
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 34–46
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics

34

Learning Sparse Sentence Encoding without Supervision:
An Exploration of Sparsity in Variational Autoencoders

Victor Prokhorov♣ Yingzhen Li♢∗ Ehsan Shareghi♠♣ Nigel Collier♣
♣ Language Technology Lab, University of Cambridge
♠ Department of Data Science & AI, Monash University
♢ Department of Computing, Imperial College London

vp361@cam.ac.uk, yingzhen.li@imperial.ac.uk,
ehsan.shareghi@monash.edu, nhc30@cam.ac.uk

Abstract

It has been long known that sparsity is an ef-
fective inductive bias for learning efficient rep-
resentation of data in vectors with fixed dimen-
sionality, and it has been explored in many ar-
eas of representation learning. Of particular
interest to this work is the investigation of the
sparsity within the VAE framework which has
been explored a lot in the image domain, but
has been lacking even a basic level of explo-
ration in NLP. Additionally, NLP is also lag-
ging behind in terms of learning sparse rep-
resentations of large units of text e.g., sen-
tences. We use the VAEs that induce sparse
latent representations of large units of text
to address the aforementioned shortcomings.
First, we move in this direction by measur-
ing the success of unsupervised state-of-the-art
(SOTA) and other strong VAE-based sparsifi-
cation baselines for text and propose a hierar-
chical sparse VAE model to address the stabil-
ity issue of SOTA. Then, we look at the impli-
cations of sparsity on text classification across
3 datasets, and highlight a link between per-
formance of sparse latent representations on
downstream tasks and its ability to encode task-
related information.1

1 Introduction

Representation learning has been pivotal in many
success stories of modern days NLP. Observing its
success, two fundamental questions arise: How is
the information encoded in them? andWhat is en-
coded in them? While the latter has received a lot
of attention by designing probing tasks, the former
has been vastly neglected. In this work, we take
small steps in this non-trivial direction by building
on the knowns: One property we know about the
encoding of information is that different data points

∗Work done while at Microsoft Research Cambridge.
1The code is available on https://github.com/V

ictorProkhorov/HSVAE.

embody different characteristics (e.g. statistically,
semantically, or syntactically) which should ideally
utilise different sub-regions of the representation
space. Therefore, the high-dimensional learned rep-
resentations should ideally be sparse (Bengio et al.,
2013; Burgess et al., 2018; Tonolini et al., 2019).
In other words it allows us to have varying number
of active dimension per sentence2 (Bengio, 2009)
in a fixed dimensional vector3. But if sparsity4 is
expected, could it be learned from data without
supervision?
A handful of studies in NLP that have delved

into building sparse representations of words either
during the learning phase (Faruqui and Dyer, 2015;
Yogatama et al., 2015) or as a post-processing step
on top of existing representations (e.g., word2vec
embeddings) (Faruqui et al., 2015; Sun et al., 2016;
Subramanian et al., 2018; Arora et al., 2018; Li and
Hao, 2019). These methods have not been devel-
oped for sentence embeddings, with the exception
of Trifonov et al. (2018) which makes a strong as-
sumption by forcing the latent sentence representa-
tion to be a sparse categorical distribution.
In parallel, Variational Autoen-

coders (VAEs) (Kingma and Welling, 2014)
have been effective in capturing semantic close-
ness of sentences in the learned representation
space (Bowman et al., 2016; Prokhorov et al.,
2019; Xu et al., 2019; Balasubramanian et al.,
2020). Furthermore, methods have been developed

2This, for example, may allow us to cluster sentences’ rep-
resentations not only based on similarity of their active features
(as it is the case for dense vectors) but also on active/inactive
dimensions.

3More on speculative side, sparse representations may be
a more natural way of modelling sentences of a language in
a fixed dimensional vector. Sentences vary in length and an
amount of information that they convey. As such it makes
sense to reflect this property in a vector representation of the
sentence.

4As in (Mathieu et al., 2019), we induce sparse representa-
tions for each data point.

https://github.com/VictorProkhorov/HSVAE
https://github.com/VictorProkhorov/HSVAE

35

to encourage sparsity in VAEs via learning a
deterministic selection variable (Yeung et al., 2017)
or sparse priors (Barello et al., 2018; Mathieu et al.,
2019; Tonolini et al., 2019). However, the success
of these is yet to be examined on text domain.
To bridge this gap, we make a sober evalua-

tion of existing state-of-the-art (SOTA) VAE-based
sparsification model (Mathieu et al., 2019) against
several VAE-based baselines on two experimental
tasks: text classification accuracy, and the level
of representation sparsity achieved. Additionally,
we propose Hierarchical Sparse Variation Autoen-
coder (HSVAE), to improve the stability issue of
existing SOTA model and demonstrate its perfor-
mance on both experimental tasks.
Our experimental findings demonstrate that: (I)

neither the simpler baseline models nor the SOTA
manage to impose a satisfactory level of sparsity
on text, (II) as expected, sparsity level and task
performance have a negative correlation, while giv-
ing up task performance and having sparse codes
helps with the analysis of the representations, (III)
presence/absence of task related signal in the spar-
sity codes affects the task performance, (IV) the
success of capturing the task related signal in the
sparsity codes depends on the strength of the signal
presented in a corpus, and representation dimen-
sionality, (V) the success of SOTA in image domain
does not necessarily transfer to inducing sparse rep-
resentations for text, while HSVAE addresses this
shortcoming.

2 Background

VAE. Given an input x, VAEs, Figure 1 (left), are
stochastic autoencoders that map x to a correspond-
ing representation z using a probabilistic encoder
q�(z|x) and a probabilistic decoder p�(x|z), imple-
mented as neural networks. Optimisation of VAE
is done by maximising the ELBO:
Eq�(z|x) log p�(x|z) − DKL

(

q�(z|x)||p�(z)
) (1)

where the reconstruction maximises the expecta-
tion of data likelihood under the posterior distribu-
tion of z, and the Kullback-Leibler (KL) divergence
acts as a regulariser and minimises the distance be-
tween the learned posterior and prior of z.

Spike-and-Slab Distribution. This is a mixture
of two Gaussians with mixture weight
i, where the
slab component is a standard Gaussian while the

𝜸𝜸𝒛𝒛x𝒛𝒛x

(a) (b)Figure 1: Graphical Models of VAE (left) and
HSVAE (right). Solid and dashed lines represent gener-
ative and inference paths, respectively.

spike component is a Gaussian with � → 0:
p(z) =

D
∏

i
(1 −
i) (zi; 0, 1) +
i (zi; 0, � ←←→ 0)

where i denotes the ith dimension of z and D is the
total number of dimensions of z.
3 Hierarchical Sparse VAE (HSVAE)

We propose the hierarchical sparse VAE (HSVAE),
Figure 1 (right), to learn sparse latent codes au-
tomatically. We treat the mixture weights
 =
(
1, ...,
D) as a random variable and assign a fac-
torised Beta prior p�(
i) = Beta(�, �) on it. The la-
tent code z is then sampled from a factorised Spike-
and-Slab distribution p�(z|
) conditioned on
 , and
the observation x is generated by decoding the la-
tent variable x ∼ p�(x|z) using a GRU (Cho et al.,
2014) decoder. This returns a probabilistic genera-
tive model p�(x, z,
) = p�(x|z)p�(z|
)p�(
).

For posterior inference, the encoder distribution
is defined as q�(z,
|x) = q�(
|x)q�(z|
, x), where
q�(
|x) is a learnable and factorised Beta distribu-
tion, and q�(z|
, x) is a factorised Spike-and-Slab
distribution with mixture weights
i and learnable
“slab” components for each dimension. The q distri-
bution is computed by first extracting features from
the sequence using a GRU, then applying MLPs to
the extracted feature (and
 for q�(z|
, x)) to pro-
duce the distributional parameters.
ELBO: We derive the ELBO, (�, �; x):

Eq�(z,
|x)[log p�(x|z)] − Eq�(
|x)[DKL
(

q�(z|
, x),

p�(z|
)
)

] − �DKL
(

q�(
|x)||p�(
)
)

,

where ∈ ℝ and � ∈ ℝ are the coefficients for
the KL terms. This ELBO is approximated with
Monte Carlo (MC) in practice, (�, �; x):

1
N

N
∑

∼q�(
|x)

[

1
M

M
∑

z∼q�(z|x,
)
log p�(x|z)

]

−

−

N

N
∑

∼q�(
|x)

[

DKL(q�(z|x,
)||p�(z|
))
]

−

−�DKL(q�(
|x)||p�(
)),

(2)

36

whereM andN are scalar numbers corresponding
to a number of samples taken from q�(z|x,
) and
q�(
|x) respectively. In this work, we set bothM
and N to 1. Similar to the vanilla VAE, the first
term is the reconstruction, the second and the third
KL terms control the distance between the posteri-
ors and their corresponding priors. The parameters
of the priors are fixed to some constant values (can
be also thought as the hyperparameters) during the
training. Also, see Appendix for ELBO derivation.
Control of Sparsity. The random variable
i, in
our model, can be viewed as a “probabilistic switch”
that determines how likely is for the ith dimension
of z to be turned off. Intuitively, since for both gen-
eration and inference the latent code z is sampled
from a Spike-and-Slab distribution with the mixture
weights
 ,
i → 1 means zi is drawn from a delta
mass centered at zi = 0. As the switch follows a
Beta distribution
i ∼ Beta(
i; �, �), we can select
the parameters � and � to control the concentration
of the probability mass on
i ∈ [0, 1] interval.
There are three typical configurations of the

(�, �) pair: (1) � < �: density is shifted towards

i = 0 hence ith unit is likely to be on and dense
representation is expected, (2) � = �: the density
is centered at
i = 0.5, and (3) � > �: density is
shifted towards
i = 1, hence the unit is likely to
be off, leading to sparsity. The magnitude of these
parameters also plays a role as it controls the spread
and uni/bi-modal structure of the density.
4 Experiments

We conduct a set of experiments on three text clas-
sification corpora: Yelp (sentiment analysis - 5
classes) (Yang et al., 2017), DBpedia and Yahoo
(topic classification - 14 and 10 classes respec-
tively) (Zhang et al., 2015). First, we compare per-
formance of the sparse latent representations with
their dense counterpart on the text classification
tasks (§4.2). Second, the stability of sparsification
of HSVAE is compared with the state-of-the-art
MAT-VAE (§4.3). Then, to better understand per-
formance of our model on the downstream task, we
examine the sparsity patterns (§4.4).
Remark. An integral part of the experiments is
the analysis of the learned representations. In this
sense, tasks that rely on understanding of semantics
(e.g., GLUE (Wang et al., 2018)) or syntax (e.g.,
(Marvin and Linzen, 2018)) would be non-trivial
to analyse due to their inherent complexity. We

consider classification tasks because the distribu-
tion of words alone could be a good indicator of
class labels. Given the unsupervised nature of the
models, we explore if this surface-level distribution
of words could be captured by the sparsity patterns
in the learned representation.
4.1 Experimental Setup
4.1.1 Corpora Preprocessing
We use Yelp5 as it is, without any additional prepro-
cessing. As for DBpedia6 and Yahoo7, the prepro-
cessing is as follows: (1) removing all non-ASCII
characters, quotations marks, and hyperlinks, (2)
tokenising with spaCy8, (3) lower-case conversion
for all tokens, then (4) for each class we randomly
sample 10,000 sentences for the training corpus and
1,000 sentences for the test and validation respec-
tively. The vocabulary size of the both corpora is
reduced to the first 20,000 most frequent words.
4.1.2 Baselines and Models
To ground the performance of HSVAE we use 4
baselines: 1) VAE is a version of the vanilla VAE
used in Higgins et al. (2017), 2) the same VAE
model but the activation of � and � of q�(z|x) regu-
larised by eitherL1 (VAEL1) orL2 (VAEL2) norms,
3) MAT-VAE is a VAE framework introduced by
Mathieu et al. (2019) and 4) simple classifier which
is simply a text encoder with a classifier on top of it.
For all these models we use a GRU network (Cho
et al., 2014) to encode and decode text sequences.
We set the dimesnionality of the both encoder and
the decoder GRU’s to 512D and the dimensionality
of the word embeddings is 256D. The decoder and
the encoder share the word embeddings. To train
the model we use the Adam optimiser (Kingma and
Ba, 2014) with the learning rate: 0.0008.
BERT vs GRU Encoder. Inspired by Li et al.
(2020b), we replace the GRU network used in VAE
and HSVAE encoders with a pretrained BERT9
(Devlin et al., 2019), while keeping the GRU de-
coder. We refer to these models as B-VAE and
B-HSVAE, respectively. Also, we compare the

5https://github.com/jxhe/vae-lagging-
encoder/blob/master/prepare_data.py.

6https://github.com/srhrshr/torchData
sets/blob/master/dbpedia_csv.tar.gz

7https://github.com/jxhe/vae-lagging-
encoder/blob/master/prepare_data.py.

8https://spacy.io
9After extracting features from a sequence with BERT, we

then applying MLPs to extract features for the posterior distri-
butions, as it is the case for the encoder with GRU network.

https://github.com/jxhe/vae-lagging-encoder/blob/master/prepare_data.py
https://github.com/jxhe/vae-lagging-encoder/blob/master/prepare_data.py
https://github.com/srhrshr/torchDatasets/blob/master/dbpedia_csv.tar.gz
https://github.com/srhrshr/torchDatasets/blob/master/dbpedia_csv.tar.gz
https://github.com/jxhe/vae-lagging-encoder/blob/master/prepare_data.py
https://github.com/jxhe/vae-lagging-encoder/blob/master/prepare_data.py
https://spacy.io

37

(a)

(b)

(c)
Figure 2: Classification Accuracy and Average Hoyer (higher means sparser z) for various VAE variants and the
two baselines: simple classifier and BERT evaluated on Yelp, Yahoo or DBpedia test. The latent code of the VAEs
is 32 D Figure (a) and 768 D Figures (b) and (c). Hoyer metric is not applicable to the simple classifier in the panels
(a) and (b) and to the vanilla BERT model in the panel (c). The weights of the VAE encoders and BERT are frozen
during the training of the classifiers. While the encoder of the simple classifier is updated during the training.

task performance of these VAE models with the
plain pretrained base-BERT10. To train B-VAE and
B-HSVAE, we use the Adam optimiser with the
learning rate: 0.00008.
Dimensionality of z. We use the following two
dimensions: 32D and 768D. Since, HSVAE and
MAT-VAE induce sparse latent representations we
want to make sure that they perform robustly re-
gardless of the number of the dimensions.
KL-Collapse. None of the used VAE models is
immune to the KL-collapse (Bowman et al., 2016)
- when the KL term becomes zero and the decoder
ignores the information provided by the encoder
through z. To address this issue, in all the models,
we put a scalar value , � < 1 on the KL terms of
the VAE’s objective function (He et al., 2019).

10https://huggingface.co/transformers/
model_doc/bert.html

Coupling Encoder with Decoder. To connect
the encoder with the decoder we concatenate the
latent variable z, sampled from the posterior distri-
bution, to word embeddings of the decoder at each
time step (Prokhorov et al., 2019). Also, for GRU
encoders we take the last hidden state to parame-
terise the posterior distribution. For BERT encoder,
we take average pooling of all token’s embeddings
produced by the last layer of BERT.
4.1.3 Evaluation Metrics
Text Classification. To report the classification
performance we use accuracy as a metric.
Sparsity. We measure Hoyer (Hurley and
Rickard, 2009) on the representations of all data
points in a corpus and report its average as our
sparsity metric (Mathieu et al., 2019). Hoyer, in a
nutshell, is ratio of the L2 to L1 norm, normalised
by the number of dimensions. Higher indicates

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html

38

A
ve

ra
ge

 H
oy

er
 (A

H
)

Figure 3: Average Hoyer (AH) on DBpedia corpus
dev set for different parameterisations of Mathieu et al.
(2019) (Top) vs. HSVAE (Bottom). Same is observed
on Yelp and Yahoo (see Appendix). Lines are an av-
erage over the 3 runs of the models, the shaded area is
the standard deviation. The dimensionality of the latent
variable of the models is 32D.

more sparsity. More specifically, to evaluate the
average Hoyer, or as we refer to it as Average Hoyer
(AH) in the experiments, either on a validation or
test corpus we employ the following procedure.
First, for each xi in the corpus {x1, ..., xn} we
obtain its corresponding zi by sampling it from a
probabilistic encoder of a VAE model, such that
for each xi we sample one zi: e.g. x1 ←←→ z1. Then
we normalise z̄i = zi∕�(z), where z = {z1, ..., zn},
and �(.) is the standard deviation. Finally, for each
z̄i we compute Hoyer as follows:

Hoyer(z̄i) =

√

d − ||z̄i||1∕||z̄i||2
√

d − 1
, (3)

where d is the dimensionality of z̄i. To report the
Hoyer for the whole corpus we compute the Av-
erage Hoyer = 1

N
∑N
i Hoyer(z̄i), where N is the

number of data points in a test or validation corpus.
4.2 Text Classification
Prior to use of a VAE encoder in the classifica-
tion experiment, we pretrained it using the full
VAE model with the corresponding VAE’s objec-
tive function on one of the target corpus: Yelp,
Yahoo or DBpedia. We compare performance of
the sparse latent representations with their dense

counterparts on the three text classification tasks
(Figure 2). The classifier that we use comprises of
the two dense layer of 32D each with the Leaky
ReLU (Maas, 2013) activation function. To estab-
lish whether the performance gain or loss on the
tasks is achieved thanks to the sparsity inductive
bias, for all the VAE models and BERT we freeze
the parameters of the encoder and only train the
classifier which we put on top of the encoder. How-
ever, for the simple classifier model its text encoder
is being trained together with the classifier. When
the classifier, p(y|x), is trained with a probabilistic
VAE encoder we marginalise the latent variable(s).
This is done for instance for HSVAE as,

p(y|x) = ∫z,

p(y|z)q(z|x,
)q�(
|x)dzd

We approximate the integral with MC by taking
K = 5 samples from the probabilistic encoder both
to train and to test the classifier: For each xi in a
batch {x1, ..., xp}:
1. sample K of
i,j from q�(
|xi) i.e. a set of

sampled
’s is {
i,1, ...,
i,K}
2. sample K of zi,j from q�(z|xi,
i,j) i.e. a

set of sampled tuples of zi,j and
i,j is
{(zi,1,
i,1), ..., (zi,K ,
i,K)} in other words for
each
i,j we sample only one zi,j .

For the other VAEs the procedure is similar. With
the MC approximation : p(y|x) ≈ 0.2×

∑5
i p(y|zi).For a systematic comparison of various VAEs,

we collate classification performance of VAEs with
comparable reconstruction loss - which indicates
how informative the latent code is for the decoder
during reconstruction. In other words the recon-
struction loss serves as an intrinsic metric. Thus,
for an example, in Figure 2a, for the Yelp corpus
all the VAE models have a similar reconstruction
loss. The same applies to Figure 2b and Figure 2c.

Comparing the accuracy of the classifiers that are
trained with the different latent representations i.e.
sparse and dense (Figure2), shows that in general
the performance of the sparse latent representations
induced by HSVAE or MAT-VAE is on par with
their dense latent counterparts inferred by the VAEs.
However, the performance of HSVAE slightly lag-
ging behind on the Yelp corpus when the dimen-
sionality of the latent representation is 32D (Figure
2a). We put forward a hypothesis that may explain
this in Section 4.4. Also, when the dimensionality
of the latent representation is 32D, the accuracy of

39

MAT-VAE is slightly better than of HSVAE, but
this performance is reached at lower levels of spar-
sity. Additionally, we found that regularising the
posterior parameters of the VAE model with either
L1 or L2 norm, in some cases, helps to increase
the classification accuracy, but does not reach AH
higher than the vanilla VAE. Notably, the classifica-
tion performance of all the VAE models becomes
almost identical when the dimensionality of the
latent space is increased from 32D to 768D, with
HSVAE slightly outperforming all other VAEs on
the DBpedia corpus (Figure 2b). We further elabo-
rate on it in Section 4.4.

Use of BERT as an encoder, in our settings, only
gives an improvement on the Yahoo corpus with
B-HSVAE performing on par with B-VAE, but does
not reach the classification accuracy of the plain
BERT. We hypothesise that to reach the full poten-
tial of the use of a pretrained encoder in a VAE
model one needs to pair it with a powerful decoder
such as GPT-2 (Radford et al., 2019) as it is the case
in the Li et al. (2020b) VAE model. Further explo-
ration of this was beyond our compute resource.
Finally, one can observe that the simple clas-

sifier model performs on a par (in Figure 2a) or
even worse (Figure 2b) than the VAE models on
the Yelp corpus. Putting it into the context that
the VAE encoders are not being trained with a su-
pervision signal while the encoder of the simple
classifier is, we speculate that this can be explained
by the discussion put forward in Valpola (2014). A
classifier in nature tries to remove all the informa-
tion that is not relevant to the supervision signal,
while an autoencoder tries to preserve as much as
possible information in the latent code in order to
reconstruct the original input data reliably. Thus, if
the distribution of class related words in a text alone
(see §4.4.1) is not indicative enough of a class then
the classifier may perform poorly. In our case, we
hypothesise that the VAE models capture some ad-
ditional information other than class distribution of
words in text that allows it to better discriminate the
classes. For example, some class may have shorter
sentences, on average, than the sentences presented
in the other classes. This may provide an additional
bias that allows the VAE models to discriminate
sentences from this class from the sentences from
the other classes. Thus, with this additional bias
VAEs can perform better than the simple classifier.
We leave this investigation for a future work.

C
om

p.

E
duc.Inst.

A
rtist

A
thlete
O

ffice

Transport.
B

uilding

N
at.P

lace
V

illage
A

nim
al

P
lant

A
lbum
Film

W
rit.W

ork

strong.negative

negative
neutral

positive

strong.positive

S
oc. &

 C
ulture

S
ci.&

 M
ath.

H
ealth

E
duc. &

 R
ef.

Internet

S
ports

Finance

E
ntert. &

 M
usic

Fam
ily &

 R
el.

P
olit. &

 G
ov.

0.0

0.2

0.4

0.6

0.8

1.0

(a)

strong.negative

negative

neutral

positive

strong.positive

Soc. & Culture

Sci.& M
ath.

Health

Educ. & Ref.

Internet
Sports

Finance

Entert. & M
usic

Fam
ily & Rel.

Polit. & Gov.

0.0

0.2

0.4

0.8

1.0

(b)
Figure 4: Heat maps of
class (Section §4.4). (a)
classof 32D - from left to right: Yahoo, Yelp, DBpedia. (b)
contiguous 32D out of 768D of
class - from left to right:
Yahoo, Yelp.

4.3 Representation Sparsity

In Figure 7 we compare HSVAE with MAT-VAE.
We report AH both on the mean and samples from
the posterior distributions. As illustrated, MAT-
VAE struggles to achieve steady and consistent AH
regardless of the configurations of its hyperparam-
eters (, �). However, HSVAE stably controls the
level of sparsity with � and � parameters, a positive
effect of its more flexible posterior distribution and
the learnable distribution over
 .
4.4 Can Sparsity Patterns Encode Classes?

In order to identify pertinent features, the unsuper-
vised representation learning models are typically
trained/fine-tuned on corpora that are closely re-

40

lated to the downstream task. As such, without a
supervisory signal, the model can only rely on the
distribution of words in a text in order to identify
these relevant features for the task. Ideally, com-
pared to their dense counterparts, an unsupervised
sparsification model such as HSVAE could result
in performance improvement on downstream tasks
if they capture the task-related features and discard
the noisy features. However, if the sparsification
model fail to capture the task related signal in its
sparsity pattern; it can hurt the performance of the
model on the downstream task as the task-related
information can be removed. In what follows we
investigate this direction by analysing the sparsity
patterns and relate this analysis to the classification
performance of the model (§4.2).
Analysis of
 . We hypothesise that if
 captures
a class of a sentence then the sentences that be-
long to the same class should have a similar spar-
sity patterns in
 . To obtain a class specific
class,
first, for each sentence x we obtain the mean of the
posterior distribution: q�(
|x) and we denote it as
�
(x). Then we binarise the mean such as �b
(x) =Binarise(�
(x)), where Binarise(⋅) is defined as: 0 if
�
(x) < 0.5 and 1 otherwise. Finally, for each class
we average its �b
(x) vectors to obtain a single vector
that represent this class:
class = 1

M
∑

x∈class �
b

(x),whereM is a number of sentences in the class. The

averaging removes the information that differentiate
these sentences, while preserving the class informa-
tion that is shared among them. A similar approach
was also used in Mathieu et al. (2019).

Figure 4 reports the magnitudes of the
class vec-
tors as heat maps for the three corpora. One would
expect that
class of different classes should differ.
For 32D
class (Figure 4a) this is the case when
HSVAE is trained on the DBpedia and Yahoo but
not on Yelp. Taking into account the unsupervised
nature of these models, this difference is echoing
the distribution of words in the classes, which is
more distinct in DBpedia and Yahoo, but not in
Yelp (see §4.4.1). We also hypothesis that this ob-
servation can explain inferior performance of the
model on the Yelp corpus (Figure 2a).
In contrast, for
class in 768D (Figure 4b) one

can observe that the different classes have different
activation patterns even when HSVAE is trained
on the Yelp corpus.11 Also, the distributedness of

11In Figure 4b we only show 32D out of 768D. This is one of
the subsets of the 768 dimensions where the distributedness is
present. It is not unique and the distributedness is also present

the activation patterns now becomes more apparent
when HSVAE is trained on the Yahoo corpus. This
observation is also related to the distribution of
words in the text (further elaborated in §4.4.1).

Intuitively, to reconstruct a sentence a VAE
model first captures aspect of data that are the
most conducive for reconstruction error reduc-
tion (Burgess et al., 2018). Therefore, given the lim-
ited dimensionality of the latent vector, the model
will prioritised aspects of data during encoding. As
such, if the information such as sentence class is not
strongly presented in the corpus the model could
potentially ignore it during encoding. However,
when the dimensionality of the latent space is in-
creased, the model has more capacity to represent
various aspects of data that may otherwise be ig-
nored in the smaller dimensionality. We speculate
this could explain the presence of distributedness of

class on Yelp for 768D as opposed to 32D, which
also translates into matching the task performance
of its dense counterpart (Figure 2b).
4.4.1 Class Kullback–Leibler Divergence

The question that has yet not been addressed is why
in some cases the HSVAE model is more success-
ful at capturing the class distribution when trained
on DBpedia compared to Yelp. We previously hy-
pothesised that the reason for this can be a word
distribution in a text. To empirically test our hypoth-
esis, we calculate the add-1 smoothed probabilities
of words in the classes and measure the pairwise
KL divergence across them. The magnitudes of
the pairwise KL divergences are shown in Figure
5. As demonstrated, the magnitude of the KL di-
vergence is the largest for DBpedia and smallest for
Yelp. This indicates that separating classes in Yelp
would rely on more subtle aspects of data, whereas
surface-level cues are more present in DBpedia and
allow for an easier discrimination.
5 Related Work

Learning sparse representations of data can be dated
back to Olshausen and Field (1996). This work
motivates encoding of images in sparse linear codes
for its biological plausibility and efficiency. It was
later argued by Bengio (2009) that compared to the
dimensionality reduction approaches, sparsity is a
more efficient method for representation learning
on vectors with fixed dimensionality.
in other dimensions of the 768D code.

41

(a) (b) (c)

Figure 5: Experimental results for KL between classes on the three corpora: DBpedia (a), Yahoo (b) and Yelp (c).

Representation Sparsity. In NLP, learning
sparse representations has been explored for
various units of text with most of the focus placed
on sparse representation of words. As the earliest
work that moved in this direction, Murphy et al.
(2012) looked into sparse representations for ease
of analysis, performance, and being more cogni-
tively plausible. This idea was further developed
by many other researchers (Faruqui and Dyer,
2015; Yogatama et al., 2015; Faruqui et al., 2015;
Sun et al., 2016; Subramanian et al., 2018; Arora
et al., 2018; Li and Hao, 2019). Sparsification
of the large units of text (i.e., sentences) has not
received a lot of attention, perhaps due to inherent
complexity of sentence/phrase representations: i.e.,
encoding and analysing syntactic and semantic
information in a sentence embedding is rather a
non-trivial task. To the best of our knowledge, the
only model that sparsifies sentence emebeddings is
introduced by Trifonov et al. (2018). The authors
introduced a Seq2Seq model (Sutskever et al.,
2014) with the Sparsemax layer (Martins and
Astudillo, 2016) between the encoder and the
decoder which induces sparse latent codes of text.
This layer allows to learn codes that can be easier to
analyse compared to their dense counterparts, but it
is limited to modelling the categorical distribution.
Thus restricts a type a sentence representations that
can be learned.
VAE-based Representation Sparsity. VAE-
based sentence representation learning has shown
superior properties compared to their deterministic
counterparts on tasks such as text generation (Bow-
man et al., 2016), Semantic Textual Similarity (Li
et al., 2020a) and other wide range of language
tasks (Li et al., 2020b). While a handful of
VAE-based sparsification methods have been
proposed recently Mathieu et al. (2019) (MAT),
Tonolini et al. (2019) (TON), they have been only

evaluated on image domain. We summarise the
similarity and key differences with HSVAE model:
PRIOR AND POSTERIOR. All three frameworks

use the Spike-and-Slab distribution to con-
struct the prior on z. While the posterior
distribution in MAT remains as a Gaussian,
both TON and HSVAE opt for Spike-and-Slab.
However, TON controls the sparsity level in
an indirect way via “pseudo data” (Tomczak
and Welling, 2018) used in prior, whereas
HSVAE’s probabilistic treatment of
 enables
direct control on the target sparsity level.

OBJECTIVE. HSVAE is trained with a principled
ELBO (eq. 3), while the other two add ad-
ditional regularisers to the ELBO of VAE
(eq. 1). For instance, MAT add a maxi-
mum mean discrepancy (MMD) divergence
between z’s aggregated posterior and prior
MMD(q�(z), p�(z)) and include scalar and
� weights to the KL and MMD term, respec-
tively, see Appendix.

Model Sparsity. Concurrent to the widespread
use of large models such as Transformers (Vaswani
et al., 2017) in NLP, sparsification of these models
is also becoming popular (Zhang et al., 2020; Zhao
et al., 2019; Correia et al., 2019; Ye et al., 2019;
Child et al., 2019). The most common approach
to sparsify a Transformer is to reduce a number of
connection between the words/tokens in the self at-
tention kernel e.g. Correia et al. (2019). However,
these approaches still learn dense continuous repre-
sentations of token/word/sentence embeddings.
6 Conclusion

We provided an objective analysis of several unsu-
pervised sparsification frameworks based on VAEs,
both in terms of the impact on downstream tasks

42

and the level of sparsity achieved. Also, we pre-
sented a novel VAE model - Hierarchical Sparse
Variational Autoencoder (HSVAE), outperforming
existing SOTA model (Mathieu et al., 2019). Ide-
ally, sparse representations should be capable of
encoding the underlying characteristics of a cor-
pus (e.g. class), in activation patterns as shown to
be the case for HSVAE. Moreover, using the text
classification corpora as a testbed, we established
how statistical properties of a corpus such as word
distribution in a class affect the ability of learned
sparse codes to represent task-related information.
Moving forward, HSVAE model along with the

analysis provided in this paper can serve as a good
basis for the design of sparse models that induce
continuous sparse vectors of text. For example,
a potential extension of HSVAE could be an in-
corporation of explicit linguistic biases into the
learned representations with the group sparsity
(Yogatama et al., 2015). Furthermore, as we dis-
cussed in Section 5, sparsity found its application
in the Transformers, but it, mainly, has been used
to reduce the number of connection between the
words/tokens. With the HSVAE framework one
can also learn sparse continuous representations of
token/word/sentence embeddings.
Acknowledgments

The first author would like to thank Yi Zhu for
providing his feedback on the earlier vesrsion of
the paper. The authors, also, would like to thank
the three anonymous reviewers for their helpful
suggestions.

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,

and Andrej Risteski. 2018. Linear algebraic struc-
ture of word senses, with applications to polysemy.
Transactions of the Association for Computational
Linguistics, 6:483–495.

Vikash Balasubramanian, Ivan Kobyzev, Hareesh
Bahuleyan, Ilya Shapiro, and Olga Vechtomova.
2020. Polarized-vae: Proximity based disentangled
representation learning for text generation. arXiv
preprint arXiv:2004.10809.

Gabriel Barello, Adam S. Charles, and Jonathan W. Pil-
low. 2018. Sparse-coding variational auto-encoders.
bioRxiv.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Found. Trends Mach. Learn., 2(1):1–127.

Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. 2013. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell., 35(8):1798–1828.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Bengio.
2016. Generating sentences from a continuous space.
In CoNLL.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loïc
Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. 2018. Understanding disentan-
gling in �-vae. CoRR, abs/1804.03599.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078.

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2174–
2184, Hong Kong, China. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 464–
469, Beijing, China. Association for Computational
Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1491–1500, Beijing,
China. Association for Computational Linguistics.

Michael Figurnov, Shakir Mohamed, and Andriy Mnih.
2018. Implicit reparameterization gradients. In Pro-
ceedings of the 32nd International Conference on

https://doi.org/10.1162/tacl_a_00034
https://doi.org/10.1162/tacl_a_00034
https://arxiv.org/abs/2004.10809
https://arxiv.org/abs/2004.10809
https://doi.org/10.1101/399246
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
http://aclweb.org/anthology/K/K16/K16-1002.pdf
http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.18653/v1/D19-1223
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/P15-2076
https://doi.org/10.3115/v1/P15-2076
https://doi.org/10.3115/v1/P15-1144
https://doi.org/10.3115/v1/P15-1144

43

Neural Information Processing Systems, NIPS’18,
page 439–450, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Junxian He, Daniel Spokoyny, Graham Neubig, and
Taylor Berg-Kirkpatrick. 2019. Lagging inference
networks and posterior collapse in variational autoen-
coders. In Proceedings of ICLR.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. 2017. beta-vae:
Learning basic visual concepts with a constrained
variational framework. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Con-
ference Track Proceedings, Toulon, France.

N. Hurley and S. Rickard. 2009. Comparing measures
of sparsity. IEEE Transactions on Information The-
ory, 55(10):4723–4741.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020a. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130, Online. Association for Computa-
tional Linguistics.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiu-
jun Li, Yizhe Zhang, and Jianfeng Gao. 2020b. Opti-
mus: Organizing sentences via pre-trained modeling
of a latent space.

Wenye Li and Senyue Hao. 2019. Sparse lifting of
dense vectors: Unifying word and sentence represen-
tations. CoRR, abs/1911.01625.

Andrew L. Maas. 2013. Rectifier nonlinearities im-
prove neural network acoustic models.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous re-
laxation of discrete random variables. International
Conference on Learning Representations, ICLR.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1614–1623, New York, New York,
USA. PMLR.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Emile Mathieu, Tom Rainforth, N Siddharth, and
Yee Whye Teh. 2019. Disentangling disentangle-
ment in variational autoencoders. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine
Learning Research, pages 4402–4412, Long Beach,
California, USA. PMLR.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable seman-
tic models using non-negative sparse embedding. In
Proceedings of COLING 2012, pages 1933–1950,
Mumbai, India. The COLING 2012 Organizing
Committee.

Bruno Olshausen and David Field. 1996. Emergence
of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381:607–9.

Victor Prokhorov, Ehsan Shareghi, Yingzhen Li, Mo-
hammad Taher Pilehvar, and Nigel Collier. 2019. On
the importance of the Kullback-Leibler divergence
term in variational autoencoders for text generation.
In Proceedings of the 3rd Workshop on Neural Gen-
eration and Translation, pages 118–127, HongKong.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard H. Hovy. 2018.
SPINE: sparse interpretable neural embeddings. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
4921–4928. AAAI Press.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi
Cheng. 2016. Sparse word embeddings using l1
regularized online learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 2915–2921. IJCAI/AAAI
Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’14, page 3104–3112, Cambridge, MA,USA.
MIT Press.

https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://arxiv.org/pdf/0811.4706.pdf
https://arxiv.org/pdf/0811.4706.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
http://arxiv.org/abs/2004.04092
http://arxiv.org/abs/2004.04092
http://arxiv.org/abs/2004.04092
http://arxiv.org/abs/1911.01625
http://arxiv.org/abs/1911.01625
http://arxiv.org/abs/1911.01625
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
http://proceedings.mlr.press/v97/mathieu19a.html
http://proceedings.mlr.press/v97/mathieu19a.html
https://www.aclweb.org/anthology/C12-1118
https://www.aclweb.org/anthology/C12-1118
https://doi.org/10.1038/381607a0
https://doi.org/10.1038/381607a0
https://doi.org/10.1038/381607a0
https://doi.org/10.18653/v1/D19-5612
https://doi.org/10.18653/v1/D19-5612
https://doi.org/10.18653/v1/D19-5612
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17433
http://www.ijcai.org/Abstract/16/414
http://www.ijcai.org/Abstract/16/414

44

Jakub M. Tomczak and MaxWelling. 2018. Vae with a
vampprior. In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics, pp.
1214–1223.

Francesco Tonolini, Bjorn Sand Jensen, and Roderick
Murray-Smith. 2019. Variational sparse coding. In
Proceedings of the Thirty-Fifth Conference on Un-
certainty in Artificial Intelligence (UAI).

Valentin Trifonov, Octavian-Eugen Ganea, Anna
Potapenko, and Thomas Hofmann. 2018. Learning
and evaluating sparse interpretable sentence embed-
dings. In Proceedings of the Workshop: Analyzing
and Interpreting Neural Networks for NLP, Black-
boxNLP@EMNLP 2018, Brussels, Belgium, Novem-
ber 1, 2018, pages 200–210. Association for Compu-
tational Linguistics.

H. Valpola. 2014. From neural pca to deep unsuper-
vised learning. ArXiv, abs/1411.7783.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Peng Xu, Jackie Chi Kit Cheung, and Yanshuai Cao.
2019. On variational learning of controllable rep-
resentations for text without supervision. arXiv
preprint arXiv:1905.11975.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved vari-
ational autoencoders for text modeling using di-
lated convolutions. In Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 3881–3890, International Convention
Centre, Sydney, Australia. PMLR.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and
Zheng Zhang. 2019. Bp-transformer: Modelling
long-range context via binary partitioning.

Serena Yeung, Anitha Kannan, Yann Dauphin, and
Li Fei-Fei. 2017. Tackling over-pruning in varia-
tional autoencoders. International Conference on
Machine Learning: Workshop on Principled Ap-
proaches to Deep Learning.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and
Noah A. Smith. 2015. Learning word representa-
tions with hierarchical sparse coding. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37, pages 87–96. JMLR.org.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2020. On
sparsifying encoder outputs in sequence-to-sequence
models.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’15, page 649–657, Cam-
bridge, MA, USA. MIT Press.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu-
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit
sparse transformer: Concentrated attention through
explicit selection.

A Derivations of ELBO

Starting from the DKL(q�(z,
|x)||p�(z,
|x)), we
derive the Evidence Lower Bound (ELBO) as fol-
lows:

DKL(q�(z,
|x)||p�(z,
|x)) =

∫
z,

dzd
 q�(z,
|x) log
q�(z,
|x)
p�(z,
|x)

, (4)

after rearranging terms in equation 4 we can obtain:

log p�(x) − DKL(q�(z,
|x)||p�(z,
|x)) =

∫
z,

dzd
 q�(z,
|x) log
p�(z,
, x)
q�(z,
|x)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ELBO

, (5)

Based on the independence assumption that
we make in our graphical model (Figure 1) the
generative model factorises as: p�(z,
, x) =
p�(x|z)p�(z|
)p�(
) and the inference model fac-
torises as: q�(z,
|x) = q�(z|
, x)q�(
|x). There-
fore, we can rewrite the ELBO as follows:
∫
z,

dzd
 q�(z|
, x)q�(
|x) log

p�(x|z)p�(z|
)p�(
)
q�(z|
,x)q�(
|x)

,

(6)
We can further rewrite the ELBO as a sum of the
three separate terms. Where the first term is:

∫
z,

dzd
 q�(z|x,
)q�(
|x) log p�(x|z)

∫

d
 q�(
|x)∫
z

dz q�(z|x,
) log p�(x|z)∴

⟨

∫
z

dz q�(z|x,
) log p�(x|z)
⟩

q�(
|x)
∴

(7)

https://arxiv.org/pdf/1705.07120.pdf
https://arxiv.org/pdf/1705.07120.pdf
http://auai.org/uai2019/proceedings/papers/239.pdf
https://doi.org/10.18653/v1/w18-5422
https://doi.org/10.18653/v1/w18-5422
https://doi.org/10.18653/v1/w18-5422
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://arxiv.org/abs/1905.11975
https://arxiv.org/abs/1905.11975
http://proceedings.mlr.press/v70/yang17d.html
http://proceedings.mlr.press/v70/yang17d.html
http://proceedings.mlr.press/v70/yang17d.html
http://arxiv.org/abs/1911.04070
http://arxiv.org/abs/1911.04070
https://arxiv.org/pdf/1706.03643.pdf
https://arxiv.org/pdf/1706.03643.pdf
http://proceedings.mlr.press/v37/yogatama15.html
http://proceedings.mlr.press/v37/yogatama15.html
http://arxiv.org/abs/2004.11854
http://arxiv.org/abs/2004.11854
http://arxiv.org/abs/2004.11854
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://arxiv.org/abs/1912.11637
http://arxiv.org/abs/1912.11637
http://arxiv.org/abs/1912.11637

45

The second term is:
∫
z,

dzd
 q�(z|x,
)q�(
|x)[log q�(z|x,
) − log p�(z|
)]

⟨

∫
z

dz q�(z|x,
)[log q�(z|x,
) − log p�(z|
)]
⟩

q�(
|x)
∴

⟨

DKL(q�(z|x,
)||p�(z|
))
⟩

q�(
|x)
∴

(8)
Finally, the third term is:

∫
z,

dzd
 q�(z|x,
)q�(
|x)[log q�(
|x) − log p�(
)]

∫

d
 q�(
|x)[log q�(
|x) − log p�(
)]∫
z

dz q�(z|x,
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
sums to 1 for each∶

∴

∫

d
 q�(
|x)[log q�(
|x) − log p�(
)]∴

DKL(q�(
|x)||p�(
))∴ (9)
Collecting all the three terms into the single ELBO:

⟨

∫
z

dz q�(z|x,
) log p�(x|z)
⟩

q�(
|x)
−

−
⟨

DKL(q�(z|x,
)||p�(z|
))
⟩

q�(
|x)
−

−DKL(q�(
|x)||p�(
)),

(10)

B Objective Functions of Mathieu et al.
(2019) and Tonolini et al. (2019)
Models

The objective function of Mathieu et al. (2019) is:
⟨

log p�(x|z)
⟩

q�(z|x)
− KL(q�(z|x)||p�(z))−

−�D(q�(z), p�(z)),

where and � are the scalar weight on the terms
and Tonolini et al. (2019) is:
⟨

log p�(x|z)
⟩

q�(z|x)
−KL(q�(z|x)||q�(z|xu)−

−J × DKL
(

̄u||�)
)

,

where J is the dimensionality of the latent variable
z, xu is a learnable pseudo-input (Tomczak and
Welling, 2018) and � is prior sparsity.
C Deriving Marginal of (Univariate)

Spike-and-Slab Prior
We derive the Spike-and-Slab distribution by in-
tegrating out the index component which is dis-
tributed as a Bernoulli variable. This result is quite

well-known in machine learning, however for the
ease of the reader we present it here as a quick ref-
erence.
The derivation: assume 1) � ∼ p(�;
) is a

Bernoulli(
) and 2) p(z|�) = (1 − �) × p1(z) +
� × p2(z), where p1(z) ∼  (z; 0, 1) and p2(z) ∼
 (z; 0, � → 0) is a Spike-and-Slab model. The
the marginal Spike-and-Slab prior over z can be
obtained in the following way:

p(z;
) =
1
∑

i=0
p(z|� = i)p(� = i;
)

p(z|� = 0)p(� = 0;
) + p(z|� = 1)p(� = 1;
)∴
[(1 − 0) × p1(z) + 0 × p2(z)]p(� = 0;
)+
+ [(1 − 1) × p1(z) + 1 × p2(z)]p(� = 1;
)∴

Expanding brackets:

p1(z)p(� = 0;
) + p2(z)p(� = 1;
)∴
 (z; 0, 1)p(� = 0;
) + (z; 0, � → 0)p(� = 1;
)∴
(1 −
) (z; 0, 1) +
 (z; 0, � → 0)∴

Therefore,

p(z;
) = (1 −
) (z; 0, 1) +
 (z; 0, � → 0).

D End-to-end Differentiable

Sampling a value from the Spike-and-Slab posterior
distribution q(z|x,
) is a two step process. First a
spike or slab component is sampled which is a bi-
nary decision, we use Binary Concrete distribution
(Maddison et al., 2016) to make this sampling step
end-to-end differentiable. Then the value is sam-
pled from the corresponding component, for this
we employ the reparameterization trick (Kingma
and Welling, 2014). Also, samples from the Beta
distribution are pathwise differentiable (Figurnov
et al., 2018).

E Hoyer

This section reports Average Hoyer, for the two cor-
pora Yelp andYahoo, both on themean and samples
from the posterior distributions of the HSVAE and
MAT-VAE models.

46

E.1 MAT-VAE

2 4 6 8 10 12 14
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v.

H
oy

er

sample (:0.01, :0.01)
mean (:0.01, :0.01)
sample (:1.0, :0.01)
mean (:1.0, :0.01)

sample (:10.0, :0.01)
mean (:10.0, :0.01)
sample (:1.0, :0.1)
mean (:1.0, :0.1)

Figure 6: Average Hoyer (Av.Hoyer) on Yelp corpus
dev set for MAT-VAE. Lines are an average over the
3 runs of the models, the shaded area is the standard
deviation. The dimensionality of the latent variable of
the models is 32D.

2 4 6 8 10 12 14
Iterations

0.20

0.25

0.30

0.35

0.40

A
v.

H
oy

er

sample (:0.01, :0.01)
mean (:0.01, :0.01)
sample (:1.0, :0.01)
mean (:1.0, :0.01)

sample (:10.0, :0.01)
mean (:10.0, :0.01)
sample (:1.0, :0.1)
mean (:1.0, :0.1)

Figure 7: Average Hoyer (Av.Hoyer) on Yahoo corpus
dev set for MAT-VAE. Lines are an average over the
3 runs of the models, the shaded area is the standard
deviation.

E.2 HSVAE

2 4 6 8 10 12 14
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

A
v.

H
oy

er

sample (:10.0, :30.0)
mean (:10.0, :30.0)
sample (:30.0, :10.0)

mean (:30.0, :10.0)
sample (:30.0, :30.0)
mean (:30.0, :30.0)

Figure 8: Average Hoyer (Av.Hoyer) on Yelp corpus
dev set for HSVAE. Lines are an average over the 3 runs
of the models, the shaded area is the standard deviation.
The dimensionality of the latent variable of the models
is 32D.

2 4 6 8 10 12 14
Iterations

0.2

0.3

0.4

0.5

0.6

A
v.

H
oy

er sample (:10.0, :30.0)
mean (:10.0, :30.0)
sample (:30.0, :10.0)

mean (:30.0, :10.0)
sample (:30.0, :30.0)
mean (:30.0, :30.0)

Figure 9: Average Hoyer (Av.Hoyer) on Yahoo corpus
dev set for HSVAE. Lines are an average over the 3 runs
of the models, the shaded area is the standard deviation.
The dimensionality of the latent variable of the models
is 32D.
F Hardware

Please refer to Table 1 for the hardware that we use.
hardware specification
CPU Intel® Xeon E5-2670V3, 12-cores, 24-threads
GPU NVIDIA® TITAN RTXTM (24 GB) x 1
RAM CORSAIR® Vengeance LPX DDR4 2400 MHz (8 GB) x 4

Table 1: Computing infrastructure.

G Datasets

Yelp DBpedia Yahoo

sent. (train corpus) 100K 140K 100K
sent. (valid corpus) 10K 14K 10K
sent. (test corpus) 10K 14K 10K
vocabulary size 19,997 20K 20K
min sent. length. 20 1 5
av. sent. length. 96 35 12
max. sent. length. 200 60 30
classes 5 14 10
sent. in each class (train/test corpus) 20K/2K 10K/1K 10K/1K

Table 2: Statistics of corpora. Vocabulary size excludes
the ⟨pad ⟩and ⟨EOS ⟩symbols.

