and a
global embedding (i.e. fastText) for a set of se-
mantically linked word clusters. We show that
the semantic word associations outperform the
previous methods for book success prediction.
In addition, we present that semantic word as-
sociations also provide better results than us-
ing features like the frequency of word groups
in Roget’s thesaurus, LIWC (a popular tool
for linguistic inquiry and word count), NRC
(word association emotion lexicon), and part
of speech (PoS). Our study reports that con-
cept associations based on Roget’s Thesaurus
using word embedding of individual novel re-
sulted in the state-of-the-art performance of
0.89 average weighted F1-score for book suc-
cess prediction. Finally, we present a set of
dominant themes that contribute towards the
popularity of a book for a specific genre.

1 Introduction

Every year a lot of literary fictions get published
and only a few of them achieve the popularity. So
it is very important to be able to predict the success
of a book before the publisher commits a signifi-
cant effort and resources for it. Many factors con-
tribute to the success of a book. The story, plot, and
character development, all have specific role in the
popularity of a book. There are some other factors

“Both authors contributed equally to this research.
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Figure 1: This figure represents average word embed-
ding association scores for 24 themes as defined in the
Roget’s thesaurus. We observe that corresponding as-
sociation scores for historical fiction books, such as the
successful book The Prince and the Pauper, and the
unsuccessful book The House of the Seven Gables are
very different. The success of those books were defined
using their corresponding Goodreads-rating.

like the time when the book has been published,
the author’s reputation, the marketing strategy, etc
that may also influence a book’s popularity. In this
paper, we only focus on understanding a set of con-
cepts’ associations extracted from the content of
the book to predict its success.

According to the theory of word embedding, the
vector representation of a word in the embedding
space captures its semantic relationship with other
words based on co-occurrence in the corpus. Kulka-
rni et al. (2015), and Hamilton et al. (2016a) de-
veloped methods for detecting the statistically sig-
nificant linguistic change using word embedding.
In the meantime, Caliskan et al. (2017) developed
the concepts of word embedding association test
(WEAT) to uncover the gender bias and ethnicity
bias. Following these studies, Garg et al. (2018),
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and Jones et al. (2020) used 100 years of text data
and demonstrated that word embedding can be used
as a powerful tool to quantify historical trends and
social change. For every time period, they warp the
vector spaces into one unified coordinate system
and construct a distance-based distributional time
series for each word to track its linguistic displace-
ment over time. Our idea is to use the associations
of different semantically linked word groups or
concepts in a book and investigate how its impact
on book success prediction.

In this article, we study the efficacy of word asso-
ciations to represent literature as a spectrum of in-
dividually organized concepts as a set of connoted
words in the popular Roget’s Thesaurus (Roget and
Roget, 1886). We represent word association as
the Euclidean distance between two words in the
embedding space. To find the association of book
content to a set of concepts, we compute the aver-
age Euclidean distance for each set of semantically
linked word vectors of a book’s normalized embed-
ding space to the respective word representation
in the global embedding space. The concept of
word embedding normalization and the word asso-
ciation score has been used successfully in many
recent research works for computing the gender
associations (Jones et al., 2020).

In Figure 1, we show word associations of promi-
nent themes for a successful book The Prince and
the Pauper having Goodreads-rating > 3.5, and an
unsuccessful book The House of the Seven Gables
with a Goodreads-rating < 3.5. We observe that
the average association score of each theme vary
between these two books. We analyze the impact
of these associations score for the success of each
book, and obtain a set of dominant concepts that
play an important role for a book success. In this
paper, we include following research contributions:

* We developed necessary methods to represent
a book as the spectrum of word associations
for a set of semantically linked words.

* We present genre-wise book success predic-
tion model using semantic word associations
as features, and show that the model can
achieve the best average weighted F1-score of
0.89.

* We derived a set of dominant features for each
genre showing the impact of those features for
interpreting the prediction of book success.
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2 Related Work

In the earlier work, Ashok et al. (2013) used stylis-
tic approaches, such as unigram, bigram, distribu-
tion of the part-of-speech, grammatical rules, con-
stituents, sentiment, and connotation as features
and used Liblinear SVM (Fan et al., 2008) for the
classification task. They used books from total 8
genres, and they were able to achieve an average
accuracy of 73.50% for all the genres.

van Cranenburgh and Koolen (2015) distin-
guished highly literary works from less literary
works using textual features e.g. bigram. Vonnegut
(1981); Reagan et al. (2016) worked on emotion
along with the book for success prediction.

Maharjan et al. (2017) used a set of hand-crafted
features in combination with recurrent neural net-
work and generated feature representation to pre-
dict the success, and obtained an average accuracy
of 73.50% for the 8 genres. They also performed
several experiments, including using all the fea-
tures from Ashok et al. (2013), sentiment concept
(Cambria et al., 2018), different readability metrics,
Doc2Vec (Le and Mikolov, 2014) representation of
a book, and unaligned Word2Vec (Mikolov et al.,
2015) model of the book.

In a more recent work by Maharjan et al. (2018a),
they used the flow of the emotions across the book
for success prediction and obtained an F1-score
of 69%. They divided the book into some chunks,
counted the frequency of emotional associations
for each word using the NRC emotion lexicon (Mo-
hammad and Turney, 2013), and used a recurrent
neural network with an attention mechanism to pre-
dict both the genre and the success.

Jarmasz and Szpakowicz (2004); Jarmasz (2012)
showed that Roget’s has turned out to be an excel-
lent resource for measuring semantic similarity and
the words in Roget’s word clusters have higher cor-
relation than many other prominent word groups
e.g., Wordnet Miller (1998). Guyon et al. (2002)
used SVM weights for assigning ranks in the fea-
ture selection process. They verified that the top-
ranked genes found by SVM have biological rele-
vance to cancer and the SVM classifier with SVM
selected features worked better than other classi-
fiers in determining the relevant features along with
the classification task.

3 Dataset

In this study, we use the dataset introduced by Ma-
harjan et al. (2017), a publicly available dataset



Genre Unsuccessful | Successful | Total
Detective Mystery 60 46 106
Drama 29 70 99
Fiction 30 81 111
Historical Fiction 16 65 81
Love Stories 20 60 80
Poetry 23 158 181
Science Fiction 48 39 87
Short Stories 123 135 258
Total 349 654 | 1,003

Table 1: The book dataset originally introduced by Ma-
harjan et al. (2017) is used in this research work for
success prediction. Each book in this dataset belongs
to one of the eight genres. Here we have the most num-
ber of books from the Short Stories genre(258) and the
least number of books from the Love Stories genre(80).

comprising of total 1,003 books. All of these books
are downloaded from the Project Gutenberg'. De-
tails of the dataset are given in Table 1. Each of
these books are labeled as either successful (1) or
unsuccessful (0). The definition of the success of
a book is based on Goodreads® ratings. A book
is considered successful if it had been rated by at
least 10 Goodreads users and has a Goodreads rat-
ing > 3.5 out of 5. In this corpus, there are 349
unsuccessful books and 654 successful books. Af-
ter downloading the books we used the NLTK API
for data processing (Bird et al., 2009). For each
book, we extracted the part-of-speech (PoS) tag
frequencies using the Stanford CoreNLPParser, the
Roget’s Thesaurus category frequencies (Roget and
Roget, 1886; Manning et al., 2014).

Linguistic Models

We utilized four linguistic models for our quan-
titative analysis. Two of the models - PoS and
NRC are our own implementation of models used
in Ashok et al. (2013) and Maharjan et al. (2018a).
Our two additional models have not been used to
make these types of qualitative conclusions until
now. The linguistic models used in our frequency
and association analysis are described below.
PoS: Part of Speech or PoS is a category to which
a word is assigned in accordance with its syntactic
functions. PoS provides context and classification
to words that helps with better understanding of
the purpose of word choice. We used NLTK PoS
tagger to label our tokens.

LIWC: Linguistic Inquiry and Word Count (Pen-
nebaker et al., 2015) is a text analysis program

Uhttps://www.gutenberg.org/
“https://www.goodreads.com
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that counts words in psychologically meaningful
categories. We used 72 LIWC categories for our
experiments.

NRC: The distribution of sentiments is one way of
looking at books. We used ten categories from
NRC (trust, fear, negative, sadness, anger, sur-
prise, positive, disgust, joy, anticipation) to quan-
tify shifts in sentiment across the book.

Roget’s Thesaurus: It is composed of 6 primary
classes and each class is composed of multiple
themes. There are total 24 themes that are further
divided into multiple concepts. We used 1,019
word categories from the Roget’s Thesaurus for the
book success prediction.

4 Methodology

In order to predict the success of a book, one of our
major research questions was how we can represent
a book properly. We explored a wide range of
feature sets and performed multiple experiments in
order to find the most suitable feature set that can
represent the concept, emotion and writing style
of a book. In this section, we discuss the relevant
methods that we used for the study of book success
prediction.

4.1 Frequency Distribution

We explore 4 different word frequency distribu-
tions, such as (1) Roget’s Thesaurus, (2) LIWC, (3)
NRC and (4) PoS as the feature sets for the book
success prediction. We first experimented with fre-
quency distribution of Roget word categories to
predict the success of a book. To perform this task,
we compute the unit normalized word frequency
distribution for each book. Here, frequency is com-
puted for word groups rather than individual words.
If a word falls under multiple word group its fre-
quency contributes to all of them. The frequency
count of a word group is the summation of frequen-
cies of all the underlying words in that group. And
finally, we apply the classifier as discussed in the
subsection 4.4 for the book success prediction us-
ing Roget’s word group frequency distributions as
a feature of individual book. We repeat the above
steps for creating three other feature sets based on
the word frequency distributions of LIWC, NRC,
and PoS for each book.

4.2 Association Score

To represent a book as a vector of concept asso-
ciation score, we first create the word embedding
vectors from the respective book’s content. We
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Figure 2: Steps in computing the concept association. At first, word vectors for the global embedding (fastText)
and local embedding (individual book embedding) are aligned to a unified space (Steps 1 - 3). Then, for each word,
we compute the Euclidean distance of its representative vector from the global and aligned local embedding. The
Euclidean distance of all words of each concept are then averaged to calculate the association score (Steps 4 - 6).

then align each book embedding to a global embed-
ding space so that each book can be analyzed with
respect to a reference embedding space (Mikolov
et al., 2018). To generate the word embedding of
each book, we considered the fastText embedding
generation methods (Bojanowski et al., 2017). On
the contrary to Word2Vec and Glove, fastText treats
each word in corpus like an atomic entity and gener-
ate a vector for each word. In fastText embedding,
the vector representation for a word is created de-
pending on its constituent character n-grams. This
method generates better word embedding for rare
words and out of vocabulary words.

To do the embedding space alignment, we use
the methods described in the paper (Artetxe et al.,
2018) including 4 other methods described in
(Hamilton et al., 2016b; Kendall, 1989). Intuitively,
we have two embedding space for each book, one
is the original or local embedding of the book and
the other is global fastText embedding. For every

Default
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Procrustes Stanford Linear Regression
Procurstes Stanford SVD

smarl Procrustes Align Gensim
vechlap

Figure 3: Distribution of the word association for Ro-
get concept words using different alignments methods
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word present in a book embedding, we calculate the
Euclidean distance. The distribution of the distance
using different alignment methods is shown in Fig-
ure 3 for the word embedding of 10 books. Ulti-
mately, we use the method named VecMap (Artetxe
et al., 2018) as it results in minimum distance after
vector alignment.

To represent a book as a vector of concept asso-
ciation score, we first create the fastText word em-
bedding vectors from the respective book’s content.
As a result, we obtain two individual embedding
spaces, one for book and another for the global em-
bedding space. We align the book embedding space
to the global embedding space so that each book
can be analyzed with respect to a reference embed-
ding space (Refer to Figure 2: Steps 1 - 3). To
find the concept association score, we compute the
average Euclidean distance from the book’s aligned
embedding vectors to the global embedding vec-
tors for each semantically linked word cluster. We
depict the process in Figure 2 (Steps 4 - 6).

We use the wiki word embedding model (Bo-
janowski et al., 2017) as our global embedding
space. Itis trained on Wikipedia using fastText. For
the compatibility of book embedding and global
embedding, we use fastText to produce word em-
bedding for each book individually. Each generated
word vector is 300 dimensional. We use skip-gram
as a training algorithm. We then tune the num-
ber of iterations over the book content (epochs) by
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Figure 4: Association of different concepts with 8 genres. The x-axis is the mean association score of the words in
a Roget concept, and the y-axis is the frequency observed for each book.

running 20 different experiments with a random se-
lection of diverse values of epochs, and then select
50 as the epoch. To generate word embedding vec-
tors for each book, we only consider those words
that have a minimum word count 2.

Therefore, each book of the dataset is repre-
sented using a feature vector of length 1,019 fol-
lowing the word category definition in Roget’s The-
saurus. Figure 4 shows the distribution of different
Roget concept associations for 8 different genres.
From these distributions, it is clear that different
concepts have different impact on each genre. We
also perform the Kolmogorov-Smirnov Test (kol,
2008) to check whether these distributions are dif-
ferent or not. In most of the cases, we find that
a pair of the the distr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>