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Abstract

Recent advances in using retrieval components
over external knowledge sources have shown
impressive results for a variety of downstream
tasks in natural language processing. Here,
we explore the use of unstructured external
knowledge sources of images and their corre-
sponding captions for improving visual ques-
tion answering (VQA). First, we train a novel
alignment model for embedding images and
captions in the same space, which achieves
substantial improvements in performance on
image-caption retrieval w.r.t. similar methods.
Second, we show that retrieval-augmented
multi-modal transformers using the trained
alignment model improve results on VQA over
strong baselines. We further conduct extensive
experiments to establish the promise of this ap-
proach, and examine novel applications for in-
ference time such as hot-swapping indices.

1 Introduction

Neural networks augmented with non-parametric
retrieval components have recently shown impres-
sive results in NLP (Khandelwal et al., 2019; Guu
et al., 2020; Lewis et al., 2020; Izacard and Grave,
2020). In this work, we introduce a novel image-
caption alignment model architecture and utilize it
in various retrieval-augmented multi-modal trans-
former models, achieving substantial improve-
ments over strong baselines.

Retrieval components are promising because
they allow for easy revision and expansion of their
memory, as compared to their parametric counter-
parts. They provide more interpretability, as well
as better factual consistency with trusted knowl-
edge sources (Shuster et al., 2021). In the multi-
modal setting, retrieval augmentation allows for
leveraging the strengths of text-based models—as
evidenced by the strong performance of BERT-
based models in vision-and-language (Lu et al.,
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2019; Li et al., 2019b; Kiela et al., 2019)—via
cross-modal translation from images to text. Being
able to seamlessly “hot swap” knowledge sources
without the need for re-training the model affords
a unique scalability not typically seen in the tradi-
tional deep learning literature. Nearest neighbor
methods are known to be strong baselines in the
vision and language domain (Devlin et al., 2015).
Our contributions are as follows. We introduce
a simple, yet effective, novel cross-modal align-
ment architecture called DXR (Dense X-modal Re-
triever). DXR achieves a substantial increase in
performance on both COCO (Chen et al., 2015)
and Flickr30k (Young et al., 2014) image-caption
retrieval, with respect to similar methods. We
subsequently use DXR as a retrieval component
augmenting several multi-modal transformer ar-
chitectures. We show that retrieval augmentation
yields impressive results irrespective of the ex-
act input strategy, with good performs on VQA
for retrieval-augmented versions of well-known
multi-modal transformer architectures, from Vi-
sualBERT (Li et al., 2019b) and VILBERT (Lu
et al., 2019)—which use bounding-box features—
to Movie+MCAN (Nguyen et al., 2020)—which
uses grid features. We name our overall method
XTRA, for X-modal Transformer Retrieval Aug-
mentation. We conduct extensive experiments on
various datasets to shed light on XTRA’s perfor-
mance and explore the effect of in-domain ver-
sus out-of-domain retrieval, index size and infer-
ence time applications. Our experiments show that
XTRA outperforms parametric-only pre-training
techniques that have access to the same data. To our
knowledge, this is the first work to showcase the
promise of hybrid parametric and non-parametric
models for the vision and language domain.

2 Related Work

Cross-Modal Retrieval Prior work in cross-
modal retrieval can be divided into two primary
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categories: (i) methods that use grid-features and/or
vector representations of the embedding space, and
(i) methods that use detection features, sequence
representations, or share information between the
two modalities for computing the similarity metric.

The first category consists of methods such as
RRF (Liu et al., 2017) and DPC (Zheng et al., 2017)
which use two network branches, for image and
text. CMPM (Zhang and Lu, 2018) introduced a
Bi-directional LSTM to learn image and text em-
beddings. The most relevant work in this category
is VSE++ (Faghri et al., 2017), which focuses on
hard negative mining and a ranking loss. Recently,
two methods that use substantial amounts of data
were proposed, CLIP (Radford et al., 2021) which
uses 0.4 Billion image-text pairs, and ALIGN (Jia
et al., 2021) which uses 1.8 Billion noisy image-
text pairs. Both methods use a dual encoder that
produced and embedding vector for each modality.
For fair comparison and reproducibility, we train
on and compare against methods that use the open
source COCO and Flickr30K datasets.

The second category generally exploits the use
of detection features, which enforces an additional
complexity. Methods such as TERN (Messina
et al., 2020b), TERAN (Messina et al., 2020a),
SAEM (Wu et al.,, 2019) and MMCA (Wei
et al., 2020), use transformer modules to obtain
modality-specific embeddings. TERAN, as well as
SCAN (Lee et al., 2018), utilize sequence similari-
ties. SCO (Huang et al., 2018) and VSRN (Li et al.,
2019a) learn, in addition to image-text alignment,
to generate the caption from the image embedding.
MMCA, as well as CAMP (Wang et al., 2019),
fuses image and text information to obtain the fi-
nal embeddings. VisualSparta (Lu et al., 2021)
uses fragment-level interaction to compute simi-
larity scores. Other methods, such as Unicoder-
VL (Li et al., 2020a), Oscar (Li et al., 2020b) and
UNITER (Chen et al., 2020) are trained for multi-
modal alignment as a pre-training task. While these
models perform well, they suffer from high compu-
tational complexity as we discuss in Sec. 3.4.

External Knowledge Source Methods The use
of an external knowledge source (KS) has gained
much attention in the field of natural language pro-
cessing (NLP), such as the work of Verga et al.
(2020). Our work is inspired by that of Lewis et al.
(2020), which introduced RAG, a generic approach
for a variety of downstream NLP tasks using a
learned retriever (DPR; Karpukhin et al., 2020)

to augment the inputs by marginalizing across pas-
sages retrieved from Wikipedia. In the multi-modal
domain, previous efforts have focused on building
different types of KS, such as the work of Zhu
et al. (2014); Chen et al. (2013); Divvala et al.
(2014); Sadeghi et al. (2015) and Zhu et al. (2015),
which use web information for the construction
of the KS. Methods that use an external KS for a
downstream task use a structured KS, such as the
work of Narasimhan et al. (2018); Narasimhan and
Schwing (2018); Wang et al. (2015, 2018) and Zhu
et al. (2017). Zhu et al. (2017) introduced an iter-
ative method for VQA tasks. Marino et al. (2019)
introduced OK-VQA, a novel VQA dataset that
requires the use of an external KS. Fan et al. (2020)
applied a KS to multi-modal dialogue. In our work,
we focus on a more naturally aligned KS, in the
form of images and captions, which better reflects
the data generated in newspapers and social media.

Multi-modal Classification In this work, we in-
vestigate the potential advantages of using an ex-
ternal KS for the popular and challenging VQA
domain, a multi-modal classification task. Cur-
rent methods for VQA use pre-training on differ-
ent datasets in order to gain better performance.
In our experiments, we show performance for
three different methods, (i) VisualBERT (Li et al.,
2019b), which is based on the BERT model by
Devlin et al. (2018), (ii) VILBERT (Lu et al.,
2019), which fuses text and image modalities
using co-attentional transformer layers, and (iii)
MoVie+MCAN (Nguyen et al., 2020) (A similar
method was introduced by Jiang et al. (2020)),
which uses a modulated convolutional bottleneck
for the image backbone. Other methods such as
Pythia (Jiang et al., 2018), VLBERT (Su et al.,
2019) and MMBT (Kiela et al., 2019) can bene-
fit from our method, as well as more recent work
such as UNITER (Chen et al., 2020), which use the
alignment task for pre-training their models. Os-
car (Li et al., 2020b), while using extensive data for
pre-training, also introduces the use of objects’ tags
as additional inputs. Because the architecture of
UNITER and Oscar is close to the ones we experi-
ment with, we focus our work on our three selected
models. We further note that MoVie+MCAN uses
grid features instead of detection features, i.e., no
detector is needed (as opposed to most methods),
which adds to our approach’s broad applicability.
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Figure 1: (a) Cross-modal alignment architecture. We use a pre-trained ResNet-152 and BERT as feature extractors
with an in-batch hinge loss. (b) Sample query image and retrieved captions from the COCO dataset. Ground truth

captions are colored in blue (best viewed in color).

3 Method

Our methodology is composed of two disjoint parts:
(i) for a given external knowledge source X, con-
sisting of m modalities, we train a model (the Re-
triever) to align between the different modalities.
(ii) Given a knowledge source X and an alignment
model, we train a downstream model (the Reader)
by augmenting its inputs with extra data from .

3.1 Cross-modal Alignment

Let IC consist of m modalities, where each sample
s; = (s9,...,8™) € K is a tuple of m elements,
corresponding to different modalities. Our align-
ment model encompasses m encoders E,,, each
composed of a feature-extraction module F;,,, pro-
jection P,,, shared Transformer layer T" with atten-

tion pooling, and optional normalization N:
Ep(z) = N(T(Pn(Fin(x)))) (D

From this point, we will consider the two-modality
case of images and captions, as illustrated in Fig. 1.
For text and image feature extractors, F and F5,
we use a pre-trained BERT model, and a pre-trained
ResNet152 CNN backbone on ImageNet, respec-
tively. Images are represented with convolutional
grid features, chosen for robustness and speed,
which are flattened across the spatial dimension.
The projection layers P, project each modality to
a constant dimension d. Projected sequences are
then forwarded to a shared Transformer-encoding
layer, and aggregated by an attention pooling layer,
resulting in a vector representation for each modal-
ity. Following Faghri et al. (2017), we normalize
the text embeddings using L2 normalization, pro-
jecting all embeddings to the unit-sphere, due to
image-caption imbalance (see Sec. 4.1).

We train our dense cross-modal retriever (DXR)
using a contrastive loss, specifically using an in-
batch hinge penalty with hard negatives (Faghri

et al., 2017). Given a batch, consisting of b samples,
s1 .. .Sy, for each sample s;, let sz-l and s? be the
positive pairs and s} and s? 4 the negative pairs.
We compute the pair-wise similarity between the
two modalities, using a dot product:

/
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where 51-1, and s?/ are the hardest samples inside the
batch, and « is the margin constant.

3.2 Indexing and Retrieving

Given a knowledge source K, we construct an index
by computing the embeddings of each sample in K
using some alignment model (the Retriever), which
can be trained on any arbitrary knowledge source.
Following Lewis et al. (2020), we use FAISS (John-
son et al., 2017) as our indexer platform for fast
KNN queries. We introduce two variants: we
either construct separate indices [* for each of
the modalities; or we construct one joint index Ix
that encompasses all modalities and where a KNN
query will return a mixed modality result. Fig. 2
illustrates the two independent features of the align-
ment model and external knowledge source.

The retrieval process then consists of input query
g, encoder E,, and indexer I (or I}"). Ik takes
as an input an embedding query e, = E,(q)
and k, and returns the k-nearest indices i1 . . .1,
corresponding to the k-nearest embeddings. We
then index data from /C, resulting in m retrieval
sets v = (r{"...r ), one for each modal-
ity, each consisting of varying number of sam-
ples n,,, where ", n, = k. When using
I, a single modality m is returned, resulting in
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Figure 2: Illustration of our end-to-end framework. The trained cross-modal alignment is used to extract features
as queries to a FAISS indexer. The k retrieved indices are used to access data from the external knowledge source,
and augment the input by appending each of the & retrievals to the relative modality. For VQA, we only query the

input image and retrieve k captions.

r™ = (r*...7"): For simplicity, we define the

retriever by R(q, Em, Iic, k) == {r', ..., 7™},

3.3 End-to-End Fusion

Let M be any multi-modal reader model, applied
to a specific downstream task that takes as an input
x = (x',...,2™) consisting of m modalities and
outputs prediction y. The method augments the
input = by concatenating the retrieved samples to
their corresponding input modalities, resulting in

the augmented input z’:

7/ = (ztor{o-or) ...,

2" oo or )
@)
The resulting end-to-end training of model M
minimizes a loss £(M (2),y), with the same hy-
perparameters as in the non-retrieval augmented
case. Fig. 2 illustrates the complete model.

3.4 Time-Complexity

As introduced in Sec. 2, we consider two types of
retrievers, (i) methods such as ours, that use Max-
imum Inner Product Search (MIPS), where each
modality is computed independently, and (ii) meth-
ods that have entangled computation of similarity
between the different modalities, i.e., that cannot
compute an independent embedding. Assuming
a KS of size N, and a forward-pass with O(1)
time-complexity, in type (i), the embeddings of
the entire knowledge source need to be computed
only once, with queries embedded independently.
In our experiments, we use FAISS with “Hierar-
chical Navigable Small World” search, which as
shown by Johnson et al. (2017) is O(AD[log Nv),
where A and v are constants, and D is the degree of
the graph. Therefore, the total time complexity of
retrieving is O(AD][log N]v). On the other hand,

methods of type (ii) must compute pairwise similar-
ities between a query sample, and all samples in the
dataset, resulting in a much less efficient O(N).

4 Experiments

In this section, we describe the two experimental
settings of the alignment model and the end-to-
end downstream task training and evaluation. All
models and experiments are implemented and per-
formed with the MMF library (Singh et al., 2020a).

4.1 Datasets

We use three common datasets for training and eval-
uating retrieval and VQA tasks. Flickr-30K (Young
et al., 2014) is composed of 30,000 images, with
5 captions each. Following Karpathy and Fei-Fei
(2015), we use 1000 images for validation and 1000
images for testing. COCO (Chen et al., 2015) is a
well-known dataset that contains 120,000 images,
with 5 captions each. We use the splits from Karpa-
thy and Fei-Fei (2015) as well, resulting in 80K im-
ages for training, 5K images for validation and 5K
images for testing. Following Faghri et al. (2017),
we add an additional 30K images for training, and
uses the same 1K and 5K splits. Conceptual Cap-
tions (Sharma et al., 2018) is a dataset that contains
image-caption pairs, composed of 3M samples for
training and 100K for validation, which we use to
test our retrieval model.

The proposed datasets differ in two major axes:
(1) size, with CC at 3M image-caption pairs much
larger than the smaller COCO and Flickr30K
datasets; and (ii) domain gap, with e.g. CC datasets
being very different in both the visual and tex-
tual domain from COCQO, as shown in Singh et al.
(2020b). Flickr30K is similar to COCO, but has
even fewer examples.
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4.2 Cross-Modal Retrieval

In the cross-modal retrieval task, we deal with two
modalities: images and captions. We evaluate re-
trieval in both directions, denoted as Text — Image
and Image — Text, where the left-hand-side indi-
cates the query and the other indicates the retrieved
domain. To ensure an apples-to-apples compari-
son, we here report results for methods that also
use grid-features and vector representations. For
a full comparison with other prior work, see Ap-
pendix A. Models are trained for 100K iterations
with a warm-up of 2k iterations, batch size of 256,
using the Adam optimizer with a learning rate of
0.0001 where the (pre-trained unimodal) feature
encoder’s learning rate is multiplied by 0.1. The
hinge loss margin hyperparameter m is set to 0.2.

4.3 Downstream Tasks

After training the alignment models for each
dataset—Flickr30K, COCO and CC—we build in-
dices for each, as defined in Sec 3.2. Note that for
COCO, we only use the training set for indexing,
while for Flickr30K and CC, we use the entire set
of train/val/test. This is done for fair comparison
on the VQA task, which relies on COCO training-
set images. Our experiments focus on VQA as the
downstream task, however we note that extension
to other multi-modal tasks is straightforward. The
inputs of the VQA task are image and text tuples,
and it is cast as a classification problem over a set
of answers. In VQA, information regarding the
content of the image, such as the amount, color and
location of objects is often very correlated with the
question and answer. Therefore, captions serve as
good auxiliary information, while similar/retrieved
images are less informative in that sense. Hence,
we use the separate indices variant using cross-
modal image to text translation, i.e., we retrieve
text captions of similar images to serve as augmen-
tation data. We experiment with all three datasets,
evaluating different training and inference variants.

5 Results

5.1 Cross-Modal Retrieval

Tab. 1 and 2 show retrieval results on COCO
and Flickr30K, respectively, comparing similar
methods that use grid-features and vector repre-
sentations for the embedding space. Reported
numbers correspond to Recall-at-1/5/10 on the
test-sets. As can be seen, our method sig-
nificantly outperforms previous work when trained

on the same datasets. We also added the results for
the state-of-the-art CLIP and ALIGN, which both
use significantly larger amounts of external train-
ing data (0.4 and 1.8 Billion resp.). Appendix A
compares to a wide range of additional methods.
While CC is not commonly used in the retrieval
literature, we use it for our downstream task. Using
DXR, we obtain the following results for CC: R@1:
25.1 R@5: 50.1 and R@10: 61.9 for Text — Im-
age, and R@1: 25.4 R@5: 50.9 and R@10: 61.8
for Image — Text. The alignment model trained
on CC is used for training in the downstream VQA
task. We notice that performance degrades as the
dataset size increases, which could affect the down-
stream task since we query from the entire dataset.

5.2 Visual Question Answering

We experiment with three common multimodal
models: VisualBERT (Li et al., 2019b), ViL-
BERT (Lu et al., 2019), and the current winner of
the VQA 2.0 challenge, Movie+MCAN (Nguyen
et al., 2020), each along with three different knowl-
edge sources (COCO, CC and Flickr30K). Follow-
ing Jiang et al. (2020), we use the val-set split
for ablations. We also report results on the VQA
test-dev and test-std splits.

Tab. 3 and 4 summarize four different train-
ing settings: (i) vanilla - models using pre-
trained BERT; (ii) PT - task agnostic masked lan-
guage model pre-training on the knowledge source
dataset; (iii) 5-GT - training with the 5 ground
truth captions from COCO; and (iv) XTRA-10C
- training via our method, using the knowledge
source indicated and alignment model trained on
that source, using 10 retrieved captions. We see that
using the five ground truth (GT) COCO captions as
additional data (bottom row of Tab. 3), sets a soft
upper bound for our approach. On the one hand,
GT captions contain relevant information about
the content of the image; on the other hand, other
captions from the knowledge source may addition-
ally serve as rich, useful descriptions. We also see
that our method increases performance across all
baselines, even with respect to pre-training. This
suggests that our non-parametric hybrid method
serves as a good alternative for parametric-only
pre-training.

For the MoVie+MCAN model, we also re-
port results for test-dev and test-std for
COCO as our KS, setting our best model to be
Movie+MCAN+XTRA-10C, obtaining a score of
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COCO 1K COCO 5K
Text — Image Image — Text Text — Image Image — Text
Method R@l R@5 R@I10 R@l R@5 R@10| R@1 R@5 Re@I10 R@l R@5 R@10
DPC 471 799 90.0 65.6 89.8 95.5 253 534 66.4 412 705 81.1
VSE++ 52.0 83.1 92.0 64.6  89.1 95.7 303  59.1 72.4 413  69.2 81.2
CMPM 446 7838 89.0 56.1 86.3 92.9 229 502 63.8 31.1  60.7 73.9
DXR 56.8  88.2 94.9 67.0 93.0 97.6 339 649 77.4 449 752 84.7
CLIP - - - - - 37.8 624 72.2 584 815 88.1
ALIGNT - - - - - 456 698 786 58.6 830 897

Table 1: Retrieval results for COCO, comparing only methods that use raw images as input, and vector representa-
tions for the embedding space. We denote by t methods that train on substantial amount of novel data. Additional

methods can be found in Appendix A.

Text — Image Image — Text Knowledge .. . .
Method ~R@1 R@5 R@I0 R@1 R@5 R@10  Source Training Type  Visual BERT  VILBERT
RRF 354 683 799 476 774 81.1 Flickr30K XTRA 10-C 66.77 67.32
CMPM 373 657 755 49.6 768 86.1
PT 64.34 68.14
DPC 39.1 692 692 556 819 895 cc XTRA-10C 67.49 6737
VSE++ 39.6 696 795 529 79.1 872 PT + XTRA-10C 67.53 69.17
DXR 50.6 788 867 651 873 92.6 * - : :
PT 64.54 67.58
i
CLIP . 68.7 90.6 952 88.0 98.7 994 COCO XTRA-10C 68.98 69.07
ALIGN' 757 938 968 886 987 997 PT + XTRA-10C  67.71 69.90
Table 2: Retrieval results for Flickr30K, comparing Vanilla 6354 6756
only methods that use raw images as input, and vector 5-GT 69.61 71.50

representations for the embedding space. We denote
by t methods that train on substantial amount of novel
data. Additional methods can be found in Appendix A.

73.12 for test-std (with single model perfor-
mance). Jiang et al. (2020) reported 72.71 on
test—-dev while training on the same data as our
method (COCO train+val), while our approach
achieves 72.8. Nguyen et al. (2020) on the other
hand, train with a larger VQA dataset using COCO
and Visual Genome (VG) (Krishna et al., 2017),
reporting 72.91 on test-dev.

5.3 Hot Swap

Our method is devised such that querying and re-
trieving from the knowledge source is independent
of the downstream model, enabling the swap of
the alignment model and/or knowledge source dur-
ing inference. This affords interesting explorations.
We describe two forms of “hot swapping™: (i) the
entire knowledge source and its trained alignment
model are replaced with a new one and correspond-
ing alignment model — we refer to this as “out-of-
domain”; (ii) the knowledge source used for retriev-
ing is swapped, but the alignment model remains
the same as was originally trained with the down-
stream model. In this case, we build a new retriever
for the new knowledge source, using the original

Table 3: VQA Results for Visual-BERT and ViL-
BERT models on COCO val-set. Vanilla - mod-
els use pre-trained BERT model. PT - Pre-Training
with the knowledge source. XTRA-10C - training via
our method using the knowledge source indicated and
alignment model trained on that knowledge source, us-
ing 10 retrieved captions.

COCO
test
dev std

Flickr30K CC Vanilla 5-GT

val

69.70  69.02 71.52 72.80 73.12 | 71.16 71.80

Table 4: VQA Results for MoVie+MCAN model, using
XTRA-10C training type.

alignment model — we call this “in-domain”. Fig. 3
illustrates the two cases.

In Fig. 4 we show different inference results
for hot swapping. All models in this experiment
are trained using 10 retrieved captions. The title
of each graph represents the trained model, fol-
lowed by the trained knowledge source and the
knowledge source to which we swap. In addi-
tion, we show inference results for training with
the swapped knowledge source, e.g. training with
CC knowledge source and alignment model from
scratch, using 10 retrievals. As can be seen, “in-
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Figure 3: Two Hot-Swap configurations of the knowledge source during inference. (a) both the alignment model
and the knowledge source are replaced with new ones built using a new dataset. (b) only the knowledge source is
replaced, and the indexer is built using the old alignment model.
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a different reader model. Each graph shows (a) Training

with different amount of retrieved captions. (b) Using the trained model with 10-cap, we inference with different
amount of captions. (¢) Hot swapping between knowledge sources.

Knowledge

Visual BERT ViLBERT
Source
COCO 58.77 (68.98) | 10.21  45.60 (69.07) | 23.47
CC 63.15 (67.49) | 4.34 63.50 (67.37) | 3.87
Flickr30K  61.86 (66.77) | 4.91 59.34 (67.32) | 7.98
Table 5: VQA performance using ‘“unplugged”

retrieval-less models trained with 10 retrieved captions,
showing the highest drop for the in-domain COCO,
where retrieved examples are the most informative.

domain” hot swapping performance is significantly
higher than “out-of-domain”. We hypothesize that
the reader model has learned an implicit struc-
ture of the alignment space. Surprisingly, when
training with COCO as the knowledge source, “in-
domain” hot swapping performs similarly, for the
same amount of trained retrievals (10), as training
with an alternative knowledge source and align-
ment model. On the other hand, we observe a
decrease in generalization due to different amounts
of retrieval during inference-time. Conversely, hot
swapping to COCO from CC or Flickr30K does
not result in the same performance as training with
COCO as the knowledge source and alignment
model, yet, performance and generalization do not
degrade. Qualitative results of “in-domain” hot

swapping are presented in Fig 5. Novel useful in-
formation such as “cobblestone street” is retrieved
from CC without having to train the alignment
model on that particular source.

5.4 Ablation Study

In this study, we explore the use of different
amounts of retrieval during training and inference,
as well as doing inference without retrieving -
which we call unplugged. We further explore the
relationship between pre-training and XTRA.

Number of Retrievals We experiment with dif-
ferent amounts of retrieved captions during training
and inference. In Fig 6 (a), we show the perfor-
mance of our method when training with differ-
ent amounts of retrieval, and different knowledge
sources. As can be observed, training with 10 cap-
tions and COCO as the knowledge source results
in the best performance. In Fig 6 (b), we show
the inference performance for models trained using
10 retrievals. In addition, we show the inference
performance of the same model, trained with ran-
dom amounts of retrieval, between 1 and 20, on
the COCO dataset (COCO 20R-C). With this, the
best performance is given when we do inference
with the same amount of trained retrievals, and
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Image
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A happy stray puppy lies in the street

Ll

. A dog is laying and resting on a walkway

A dog asleep on the streets

Cute dog sleeping on the sidewalk

A dog lying on the sidewalk

A dog lies down on a cobblestone street

A dog with a muzzle on is lying on the sidewalk A tan male bulldog sleeping on a sidewalk The dog is lying on the cobblestone street

A dog laying on the side of the street

A dog with a collar on lying on the street

Figure 5: Sample top-4 result for “in-domain” Hot-Swap. The model was trained using COCO as the knowledge
source, and 10 retrieved captions. Left - Query image from VQA val-set. Columns refer to the different

hot-swaps, showing retrieved captions.
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Figure 6: Ablation study of our method. (a) - Training with different amount of retrieved captions. (b) - Using the
trained model with 10-cap, we inference with different amount of captions.

this then degrades as the number of retrievals dif-
fers from how the model was trained. We also see
that training with a varying number of retrievals
achieves better generalization to different amounts
of retrievals during inference, as can be seen in
Fig 6 (b), where COCO 20R-C performance is
maintained for up to 60 retrieved examples.

Unplugged Performance One interesting obser-
vation we make is the ability to “unplug” the knowl-
edge source by not retrieving during inference-time.
Tab. 5 shows a noticeable decrease in performance,
indicating the dependency of the reader on the re-
trieved data during training. When training with
COCO as the knowledge source, introducing cap-
tions that are very related to the input images is bi-
asing the model to depend on the retrieved captions.
For CC and Flickr30K, the domain gap between the
downstream task and the knowledge source lessens
this gap in unplugged performance. Surprisingly,
while VILBERT performance is generally better
than Visual BERT, using our method, the opposite
is true when unplugging the knowledge source.

External Knowledge Source & Pre-training
The use of a retrieval mechanism over external
knowledge sources raises intriguing questions, e.g.:
1) is augmentation better than pre-training?; and
2) can pre-training help the external knowledge
source? Tab. 3 shows results on COCO and CC. We

find that our method is significantly better than pre-
training alone, while using pre-training followed
by XTRA causes the performance to vary with re-
spect to the reader architecture (e.g., pre-training
helps XTRA with VILBERT, but not with Visu-
alBERT). Tab. 3 also shows that fine-tuning our
method after pre-training on the same knowledge
source yields better performance over pre-training
across all knowledge sources and architectures.

6 Conclusion

In this work, we presented a novel approach that
proposes the use of external non-parametric knowl-
edge sources in multi-modal transformer models.
We trained a powerful alignment model, DXR,
for performing retrieval over external knowledge
sources. We showed that our method XTRA yields
gains in performance when using an in-domain
knowledge source on VQA. We conducted a variety
of experiments to show the sensitivity and effects
of the knowledge source with various choices of
hyperparameters. Future research and applications
of our method include improved interpretability
via retrieved data and predictions for verification
processes, the demonstration of increased safety
and information security by hot-swapping, and un-
plugged versions of models and new architectures
that take advantage of out-of-domain knowledge
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source. We hope that our approach inspires further
work in the direction of hybrid parametric non-
parametric models for multi-modal problems.

References

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325.

Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta.
2013. Neil: Extracting visual knowledge from web
data. In Proceedings of the IEEE international con-
ference on computer vision, pages 1409-1416.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. Uniter: Universal image-text
representation learning. In European Conference on
Computer Vision, pages 104—120. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Saurabh Gupta, Ross Girshick, Margaret
Mitchell, and C Lawrence Zitnick. 2015. Exploring
nearest neighbor approaches for image captioning.
arXiv preprint arXiv:1505.04467.

Santosh K Divvala, Ali Farhadi, and Carlos Guestrin.
2014. Learning everything about anything: Webly-
supervised visual concept learning. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3270-3277.

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and
Sanja Fidler. 2017. Vse++: Improving visual-
semantic embeddings with hard negatives. arXiv
preprint arXiv:1707.05612.

Angela Fan, Claire Gardent, Chloe Braud, and An-
toine Bordes. 2020. Augmenting transformers with
knn-based composite memory for dialogue. arXiv
preprint arXiv:2004.12744.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training.  arXiv
preprint arXiv:2002.08909.

Yan Huang, Qi Wu, Chunfeng Song, and Liang Wang.
2018. Learning semantic concepts and order for im-
age and sentence matching. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 6163-6171.

Gautier Izacard and Edouard Grave. 2020. Lever-
aging passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V Le, Yunhsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up
visual and vision-language representation learn-
ing with noisy text supervision. arXiv preprint
arXiv:2102.05918.

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik
Learned-Miller, and Xinlei Chen. 2020. In defense
of grid features for visual question answering. arXiv
preprint arXiv:2001.03615.

Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus
Rohrbach, Dhruv Batra, and Devi Parikh. 2018.
Pythia v0. 1: the winning entry to the vqa challenge
2018. arXiv preprint arXiv:1807.09956.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
3128-3137.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Ledell
Wu, Sergey Edunov, Dangi Chen, and Wen-
tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, and
Davide Testuggine. 2019. Supervised multimodal
bitransformers for classifying images and text.
arXiv preprint arXiv:1909.02950.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International journal of computer vision, 123(1):32—
73.

Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu,
and Xiaodong He. 2018. Stacked cross attention
for image-text matching. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 201-216.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. arXiv preprint
arXiv:2005.11401.

119



Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin
Jiang, and Ming Zhou. 2020a. Unicoder-vl: A uni-
versal encoder for vision and language by cross-
modal pre-training. In AAAI pages 11336-11344.

Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and
Yun Fu. 2019a. Visual semantic reasoning for
image-text matching. In Proceedings of the IEEE
International Conference on Computer Vision, pages
4654-4662.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019b. Visualbert: A
simple and performant baseline for vision and lan-
guage. arXiv preprint arXiv:1908.03557.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xi-
aowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, et al. 2020b. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In European Conference on Computer Vision,
pages 121-137. Springer.

Yu Liu, Yanming Guo, Erwin M Bakker, and Michael S
Lew. 2017. Learning a recurrent residual fusion net-
work for multimodal matching. In Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 4107-4116.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems, pages 13-23.

Xiaopeng Lu, Tiancheng Zhao, and Kyusong Lee.
2021. Visualsparta: Sparse transformer fragment-
level matching for large-scale text-to-image search.
arXiv preprint arXiv:2101.00265.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual
question answering benchmark requiring external
knowledge. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3195-3204.

Nicola Messina, Giuseppe Amato, Andrea Esuli,
Fabrizio Falchi, Claudio Gennaro, and Stéphane
Marchand-Maillet. 2020a. Fine-grained visual tex-
tual alignment for cross-modal retrieval using trans-
former encoders. arXiv preprint arXiv:2008.05231.

Nicola Messina, Fabrizio Falchi, Andrea Esuli, and
Giuseppe Amato. 2020b.  Transformer reason-
ing network for image-text matching and retrieval.
arXiv preprint arXiv:2004.09144.

Medhini Narasimhan, Svetlana Lazebnik, and Alexan-
der Schwing. 2018. Out of the box: Reasoning with
graph convolution nets for factual visual question an-
swering. In Advances in neural information process-
ing systems, pages 2654-2665.

Medhini Narasimhan and Alexander G Schwing. 2018.
Straight to the facts: Learning knowledge base re-
trieval for factual visual question answering. In Pro-
ceedings of the European conference on computer

vision (ECCV), pages 451-468.

Duy-Kien Nguyen, Vedanuj Goswami, and Xinlei
Chen. 2020. Revisiting modulated convolutions
for visual counting and beyond. arXiv preprint
arXiv:2004.11883.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models

from natural language supervision. arXiv preprint
arXiv:2103.00020.

Fereshteh Sadeghi, Santosh K Kumar Divvala, and Ali
Farhadi. 2015. Viske: Visual knowledge extraction
and question answering by visual verification of rela-
tion phrases. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
1456-1464.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018.  Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for au-
tomatic image captioning. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2556-2565.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation re-
duces hallucination in conversation. arXiv preprint
arXiv:2104.07567.

Amanpreet Singh, Vedanuj Goswami, Vivek Natara-
jan, Yu Jiang, Xinlei Chen, Meet Shah, Marcus
Rohrbach, Dhruv Batra, and Devi Parikh. 2020a.
Mmf: A multimodal framework for vision and
language research. https://github.com/
facebookresearch/mmf.

Amanpreet Singh, Vedanuj Goswami, and Devi Parikh.
2020b. Are we pretraining it right? digging deeper
into visio-linguistic pretraining.  arXiv preprint
arXiv:2004.08744.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2019. Vl-bert: Pre-
training of generic visual-linguistic representations.
arXiv preprint arXiv:1908.08530.

Pat Verga, Haitian Sun, Livio Baldini Soares, and
William W Cohen. 2020. Facts as experts: Adapt-
able and interpretable neural memory over symbolic
knowledge. arXiv preprint arXiv:2007.00849.

Peng Wang, Qi Wu, Chunhua Shen, Anthony Dick,
and Anton van den Hengel. 2018. Fvqa: Fact-
based visual question answering. [EEE transac-
tions on pattern analysis and machine intelligence,

40(10):2413-2427.

120


https://github.com/facebookresearch/mmf
https://github.com/facebookresearch/mmf

Peng Wang, Qi Wu, Chunhua Shen, Anton van den
Hengel, and Anthony Dick. 2015. Explicit
knowledge-based reasoning for visual question an-
swering. arXiv preprint arXiv:1511.02570.

Zihao Wang, Xihui Liu, Hongsheng Li, Lu Sheng,
Junjie Yan, Xiaogang Wang, and Jing Shao. 2019.
Camp: Cross-modal adaptive message passing for
text-image retrieval. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
5764-5773.

Xi Wei, Tianzhu Zhang, Yan Li, Yongdong Zhang, and
Feng Wu. 2020. Multi-modality cross attention net-
work for image and sentence matching. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10941-10950.

Yiling Wu, Shuhui Wang, Guoli Song, and Qingming
Huang. 2019. Learning fragment self-attention em-
beddings for image-text matching. In Proceedings
of the 27th ACM International Conference on Multi-
media, pages 2088-2096.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67-78.

Ying Zhang and Huchuan Lu. 2018. Deep cross-modal
projection learning for image-text matching. In Pro-
ceedings of the European Conference on Computer
Vision (ECCV), pages 686-701.

Zhedong Zheng, Liang Zheng, Michael Garrett,
Yi Yang, and Yi-Dong Shen. 2017. Dual-path convo-
lutional image-text embedding. corr abs/1711.05535
(2017). arXiv preprint arXiv:1711.05535.

Yuke Zhu, Alireza Fathi, and Li Fei-Fei. 2014. Rea-
soning about object affordances in a knowledge base
representation. In European conference on com-
puter vision, pages 408—424. Springer.

Yuke Zhu, Joseph J Lim, and Li Fei-Fei. 2017. Knowl-
edge acquisition for visual question answering via
iterative querying. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 1154-1163.

Yuke Zhu, Ce Zhang, Christopher Ré, and Li Fei-Fei.
2015. Building a large-scale multimodal knowledge
base system for answering visual queries. arXiv
preprint arXiv:1507.05670.

121



A Retrieval

Tab. 6, 7 show a complete comparison of the dif-
ferent alignment methods in the cross-modal align-
ment literature. The top part corresponds to meth-
ods which use vector representations, grid-features,
and do not share information between the modality
branches. The bottom part shows the rest of the
methods.

122



Text — Image Image — Text

Method R@1 R@5 R@10 R@1 R@5 R@10
RRF 354 68.3 79.9 47.6 77.4 87.1
CMPM 37.3 65.7 75.5 49.6 76.8 86.1
DPC 39.1 69.2 69.2 55.6 81.9 89.5
VSE++ 39.6 69.6 79.5 52.9 79.1 87.2
DXR 50.6 78.8 86.7 65.1 87.3 92.6
CLIP! 68.7 90.6 95.2 88.0 98.7 99.4
ALIGNT 75.7 93.8 96.8 88.6 98.7 99.7
TERN 41.1 71.9 81.2 53.2 79.4 86.0
SCO 41.1 70.5 80.1 55.5 82.0 89.3
SAEM 52.4 81.1 88.1 69.1 91.0 95.1
SCAN 48.6 77.7 85.2 67.4 90.3 95.8
CAMP 51.5 77.1 85.3 68.1 89.7 95.2
VSRN 54.7 81.8 88.2 71.3 90.6 96.0
TERAN 56.5 81.2 88.2 70.8 90.9 95.5
MMCA 54.8 81.4 87.8 74.2 92.8 96.4
Unicoder-VL 71.5 90.9 94.9 86.2 96.3 99.0
UNITER 73.6 93.0 95.9 88.2 98.4 99.0

Table 6: Retrieval results for Flickr30K. Top - methods that use raw images as input, and vector representations
for the embedding space. Bottom Methods that use detection features or sequence similarity measures. We denote
by 1 methods that train on substantial amount of novel data.

COCO 1K COCO 5K
Text — Image Image — Text Text — Image Image — Text

Method R@] R@5 R@10 R@1 R@5 R@10 | R@]l R@5 R@10 R@I1 R@5 R@10
DPC 47.1 799 90.0 656 89.8 955 | 253 534 664 412 705 8l.1
VSE++ 52.0 831 920 64.6 89.1 957 | 303 59.1 724 413 692 81.2
CMPM 446 78.8 89.0 56.1 863 929 | 229 502 638 31.1 60.7 739
DXR 568 88.2 949 67.0 93.0 97.6 | 339 649 774 449 752 84.7
CLIP! - - - - - - 37.8 624 722 584 815 88.1
ALIGN' - - - - - - 456 69.8 786 58.6 83.0 89.7
TERN 519 856 93.6 63.7 90.5 962 | 28.7 59.7 727 384 69.5 813
SCO 567 875 948 699 929 975 | 3311 629 755 428 723 83.0
SAEM 57.8 88.6 949 712 941 977 - - - - - -
SCAN 58.8 884 948 727 948 984 | 38.6 693 804 504 822 90.0
CAMP 58,5 879 950 723 948 983 | 39.0 689 80.2 501 82.1 89.7
VSRN 62.8 89.7 951 762 948 982 | 405 70.6 81.1 53.0 81.1 894
TERAN 65.0 912 964 777 959 98.6 | 426 725 829 55.6 839 0916
MMCA 61.6 89.8 952 748 95.6 97.7 | 38.7 69.7 80.8 54.0 825 90.7
Unicoder-VL  69.7 935 972 843 973 993 | 46.7 76.0 853 623 87.1 928
UNITER - - - - - - 51.7 784 869 66.6 89.4 942
Oscar 782 958 983 89.8 98.8 99.7 | 575 828 898 735 922 96.0

Table 7: Retrieval results for COCO. Top - methods that use raw images as input, and vector representations for
the embedding space. Bottom Methods that use detection features or sequence similarity measures. We denote by
T methods that train on substantial amount of novel data.
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