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Abstract

We use deep contextualized embedding mod-
els (BERT & ELMo) and shallow word embed-
ding models (Fasttext & GloVe) to study the
alignment between dialogue interlocutors at
the semantic representation level, with the goal
to examine the interactive alignment model
(IAM) theory. We have observed both diver-
gence and convergence patterns in dialogue:
First, the semantic distance between two ad-
jacent utterances increases with their relative
positions within the dialogue, i.e., utterances
at the later stage are more semantically apart
than the earlier ones. Second, semantic dis-
tance also increases with the physical distance
between utterances, i.e., utterances that are
physically closer have more similar semantic
meanings. We conclude that dialogue inter-
locutors demonstrate global divergence and lo-
cal convergence patterns in semantic represen-
tation space. Our findings resolve the con-
flicts in previous studies, and challenge the
claim from IAM that people gradually build
alignment at higher representation levels in di-
alogue. The feasibility of using semantic repre-
sentation techniques as psycholinguistic mod-
els of dialogue is discussed.

1 Introduction

How speakers in a dialogue adapt their language
use from each other is a widely studied question.
Many studies view dialogue as a dynamic process,
whose temporal properties are closely examined.
A commonly used paradigm is regressive analysis
that examines how linguistic features at various rep-
resentation levels change with time as the dialogue
proceeds. One of the theoretical basis behind all
these empirical exploration is the interactive align-
ment model (IAM) theory (Pickering and Garrod,
2004), which puts forward a hierarchical view of
language adaptation: the alignment (i.e., re-use of
same elements) at lower representation levels (e.g.,

phonetic, lexical) leads to the alignment at more
abstract representation levels, such as semantic and
situation representations. A straight-forward infer-
ence from this theory is that we should be able to
empirically observe consistent evolving patterns
(within dialogue) across representation levels.

However, studies from different approaches of-
ten have contradictory findings in the temporal pat-
terns of dialogue. Many of the conflicts are about
two concepts: divergence vs. convergence. For
example, Healey et al. (2014) find that people di-
verge from their interlocutors in syntax use as dia-
logue develops. Xu and Reitter (2016a,b) find an
opposite converging pattern in syntactic complex-
ity and information density. Abney et al. (2014)
find the convergence of timescale complexity in
affiliative conversations, and divergence in argu-
mentative ones. We deem that this inconsistency in
existing findings is due to the lack of clear defin-
ing the scale under which alignment is examined.
Multiple scales are needed in order to obtain a com-
prehensive understanding of alignment in dialogue.

Another gap in the existing studies is that most
studies explore alignment at lower levels, such as
phonetic, lexical, syntactic etc. Alignment at the
higher representation levels in IAM is not well
studied, such as semantic. With the development of
representation techniques powered by deep neural
networks, we are now able to obtain semantic repre-
sentations for utterances that are more precise than
before. It also means that the semantic relatedness,
or distance, between dialogue participants can be
easily measured now. Although whether similarity
in semantic space is equivalent to the concept of
“alignment” is still an open question, it is worth try-
ing this new technique to extend the psychological
theories of dialogue.

Therefore, in this study we use the distance
of utterance semantic representations to measure
the strength of semantic alignment, and focus on
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the temporal property of alignment at two scales,
global and local. First, we obtain the dense vec-
tor representation for each utterance using differ-
ent neural semantic models. Then, we analyze
how the distance between interlocutors in seman-
tic space evolves within dialogue, i.e., whether and
when convergence or divergence patterns can be ob-
served. We include two types of dialogue corpora
to ensure the generality of study.

2 Related Work

2.1 Divergence vs. convergence patterns in
dialogue

The general principle put forward by IAM is that
interlocutors become aligned as dialogue develops,
which is a “convergence” perspective. Many ex-
isting studies have obtained similar or different
findings. Healey et al. (2014)’s main finding is that
people systematically diverge from each other in
their use of syntactic structures. More specifically,
they find that the syntactic similarity between im-
mediate adjacent utterances (turns) is significantly
lower than those that are farther apart. Their find-
ings are essentially about the local temporal pat-
terns of language. However, we argue that this
result may also be caused by naturalistic “fluctu-
ation” of information density in natural dialogue.
Moreover, we argue that a comprehensive analysis
based on sufficient empirical investigation on other
linguistic representation levels (other than syntac-
tic complexity) is needed, in order to draw general
conclusions about the temporal characteristics of
language in dialogue (Xu and Reitter, 2018).

Xu and Reitter (2016a,b) take a bigger scale by
looking at the topic episodes in dialogue, and find
convergence patterns in syntactic complexity and
lexical information density. Abney et al. (2014)
develops the concept of complexity matching, as
an extension to behavioral alignment, and have
observed convergence patterns within the affiliative
dialogues. The analysis scale they take span across
the whole dialogue. Thus, the scale used will affect
the observed patterns and the conclusions about
alignment.

To briefly summarize, Healey et al. (2014) uses
a local scale on adjacent utterances within a fixed
window, while Xu and Reitter (2016a)’s methods
focus on a larger local scale spanning across more
utterances, and Abney et al. (2014) takes a global
scale that includes the whole body of dialogue. In
order to have comprehensive understanding of lin-

guistic alignment, however, multiple scales need
be considered.

2.2 Semantic models of natural language

One recent big advancement in NLP is the devel-
opment of deep contextualized representation mod-
els that can capture the rich semantic meanings
of sentences and the constituent words. The term
“contextualized” is reflected in their similar natures
in modeling the context for each word “dynami-
cally” using Transformers (Vaswani et al., 2017)
and Long-Short-Term-Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997). For example, ELMo
(Embeddings from Language Models) (Peters
et al., 2018) utilizes bidirectional two-layer LSTMs.
BERT (Devlin et al., 2018) uses multiple layers of
Transformers.

These new models take advantages of deep
neural network architectures that can better cap-
ture complex characteristics of word use, such as
syntax-semantics interaction, context-dependent
meanings (polysemy) etc., which shallow models
such as word2vec is unable to deal with. The es-
sential difference from shallow models is that they
assign each word a representation that is a function
of the entire sentence (or sequence). But in order to
have a comprehensive comparison, we still include
two shallow word embedding models, Fasttext (Bo-
janowski et al., 2017) and GloVe(Pennington et al.,
2014) in this study.

3 Method

3.1 Corpus data

We examine two types of dialogue in this study,
spontaneous and task-oriented.
Type 1: Spontaneous. The Switchboard corpus
(Godfrey et al., 1992) and the British National Cor-
pus (BNC) (BNC, 2007) are used in this study.
Switchboard contains 1126 dialogues by telephone
between two native North-American English speak-
ers in each dialogue. We use only a subset of BNC
(spoken part) that contain spoken conversations
with exactly two participants, so that the dialogue
structures are consistent with Switchboard. BNC
contains both written and spoken texts, and the
spoken texts further consists of two parts: the de-
mographically sampled part (BNC-DEM), which
contains impromptu speech in informal settings,
and the context-governed part (BNC-CG), which is
sampled from more formal settings (Tottie, 2011).
To be consistent with the Switchboard corpus and
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to simplify our experiment as well, we select parts
of BNC-DEM and BNC-CG that only have two
speakers within each conversation, which contains
1346 dialogues in total. For convenience, in later
part of this paper, we simply use BNC to refer to
this sampled part of BNC-DEM.
Type 2: Task-oriented. Two corpora are exam-
ined in this study: the HCRC Map Task Corpus1

(Anderson et al., 1991) (Maptask) and a smaller cor-
pus in Danish from a joint decision-making study
(Fusaroli et al., 2012) (henceforth DJD). Maptask
contains a set of 128 dialogues between two sub-
jects, who accomplished a cooperative task to-
gether. DJD contains a set of 32 dialogues from
native speakers of Danish collected by (Fusaroli
et al., 2012). An overview of the four corpora are
shown in Table 1.

3.2 Semantic models
We compare two methods of obtaining the seman-
tic representations of utterances: aggregated word
embeddings, and contextualized sentence embed-
dings.

Method 1: Aggregated word embeddings.
This method computes the summation of the em-
bedding vectors of all the tokens (words) within
an input sequence (sentence) normalized by the
sequence length. It has been widely used to approx-
imate the semantic meanings of sequences (sen-
tences). It is often used as a baseline in comparison
with more sophisticated sequence models, for tasks
such as text classification and information retrieval
etc (Wieting et al., 2015). Simple this method may
seem, we deem it a reasonable model to start with.
In particular, we choose two types of pretrained
word embeddings, GloVe (Pennington et al., 2014)
and FastText (Bojanowski et al., 2017), because of
their availability for multiple languages. A sum-
mary of the parameters of the pretrained models
used is shown in Table 2.

Method 2: Contextualized sentence embed-
dings.
This method uses more sophisticated models to
obtain richer semantic representations of input se-
quences. Two models are used, BERT and ELMo.
In particular, we use the pretrained BERT model2

and ELMo embeddings3. We choose ELMo as op-
1http://groups.inf.ed.ac.uk/maptask/
2With this opensource tool: https://github.com/

huggingface/transformers
3With this opensource tool: https://github.com/

HIT-SCIR/ELMoForManyLangs

posed to other models (e.g., GPT etc.) based on
the following consideration: first, it is a typical
non-transformer-based model, which supports fast
inference; second, the availability of pre-trained
model in Danish.

Semantic distance
We measure the semantic distance between two
utterances using the cosine distance between their
representation vectors. An utterance u can consist
of multiple sentences, u = {s1, s2, . . . sN} (N ≥
1). Each sentence si has a semantic representation
ri either from Method 1 or 2, and we use the simple
average of them as the semantic representation of
the utterance, Ru = 1

N

∑N
i=1 ri.

Given two target utterances uA and uB , we first
obtain their representation vectors, RuA and RuB ,
and then compute their cosine distance,

semDist(RuA , RuB ) = 1− RuA ·RuB

‖RuA‖‖RuB‖

The value of semDist is within the range of [0, 2].
A larger value means that the two representation
vectors are farther away in the semantic representa-
tion space, i.e., the two utterances are more seman-
tically apart. A smaller value indicates the opposite,
i.e., they are more semantically similar.

Therefore, there are in total 4 × 4 = 16
model-corpus combinations: {BERT, ELMo,
Fasttext,GloVe} × {Maptask, DJD,Switchboard,
BNC}. The only one exception is in DJD corpus:
we did not find any pretrained GloVe model in Dan-
ish, so we used a Word2vec (Mikolov et al., 2013)
model of the same size instead.

3.3 Defining key variables

We give operational definitions to the concepts
of “adjacent utterances” and “timestamps”, which
are necessary in order to analyze the temporal
patterns in dialogue. Given a pair of utterances
p = 〈uA, uB〉, we consider two key quantities:
first, the “physical” distance between them (phy-
Dist) in terms of utterance count; second, the rela-
tive position of p within the dialogue, (relPos). phy-
Dist can be used to model the strength of priming-
induced alignment between interlocutors, while
relPos models the “timestamps” of utterance pairs,
which characterizes the overall evolving pattern of
alignment.

First, we assign an integer index idx (idx =
1, 2, . . . ) to each utterance in dialogue. Utterance
is identified based on speech turns, i.e., whenever
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Corpus Dialogue count Token count Avg dialogue length (SD) Avg utterance length (SD)
Switchboard 1126 1.61 M 106.4 (49.6) 13.4 (17.2)
BNC 1346 1.27 M 58.9 (112.1) 16.0 (53.4)
Maptask 128 194.2 K 147.4 (72.6) 10.3 (9.4)
DJD 32 65.9 K 269.5 (113.2) 7.6 (5.9)

Table 1: Overview of the four corpora used. Dialogue length (3rd column) is measured with the number of
utterances in a dialogue; utterance length (4th column) is measured with the number of words in an utterance.
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Figure 1: Demonstration of how the two keys variables, relPos and phyDist, are defined. In the example, the
utterance pair 〈u25, u26〉 and 〈u26, u29〉 have the same relPos value, but are of different phyDist values.

Model Params & training data
BERT 12-layer, 768-hidden, 12-heads

trained on Wikipedia data
ELMo 2-layer, 1024-hidden

trained on 20M tokens data
GloVe 300-dim

trained on 6B tokens data
FastText 300-dim

trained on 42B tokens data

Table 2: Parameters of the pretrained semantic models.

a turn-taking occurs, the upcoming consecutive se-
quence of tokens is considered as a new “utterance”
(regardless of its length). Thus, short back-channel
utterances are also included in our initial analysis.
Then, the phyDist of utterance pair 〈uA, uB〉 is de-
fined as the subtraction between the indices of uA
and uB ,

phyDist(〈uA, uB〉) = |idx(uA)− idx(uB)|

Because all the corpora data we analyze consist
exactly of two participants, who take turns to talk,
subtracting the two indices from any utterance pairs
from two different speakers must result in an odd
number: 1, 3, 5, . . . (An even subtraction means
that the two utterances are of the same speaker
ship, i.e., self-alignment, which is not the focus
of this study). phyDist can be arbitrarily big, as
long as it is smaller than the dialogue length. But
according to the theory that alignment is due to
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short-term priming effect, we only need to consider
utterance pairs that are within a reasonable distance.
Thus, we limit the values of phyDist to the set of
{1, 3, 5, 7, 9}.

To define the relPos of 〈uA, uB〉, we first divide
all utterances in a dialogue into ten (10) bins of
equal window size, and each utterance pair falls
into one of the ten bins. Then the relPos of a pair is
defined as the bin number to which it belongs, as
follows,

relPos(〈uA, uB〉) =
⌈
idx(uA)

maxIdx
× totalBins

⌉

where maxIdx is the idx of the last utterance in
dialogue (i.e., total # of utterances), and totalBins is
10 in this case. Note that idx encodes the position
information of an utterance, and relPos is a normal-
ized version of it (normalized by dialogue length)
for the purpose nicer visualization. In the later part
of the paper, idx will still be useful in fitting statis-
tical models. Because we set totalBins = 10, the
range of relPos is also {1, 2, 3, . . . , 10}. A demon-
stration of how phyDist and relPos are defined is
shown in Figure 1.

4 Results

4.1 Semantic distance increases with relative
position

We first study the alignment of semantic repre-
sentations at the global scale. We plot the se-
mantic distance (semDist) between utterance pairs
against their relative positions (relPos) within di-
alogue (Figure 2). It can be seen that for 14 out
of the 16 model-corpus combinations, semDist in-
creases with relPos, with the only two exceptions,
{Fasttext,GloVe} × BNC. To examine the statisti-
cal reliability of the observed increasing trend in
the plots, we fit a linear mixed-effect model for
each one of the 16 model × corpus combinations.
The model uses semDist as the dependent variable,
utterance idx as the fixed effect predictor, and with
random intercepts fitted per dialogue. As explained
in Section 3.3, we use idx instead of relPos as the
predictor, because the former encodes more fine-
grained position information, while the latter is
used mainly for visualization purpose. The coeffi-
cients and significance levels of the 16 individual
models (for each model-corpus combination) are
shown in Table 3. The statistical significance of the
observed increasing trend can be confirmed.

4.2 Semantic distance increases with physical
distance

Next, we study the alignment at local scale, by
plotting semDist against (phyDist) (Figure 3). An
obvious increasing trend of semDist with phyDist
can be observed in 3 out of the 4 corpora: Map-
task (except ELMo), DJD, and BNC. A decreasing
trend is found in Switchboard. Similarly, we fit lin-
ear mixed-effect models to confirm the statistical
significance (See Table 4).

4.3 Short utterances removed

The major discrepancy in the above shown results
is the distinctive decreasing pattern of Switchboard
corpus across all models in the semDist ∼ phyDist
relationship. This is somewhat surprising because
it is anti-intuitive to see utterances farther apart
have closer meanings (see the discussion in Sec-
tion 5.2). Here, we examine whether removing
those short utterances from data will produce more
consistent results.

One character of dialogue transcript data is the
frequent usage of extremely short back channels
utterances and disfluencies, such as “uh”, “um”,
“hmm” etc. The meanings of these short utterances
are vague and unrepresented in the pretrained se-
mantic models, because the training data of these
models are usually in well-formed written language.
We find that Switchboard has the most imbalanced
distribution, with the highest proportion of short
utterances. It could be a cause to the discrepancy
in the previous result.

To examine the assumption, we conduct an ex-
periment by excluding the utterances that are below
certain thresholds, and re-examine the semDist ∼
phyDist relationship in the remaining data. We
find that after removing the utterances that contain
fewer than 2 tokens (in Switchboard), the origi-
nal decreasing trend of semDist against phyDist
is reversed (now becomes increasing) for Fasttext
and GloVe (See Figure 4), but not so for BERT or
ELMo. This tells that the behaviors of semantic
models can indeed be affected by the nature of data.
The negative correlation between semDist and phy-
Dist can be observed in Switchboard, as long as
short utterances are removed. But we wonder it
does not work for BERT or ELMo, and we leave it
to future investigation.
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Figure 2: Semantic distances between utterance pairs (semDist, y-axis) against their relative positions (relPos, x-
axis) for 16 model × corpus combinations. Results from the same model is in one column, and those from the
same corpus is in one row. Dotted lines indicate fitted simple linear models. Lines across points and shaded areas
indicate 95% confidence intervals.

5 Discussion

5.1 Global semantic divergence

The results in Section 4.1 is inconsistent with the
claim from IAM that interlocutors become aligned
semantically as dialogue develops, nor with some
existing empirical findings (Abney et al., 2014).
The “divergence” we observed here is different
from the one reported by Healey et al. (2014), be-
cause they use a local scale of fixed window, which
really means local divergence.

Here, we try to explain the seemingly counter-
intuitive global divergence. In the case of sponta-
neous (non-task-oriented) dialogues (e.g., Switch-
board and BNC), what people talk about typically
will disperse, which naturally leads to the diver-
gence of utterance meanings. Even though in the
collection of some corpora, participants are asked

to speak with respect to certain topics (e.g., Switch-
board), a clear trend of topic shifting can still be
detected computationally (Xu and Reitter, 2016b).
In the case of task-oriented dialogue, such as Map-
task, interlocutors tend to first establish a common
“language” (words, terms, etc.) to describe the situa-
tion, i.e., common ground (Clark, 1996), which will
be the basis of later communication. Our findings
suggest that although common ground is necessary,
this grounding or alignment process may not be
directly reflected on to the semantic representation
of utterances.

Our findings inevitably raise some issues in the
expressions of IAM theory: it seems semantic con-
vergence (measured by semantic distance) is not
observed among most dialogue corpora, so what is
it that has become aligned between interlocutors?
Is it something more abstract that is difficult to

121



Corpus
Model

BERT ELMo Fasttext GloVe

Maptask 5.4× 10−5∗∗∗ 2.1× 10−5∗∗ 3.9× 10−5∗∗∗ 3.0× 10−5∗∗

DJD 1.9× 10−5∗∗ 1.1× 10−5 1.6× 10−5 2.3× 10−5∗

Switchboard 4.6× 10−5∗∗∗ 1.6× 10−5∗∗∗ 1.7× 10−5∗∗∗ 2.8× 10−5∗∗∗

BNC 1.1× 10−5∗∗∗ 1.1× 10−5∗∗∗ −2.1× 10−5∗∗∗ −1.8× 10−5∗∗∗

Table 3: β coefficients and the significance levels of utterance idx as the predictor in linear models: semDist ∼ idx.
∗∗∗p < .001, ∗∗p < .01, ∗p < .05.

Corpus
Model

BERT ELMo Fasttext GloVe

Maptask 3.6× 10−4∗∗ −5.4× 10−4∗∗∗ 8.0× 10−4∗∗∗ 1.1× 10−4∗∗∗

DJD 1.0× 10−3∗∗∗ 1.5× 10−3∗∗∗ 2.7× 10−3∗∗∗ 2.7× 10−3∗∗∗

Switchboard −4.4× 10−3∗∗∗ −3.1× 10−3∗∗∗ −2.1× 10−3∗∗∗ −3.2× 10−3∗∗∗

BNC 8.1× 10−5 1.1× 10−4 2.0× 10−3∗∗∗ 1.8× 10−3∗∗∗

Table 4: β coefficients and the significance levels of phyDist as the predictor in linear models: semDist ∼ phyDist.
∗∗∗p < .001, ∗∗p < .01.

capture by vector-based models? These are also
open-ended questions to future investigations.

5.2 Local semantic convergence

The local convergence pattern is in line with most
computational evidence about linguistic alignment.
Reitter et al. (2006); Reitter and Moore (2014) find
that the priming effect of words and syntactic struc-
tures decay over the distance between utterances,
and they use the decay rate to model the strength
of alignment. Similarly, our findings show that the
semantic similarity (opposite of distance) between
utterances also decays as they get apart. We conjec-
ture that this observation can be partially (a small
part) due to decay effect of lexical alignment, but it
is more of a direct reflection of the natural process
in dialogue. Utterances in dialogue are mostly the
replies to adjacent ones, and it makes sense that
nearby utterances are more semantically related.
It is also a specification of the more general tem-
poral clustering, or burstiness property (Goh and
Barabási, 2008; Jo et al., 2012) that pervasively
exists in natural time series.

Our results contradicts those from Healey et al.
(2014)’s work. As mentioned before, the syntactic
divergence they reported is in fact a local diver-
gence. It at least indicates that more overlaps of
syntax in utterance does not necessarily co-occur
with high semantic similarity.

6 Conclusions and Future Work

The main contribution of this study is to work to-
wards a more complete theory of the linguistic
alignment between dialogue interlocutors, by ex-
amining the alignment at semantic level with the
most recent representation techniques. Our find-
ings suggest that interlocutors in dialogue consis-
tently diverge from each other in semantic space
at the global scale; and conversely, they converge
at the local scale. This mixture of scales we use
is a novel perspective of exploring inter-speaker
alignment.

Our findings help clarify the “convergence vs.
divergence” conflicts in previous studies, and raises
some limits in IAM theory. In particular, we chal-
lenge the belief that dialogues converge towards
some aligned semantic space. Rather, the seman-
tic meanings of utterances diverge globally in a
dialogue, while the local convergence pattern is
maintained.

For future work, we are considering fine tun-
ing the semantic models on dialogue data, instead
of just using pretrained models, with the hope to
get more accurate semantic representation of utter-
ances.
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Figure 3: Semantic distance between utterance pairs (semDist, y-axis) against the physical distance (phyDist, x-
axis) for 16 model × corpus combinations. Results from the same model is in one column, and those from the
same corpus is in one row. Dotted lines indicate fitted simple linear models. Lines across points and shaded areas
indicate 95% confidence intervals.

everything running during this hard time that we
are all going through. Thank you and solute!
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