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Abstract

We present INDOBERTWEET, the first large-
scale pretrained model for Indonesian Twitter
that is trained by extending a monolingually-
trained Indonesian BERT model with additive
domain-specific vocabulary. We focus in par-
ticular on efficient model adaptation under vo-
cabulary mismatch, and benchmark different
ways of initializing the BERT embedding layer
for new word types. We find that initializing
with the average BERT subword embedding
makes pretraining five times faster, and is more
effective than proposed methods for vocabu-
lary adaptation in terms of extrinsic evaluation
over seven Twitter-based datasets.1

1 Introduction

Transformer-based pretrained language models
(Vaswani et al., 2017; Devlin et al., 2019; Liu et al.,
2019; Radford et al., 2019) have become the back-
bone of modern NLP systems, due to their success
across various languages and tasks. However, ob-
taining high-quality contextualized representations
for specific domains/data sources such as biomedi-
cal, social media, and legal, remains a challenge.

Previous studies (Alsentzer et al., 2019;
Chalkidis et al., 2020; Nguyen et al., 2020) have
shown that for domain-specific text, pretraining
from scratch outperforms off-the-shelf BERT. As
an alternative approach with lower cost, Gururan-
gan et al. (2020) demonstrated that domain adap-
tive pretraining (i.e. pretraining the model on target
domain text before task fine-tuning) is effective,
although still not as good as training from scratch.

The main drawback of domain-adaptive pretrain-
ing is that domain-specific words that are not in the
pretrained vocabulary are often tokenized poorly.
For instance, in BIOBERT (Lee et al., 2019), Im-
munoglobulin is tokenized into {I, ##mm, ##uno,
##g, ##lo, ##bul, ##in}, despite being a common

1Code and models can be accessed at https://
github.com/indolem/IndoBERTweet

term in biology. To tackle this problem, Poerner
et al. (2020); Tai et al. (2020) proposed simple
methods to domain-extend the BERT vocabulary:
Poerner et al. (2020) initialize new vocabulary us-
ing a learned projection from word2vec (Mikolov
et al., 2013), while Tai et al. (2020) use random ini-
tialization with weight augmentation, substantially
increasing the number of model parameters.

New vocabulary augmentation has been also con-
ducted for language-adaptive pretraining, mainly
based on multilingual BERT (MBERT). For in-
stance, Chau et al. (2020) replace 99 “unused”
WordPiece tokens of MBERT with new com-
mon tokens in the target language, while Wang
et al. (2020) extend MBERT vocabulary with non-
overlapping tokens (|VMBERT−Vnew|). These two
approaches use random initialization for new Word-
Piece token embeddings.

In this paper, we focus on the task of learning
an Indonesian BERT model for Twitter, and show
that initializing domain-specific vocabulary with
average-pooling of BERT subword embeddings is
more efficient than pretraining from scratch, and
more effective than initializing based on word2vec
projections (Poerner et al., 2020). We use IN-
DOBERT (Koto et al., 2020b), a monolingual
BERT for Indonesian as the domain-general model
to develop a pretrained domain-specific model IN-
DOBERTWEET for Indonesian Twitter.

There are two primary reasons to experiment
with Indonesian Twitter. First, despite being the of-
ficial language of the 5th most populous nation, In-
donesian is underrepresented in NLP (notwithstand-
ing recent Indonesian benchmarks and datasets
(Wilie et al., 2020; Koto et al., 2020a,b)). Sec-
ond, with a large user base, Twitter is often utilized
to support policymakers, business (Fiarni et al.,
2016), or to monitor elections (Suciati et al., 2019)
or health issues (Prastyo et al., 2020). Note that
most previous studies that target Indonesian Twit-
ter tend to use traditional machine learning models

https://github.com/indolem/IndoBERTweet
https://github.com/indolem/IndoBERTweet
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(e.g. n-gram and recurrent models (Fiarni et al.,
2016; Koto and Rahmaningtyas, 2017)).

To summarize our contributions: (1) we release
INDOBERTWEET, the first large-scale pretrained
Indonesian language model for social media data;
and (2) through extensive experimentation, we
compare a range of approaches to domain-specific
vocabulary initialization over a domain-general
BERT model, and find that a simple average of sub-
word embeddings is more effective than previously-
proposed methods and reduces the overhead for
domain-adaptive pretraining by 80%.

2 INDOBERTWEET

2.1 Twitter Dataset

We crawl Indonesian tweets over a 1-year period
using the official Twitter API,2 from December
2019 to December 2020, with 60 keywords cover-
ing 4 main topics: economy, health, education, and
government. We found that the Twitter language
identifier is reasonably accurate for Indonesian, and
so use it to filter out non-Indonesian tweets. From
100 randomly-sampled tweets, we found a majority
of them (87) to be Indonesian, with a small number
being Malay (12) and Swahili (1).3

After removing redundant tweets (with the same
ID), we obtain 26M tweets with 409M word tokens,
two times larger than the training data used to pre-
train INDOBERT (Koto et al., 2020b). We set aside
230K tweets for development, and extract a vocabu-
lary of 31,984 types based on WordPiece (Wu et al.,
2016). We lower-case all words and follow the
same preprocessing steps as English BERTWEET

(Nguyen et al., 2020): (1) converting user men-
tions and URLs into @USER and HTTPURL, re-
spectively; and (2) translating emoticons into text
using the emoji package.4

2.2 INDOBERTWEET Model

INDOBERTWEET is trained based on a masked
language model objective (Devlin et al.,
2019) following the same procedure as the
indobert-base-uncased (INDOBERT) model.5

It is a transformer encoder with 12 hidden layers
(dimension=768), 12 attention heads, and 3

2https://developer.twitter.com/
3Note that Indonesian and Malay are very closely related,

but also that we implicitly evaluate the impact of the language
confluence in our experiments over (pure) Indonesian datasets.

4https://pypi.org/project/emoji/
5https://huggingface.co/indolem/

indobert-base-uncased

feed-forward hidden layers (dimension=3,072).
The only difference is the maximum sequence
length, which we set to 128 tokens based on the
average number of words per document in our
Twitter corpus.

In this work, we train 5 INDOBERTWEET mod-
els. The first model is pretrained from scratch
based on the aforementioned configuration. The re-
maining four models are based on domain-adaptive
pretraining with different vocabulary adaptation
strategies, as discussed in Section 2.3.

2.3 Domain-Adaptive Pretraining with
Domain-Specific Vocabulary
Initialization

We apply domain-adaptive pretraining on the
domain-general INDOBERT (Koto et al., 2020b),
which is trained over Indonesian Wikipedia, news
articles, and an Indonesian web corpus (Medved
and Suchomel, 2017). Our goal is to fully re-
place INDOBERT’s vocabulary (VIB) of 31,923
types with INDOBERTWEET’s vocabulary (VIBT)
(31,984 types). In INDOBERTWEET, there are
14,584 (46%) new types, and 17,400 (54%) Word-
Piece types which are shared with INDOBERT.6

To initialize the domain-specific vocabulary, we
use INDOBERT embeddings for the 17,400 shared
types, and explore four initialization strategies for
new word types: (1) random initialization from
U(−1, 1); (2) random initialization from N (µ, σ),
where µ and σ are learned from INDOBERT em-
beddings; (3) linear projection via fastText em-
beddings (Poerner et al., 2020); and (4) averaging
INDOBERT subword embeddings.

For the linear projection strategy (Method 3), we
train 300d fastText embeddings (Bojanowski
et al., 2017) over the tokenized Indonesian Twit-
ter corpus. Following Poerner et al. (2020), we
use the shared types (VIB ∩ VIBT) to train a linear
transformation from fastText embeddings EFT
to INDOBERT embeddings EIB as follows:

argmin
W

∑
x∈VIB∩VIBT

‖EFT(x) W− EIB(x)‖22

where W is a dim(EFT) × dim(EIB) matrix.
To average subword embeddings of x ∈ VIBT

6In the implementation, we set the adaptive vocabulary
to be the same size with INDOBERT by discarding some
“[unused-x]” tokens of INDOBERTWEET.

https://developer.twitter.com/
https://pypi.org/project/emoji/
https://huggingface.co/indolem/indobert-base-uncased
https://huggingface.co/indolem/indobert-base-uncased
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Task Data #labels #train #dev #test 5-Fold Evaluation

Sentiment Analysis
IndoLEM (Koto et al., 2020b) 2 3,638 399 1,011 Yes F1pos
SmSA (Wilie et al., 2020) 3 11,000 1,260 500 No F1macro

Emotion Classification EmoT (Wilie et al., 2020) 5 3,521 440 442 No F1macro

Hate Speech Detection
HS1 (Alfina et al., 2017) 2 499 72 142 Yes F1pos
HS2 (Ibrohim and Budi, 2019) 2 9,219 2,633 1,317 Yes F1pos

Named Entity Recognition
Formal (Munarko et al., 2018) 3 6,500 657 1,122 No F1entity
Informal (Munarko et al., 2018) 3 6,500 657 1,227 No F1entity

Table 1: Summary of Indonesian Twitter datasets used in our experiments.

(Method 4), we compute:

EIBT(x) =
1

|TIB(x)|
∑

y∈TIB(x)

EIB(y)

where TIB(x) is the set of WordPiece tokens for
word x produced by INDOBERT’s tokenizer.

3 Experimental Setup

We accumulate gradients over 4 steps to simulate a
batch size of 2048. When pretraining from scratch,
we train the model for 1M steps, and use a learning
rate of 1e−4 and the Adam optimizer with a linear
scheduler. All pretraining experiments are done
using 4×V100 GPUs (32GB).

For domain-adaptive pretraining (using IN-
DOBERT model), we consider three benchmarks:
(1) domain-adaptive pretraining without domain-
specific vocabulary adaptation (VIBT = VIB) for
200K steps; (2) applying the new vocabulary adap-
tation approaches from Section 2.3 without addi-
tional domain-adaptive pretraining; and (3) apply-
ing the new vocabulary adaptation approaches from
Section 2.3 with 200K domain-adaptive pretraining
steps.

Downstream tasks. To evaluate the pretrained
models, we use 7 Indonesian Twitter datasets, as
summarized in Table 1. This includes sentiment
analysis (Koto and Rahmaningtyas, 2017; Purwari-
anti and Crisdayanti, 2019), emotion classification
(Saputri et al., 2018), hate speech detection (Al-
fina et al., 2017; Ibrohim and Budi, 2019), and
named entity recognition (Munarko et al., 2018).
For emotion classification, the classes are fear,
angry, sad, happy, and love. Named en-
tity recognition (NER) is based on the PERSON,
ORGANIZATION, and LOCATION tags. NER has
two test set partitions, where the first is formal texts
(e.g. news snippets on Twitter) and the second is
informal texts. The train and dev partitions are a

mixture of formal and informal tweets, and shared
across the two test sets.

Fine-tuning. For sentiment, emotion, and hate
speech classification, we add an MLP layer that
takes the average pooled output of INDOBER-
TWEET as input, while for NER we use the first
subword of each word token for tag prediction. We
pre-process the tweets as described in Section 2.1,
and use a batch size of 30, maximum token length
of 128, learning rate of 5e−5, Adam optimizer with
epsilon of 1e−8, and early stopping with patience
of 5. We additionally introduce a canonical split
for both hate speech detection tasks with 5-fold
cross validation, following Koto et al. (2020b). In
Table 1, SmSA, EmoT, and NER use the original
held-out evaluation splits.

Baselines. We use the two INDOBERT models
from Koto et al. (2020b) and Wilie et al. (2020)
as baselines, in addition to multilingual BERT
(MBERT, which includes Indonesian) and a mono-
lingual BERT for Malay (MALAYBERT).7 Our ra-
tionale for including MALAYBERT is that we are
interested in testing its performance on Indonesian,
given that the two languages are closely related
and we know that the Twitter training data includes
some amount of Malay text.

4 Experimental Results

Table 2 shows the full results across the differ-
ent pretrained models for the 7 Indonesian Twit-
ter datasets. Note that the first four models are
pretrained models without domain-adaptive pre-
training (i.e. they are used as purely off-the-shelf
models). In terms of baselines, MALAYBERT is
a better model for Indonesian than MBERT, con-
sistent with Koto et al. (2020b), and better again
are the two different INDOBERT models at al-

7https://huggingface.co/huseinzol05/
bert-base-bahasa-cased

https://huggingface.co/huseinzol05/bert-base-bahasa-cased
https://huggingface.co/huseinzol05/bert-base-bahasa-cased
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Model Sentiment Emotion Hate Speech NER Average
IndoLEM SmSA EmoT HS1 HS2 Formal Informal

MBERT 76.6 84.7 67.5 85.1 75.1 85.2 83.2 79.6
MALAYBERT 82.0 84.1 74.2 85.0 81.9 81.9 81.3 81.5
INDOBERT (Wilie et al., 2020) 84.1 88.7 73.3 86.8 80.4 86.3 84.3 83.4
INDOBERT (Koto et al., 2020b) 84.1 87.9 71.0 86.4 79.3 88.0 86.9 83.4
INDOBERTWEET (1M steps) 86.2 90.4 76.0 88.8 87.5 88.1 85.4 86.1

INDOBERT (Koto et al., 2020b) + 200K steps of domain-adaptive pretraining

Same vocabulary (VIBT = VIB) 86.4 92.7 76.8 88.7 82.2 87.9 86.9 85.9

INDOBERT (Koto et al., 2020b) + vocabulary adaptation + 0 steps of domain-adaptive pretraining

Uniform distribution 82.9 84.6 73.2 84.9 78.2 84.3 84.4 81.8
Normal distribution 83.5 86.7 71.1 85.2 77.4 85.0 86.3 82.2
fastText projection 84.4 83.6 72.2 85.5 80.9 85.4 85.6 82.5
Average of subwords 84.2 88.1 71.6 86.2 78.3 86.4 87.4 83.2

INDOBERT (Koto et al., 2020b) + vocabulary adaptation + 200K steps of domain-adaptive pretraining

Uniform distribution 85.6 90.9 75.7 88.4 83.0 87.7 85.9 85.3
Normal distribution 87.1 92.5 75.4 88.8 82.5 88.7 86.6 85.9
fastText projection 86.4 89.7 78.5 88.7 84.4 88.0 86.6 86.0
Average of subwords 86.6 92.7 79.0 88.4 84.0 87.7 86.9 86.5

Table 2: A comparison of pretrained models with different adaptive pretraining strategies for Indonesian tweets
(%).

most identical performance.8 INDOBERTWEET

— trained from scratch for 1M steps — results in
a substantial improvement in terms of average per-
formance (almost +3% absolute), consistent with
previous findings that off-the-shelf domain-general
pretrained models are sub-optimal for domain-
specific tasks (Alsentzer et al., 2019; Chalkidis
et al., 2020; Nguyen et al., 2020).

First, we pretrain INDOBERT (Koto et al.,
2020b) without vocabulary adaptation for 200K
steps, and find that the results are slightly lower
than INDOBERTWEET. In the next set of exper-
iments, we take INDOBERT (Koto et al., 2020b)
and replace the domain-general vocabulary with the
domain-specific vocabulary of INDOBERTWEET,
without any pretraining (“0 steps”). Results drop
overall relative to the original model, with the
embedding averaging method (“Average of Sub-
words”) yielding the smallest overall gap of−0.2%
absolute.

Finally, we pretrain INDOBERT (Koto et al.,
2020b) for 200K steps in the target domain, after
performing vocabulary adaptation. We see a strong
improvement for all initialization methods, with
the embedding averaging method once again per-

8Noting that Wilie et al. (2020)’s version includes 100M
words of tweets for pretraining, but Koto et al. (2020b)’s
version does not.

forming the best, in fact outperforming the domain-
specific INDOBERTWEET when trained for 1M
steps from scratch. These findings reveal that we
can adapt an off-the-shelf pretrained model very ef-
ficiently (5 times faster than training from scratch)
with better average performance.

5 Discussion

Given these positive results on Indonesian, we con-
ducted a similar experiment in a second language,
English: we follow Nguyen et al. (2020) in adapt-
ing ROBERTA9 for Twitter using the embedding
averaging method to initialize new vocabulary, and
compare ourselves against BERTWEET (trained
from scratch on 845M English tweets).

A caveat here is that BERTWEET (Nguyen et al.,
2020) and ROBERTA (Liu et al., 2019) use differ-
ent tokenization methods: byte-level BPE vs.
fastBPE (Sennrich et al., 2016). Because of this,
rather than replacing ROBERTA’s vocabulary with
BERTWEET’s (like our Indonesian experiments),
we train ROBERTA’s BPE tokenizer on English
Twitter data (described below) to create a domain-
specific vocabulary. This means that the two mod-
els (BERTWEET and domain-adapted ROBERTA

9The base version.
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Model Average

ROBERTA 72.9
BERTWEET (Nguyen et al., 2020) 76.3

ROBERTA + vocabulary adaptation +
200K steps of domain-adaptive pretraining

74.1

Table 3: English results (%). The presented perfor-
mance is averaged over 7 downstream tasks (Nguyen
et al., 2020). Refer to the Appendix for details.

with modified vocabulary) will not be directly com-
parable.

Following Nguyen et al. (2020), we download
42M tweets from the Internet Archive10 over the pe-
riod July 2017 to October 2019 (the first two days
of each month), which we use for domain-adaptive
pretraining. Note that this pretraining data is an or-
der of magnitude smaller than that of BERTWEET

(42M vs. 845M). We use SpaCy11 to filter English
tweets, and follow the same preprocessing steps
and downstream tasks as Nguyen et al. (2020) (7
tasks in total; see the Appendix for details). We
pretrain ROBERTA for 200K steps using the em-
bedding averaging method.

In Table 3, we see that BERTWEET outper-
forms ROBERTA (+3.4% absolute). With domain-
adaptive pretraining using domain-specific vocabu-
lary, the performance gap narrows to +2.2%, but
are not as impressive as our Indonesian experi-
ments. There are two reasons for this: (1) our
domain-adaptive pretraining data is an order of
magnitude smaller than for BERTWEET; and (2)
the difference in tokenization methods between
BERTWEET and ROBERTA results in a very dif-
ferent vocabulary.

Lastly, we argue that the different tokeniza-
tion settings between INDOBERTWEET and
BERTWEET (ours) may also contribute to the dif-
ference in results. The differences include: (1)
uncased vs. cased; (2) WordPiece vs. fastBPE
tokenizer; and (3) vocabulary size (32K vs. 50K)
between both models. In Figure 1, we present
the frequency distribution of #subword of new
types in both models after tokenizing by each
general-domain tokenizer. Interestingly, we find
that BERTWEET has more new types than IN-
DOBERTWEET, with #subword after tokenization
being more varied (average length of #subword of

10https://archive.org/details/
twitterstream

11https://spacy.io/

#subword of a new type (vocabulary)
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Figure 1: Frequency of #subword of new types in
BERTWEET (ours) and INDOBERTWEET, tokenized
by ROBERTA and INDOBERT tokenizers, respec-
tively. #subword = 1 means the new type is tokenized
as “[UNK]”.

new types are 2.6 and 3.4 for INDOBERTWEET

and BERTWEET, respectively).

6 Conclusion

We present the first large-scale pretrained model for
Indonesian Twitter. We explored domain-adaptive
pretraining with domain-specific vocabulary adap-
tation using several strategies, and found that the
best method — averaging of subword embeddings
from the original model — achieved the best aver-
age performance across 7 tasks, and is five times
faster than the dominant paradigm of pretraining
from scratch.
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A Results with English BERTWEET

Model POS Tagging SemEval2017 SemEval2018 NER Avg.
Ritter11 ARK TB-v2 Sentiment an. Irony det. WNUT2016 WNUT2017

ROBERTA 88.6 91.0 93.4 70.8 71.6 45.5 49.9 72.9
BERTWEET 90.5 93.2 94.8 72.6 75.5 51.9 55.9 76.3

steps = 0

ROBERTA w/
BERTWEET

tokenizer

87.7 90.2 92.5 65.7 66.1 39.2 39.2 68.7

ROBERTA w/ new
tokenizer

87.4 89.6 92.8 66.5 70.7 42.5 42.4 70.3

steps = 200K

ROBERTA w/ new
tokenizer

90.1 90.9 94.9 72.1 73.3 47.2 50.0 74.1

Table 4: English Results (%) over the test sets. All data, metrics, and splits are based off the experiments of Nguyen
et al. (2020). We re-ran all experiments and found slightly lower performance for some models as compared to
BERTWEET. For evaluation, the POS tagging datasets (Ritter et al., 2011; Gimpel et al., 2011; Liu et al., 2018)
use accuracy, SemEval2017 (Rosenthal et al., 2017) uses AvgRec, SemEval2018 (Van Hee et al., 2018) uses F1pos,
and NER (Strauss et al., 2016; Derczynski et al., 2017) uses F1entity.


