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Abstract

Data augmentation aims to enrich training
samples for alleviating the overfitting issue
in low-resource or class-imbalanced situations.
Traditional methods first devise task-specific
operations such as Synonym Substitute, then
preset the corresponding parameters such as
the substitution rate artificially, which require
a lot of prior knowledge and are prone to fall
into the sub-optimum. Besides, the number
of editing operations is limited in the previ-
ous methods, which decreases the diversity of
the augmented data and thus restricts the per-
formance gain. To overcome the above limi-
tations, we propose a framework named Text
AutoAugment (TAA) to establish a composi-
tional and learnable paradigm for data aug-
mentation. We regard a combination of vari-
ous operations as an augmentation policy and
utilize an efficient Bayesian Optimization al-
gorithm to automatically search for the best
policy, which substantially improves the gen-
eralization capability of models. Experiments
on six benchmark datasets show that TAA
boosts classification accuracy in low-resource
and class-imbalanced regimes by an average
of 8.8% and 9.7%, respectively, outperforming
strong baselines.'

1 Introduction

Model performance on Natural Language Process-
ing (NLP) tasks, such as text classification, of-
ten heavily depends on the size and the quality
of the training data. However, it is time-consuming
and labor-intensive to obtain sufficient training in-
stances, and models face low-resource regimes
most of the time. Data augmentation (Simard et al.,
1996; Szegedy et al., 2015; Wei and Zou, 2019)
aims to enlarge the training dataset by synthesiz-
ing additional distinct and label-invariant instances
based on raw instances to improve the model per-

'Our code is available at https://github.com/
lancopku/text—-autoaugment
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Figure 1: Test accuracy on IMDB dataset with different
editing operations and parameters for data augmenta-
tion. The operations and parameters without elaborate
selection lead to a degrade of performance.

formance. Data augmentation approaches demon-
strate their superiority in many scenarios, espe-
cially when data resources are insufficient (Hu
et al., 2019b; Anaby-Tavor et al., 2020; Chen et al.,
2021) and class-imbalanced (Ren et al., 2018; Hu
et al., 2019b).

Previous data augmentation methods can be
roughly divided into two categories: generation-
based (Sennrich et al.,, 2016; Imamura et al.,
2018; Kobayashi, 2018; Anaby-Tavor et al., 2020;
Quteineh et al., 2020) and editing-based meth-
ods (Wei and Zou, 2019; Xie et al.,, 2020).
Generation-based methods utilize conditional gen-
eration models (Sutskever et al., 2014; Ott et al.,
2019) to synthesize the paraphrases (Kumar et al.,
2019; Hu et al., 2019a) of the original sentences,
which have advantages in instance fluency and la-
bel preservation but suffer from the heavy cost of
model pre-training and decoding. Editing-based
methods instead apply label-invariant sentence edit-
ing operations (swap, delete, etc.) on the raw in-
stance, which are simpler and more efficient in
practice. However, the editing-based methods are
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Figure 2: The structure and usage of augmentation policy P. A policy P consists of N atomic editing operations

O =
this case, N = 4 and N* = 2.

(t,p, A). Given a text, we randomly pick N* operations from P then apply the operations sequentially. In
O indicates it is finally applied to the text according to probability p.
The modification to the original text cased by it is also showed in

. We use RS (Random Swap), RD (Random

Delete), TI (TF-IDF Insert), TS (TF-IDF Substitute) for abbreviation. Best viewed in color.

sensitive to the preset hyper-parameters including
the type of the applied operations and the propor-
tion of words to be edited. As shown in Figure 1,
we probe the classification accuracy on IMDB
dataset (Maas et al., 2011) with different editing
operations and magnitudes (proportion of edited
words). We find that inappropriate hyper-parameter
settings, e.g, TF-IDF Substitute (Xie et al., 2020)
with a magnitude larger than 0.4, lead to inferior
results. Therefore, heuristic hyper-parameter set-
ting is prone to fall into the sub-optimum and lacks
effectiveness. Besides, most of the editing-based
methods (Kobayashi, 2018; Hu et al., 2019b; Sen-
nrich et al., 2016; Imamura et al., 2018; Andreas,
2020) only apply a single operation on the sentence
once a time, which restrict the diversity of the aug-
mented dataset and thus limit the performance gain.

To overcome the limitations above, we propose a
framework named Text AutoAugment (TAA) to es-
tablish a learnable and compositional paradigm
for the data augmentation. Our goal is to au-
tomatically learn the optimal editing-based data
augmentation policy for obtaining a higher qual-
ity augmented dataset and thus enhancing the tar-
get text classification model. We design an aug-
mentation policy as a set of various editing oper-
ations: policy = {op;,- -+ ,opy} and each oper-
ation is defined with a parameter triplet: op =
(typet, probability p, magnitude\). Such a
compositional structure allows more than one op-
eration to be applied to the original sentence and
can improve the the diversity of the synthetic in-
stances. In conclusion, a policy solution consists of
two kinds of knowledge to learn: the operation set
and the editing parameters for each operation. To
search the optimal policy, we propose a novel objec-
tive function and utilize the sequential Model-based

Global Optimization (SMBO) (Bergstra et al.,
2011), an efficient and widely used method in Au-
toML (Yao et al., 2018), to learn the optimal con-
figuration of the compositional policy.

Given a target dataset, our algorithm learns an
augmentation policy automatically and adaptively.
The implementation based on distributed learning
frameworks can efficiently obtain promising results
in several GPU hours. To summarize, our contribu-
tion is two-fold:

* We present a learnable and compositional
framework for data augmentation. Our pro-
posed algorithm automatically searches for
the optimal compositional policy, which im-
proves the diversity and quality of augmented
samples.

* In low-resource and class-imbalanced regimes
of six benchmark datasets, TAA significantly
improves the generalization ability of deep
neural networks like BERT and effectively
boosts text classification performance.

2 Text AutoAugment

In this section, we introduce the Text AutoAug-
ment framework to search for the optimal augmen-
tation policy automatically. Our augmentation pol-
icy is composed of various operations and forms
a hierarchical structure, which is first detailed in
Section 2.1. Then we give an overview of the pro-
posed learnable augmentation method and establish
a global objective function for it (Section 2.2). The
specific policy optimization algorithm is presented
at last (Section 2.3).
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2.1 Compositional Augmentation Policy

To generate a much broader set of augmentations,
we introduce a compositional policy instead of a
single operation. Figure 2 shows the structure and
usage of the policy P. Specifically, our policy is a
set of IV various editing operations:
P = {017"' 701""' >ON}

The operation O is an atomic component and is
responsible for applying an editing transformation
on a text x to synthesize an augmented instance
Taug- Each operation O; is defined as a triplet:

O; = (ti, pi, \i)

with three parameters: (1) Type t € {Random
Swap, Random Delete, TF-IDF Insert, TF-IDF
Substitute, WordNet Substitute}.> (2) Probabil-
ity p € [0,1] of being applied. (3) Magnitude
A € [0, 0.5] which determines the proportion of the
words to be edited.

The augmented text after an operation can be
formulated as:

Oi (w5 (ts, Ai))
T with 1 — p;

with p; 1)

Oi (x5 (ti,pi, Ai)) = {
It means that for a given text z, it has probability p;
to be applied with the operation O; for synthesizing
the transformed text ., = O; (; (t;, \;)) under
the magnitude \;, while has probability 1 — p; to
remain identical, i.e., Tayg = T.

To further increase the diversity of augmented
data and enlarge the support of the training distri-
bution, our policy applies more than one operation
to the original sentence in a recursive way. Specifi-
cally, we randomly sample N* editing operations
from the policy P and apply them to a given text
consecutively. The N* atomic operations can be
combined as a compositional operation with the
recursive depth equals N*. For example, when
N* = 2 and the sampled operations are [O;, O;],
the final augmented instance can be denoted as:

Tang = O (O (5 (i, pis M) 5 (5, pjis Aj)) -

In other words, one policy can synthesize up to
AN x 2N augmented instances, where A denotes
a permutation. Note that our policy is determined
by only N x 3 parameters, which does NOT cause

2Please refer to Appendix A for the detailed description
of each type.

the problem of search space explosion. As dis-
cussed before, the setting of these parameters in
a policy has a great impact on the quality of aug-
mented data and the model performance, which
motivates us to devise a learnable framework for
automatically selecting the optimal parameters in-
stead of a naive grid search or cumbersome manual
tuning.

2.2 Learnable Data Augmentation Policy

In this subsection, we first review the data aug-
mentation and model training with the traditional
objective function. We then propose a new objec-
tive function to learn the optimal policy for obtain-
ing a augmented dataset with higher quality and
improving the model performance.

Given an input space X’ and output space ) of
the text classification task, a model f is responsible
for learning a mapping from input texts x € X’ to
target labels y € ). In some scenarios, the training
set Dyain 18 extremely small or imbalanced, which
leads to a large generalization error on the test set.
Therefore, data augmentation is incorporated as an
implicit regularizer (Herndndez-Garcia and Konig,
2018) to help models learn better patterns (Simard
et al., 1996) and further improve the generaliza-
tion ability. Let Dyye(P) be the augmented dataset
containing both training set and the synthetic data
generated by the policy P, the loss function £ of
model training on the augmented dataset can be
formulated as a sum of instance-level loss [ such as
Cross-entropy:

L= 1(f(2),y). 2)
(z,y)€Daug(P)

In traditional methods, the parameters of data
augmentation are preset before training then tuned
on the validation set Dy,;, which is similar to the
paradigm of hyper-parameters tuning. For this rea-
son, we cast the problem of augmentation policy
optimization as the Combined Algorithm Selection
and Hyper-parameter (CASH) optimization prob-
lem (Thornton et al., 2013; Feurer et al., 2019) in
AutoML (Yao et al., 2018). Formally, let FF and
P be the search space of models and policies, re-
spectively. Each model f is trained on Dy (P)
augmented by the policy P. We propose a novel
metric to measure the loss of a policy and a model:

J =T (fa Daug(P)a Dval) (3)
Here, J (f, Daug(P), Dya) denotes the loss that
the model f achieves on the validation set Dy,
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Figure 3: The overview of the optimization procedure
in the Text AutoAugment algorithm. In each iteration,
the optimizer samples a policy and trains a correspond-
ing model on the augmented training set. After that,
the loss on the validation set is calculated to update the
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after trained on the augmented set Dy (P). It
quantifies the generalization ability of the model
after augmentation thus reflects the quality of the
augmented data. Consequently, the objective func-
tion of our policy optimization can be written as

£, P* = axgmin 7 (F, Dasg(P). Doa)- )
PeP

Through minimizing the validation loss of the
model, we can find the optimal configuration of
the policy P and improve the quality of the aug-
mented data.

2.3 Augmentation Policy Optimization

Like the optimization of hyper-parameters of a
deep learning model, our objective function for
policy optimization depends on the validation loss,
which can not be solved by gradient-based methods
such as back-propagation. To tackle this problem,
we introduce Sequential Model-based Global Opti-
mization (SMBO) (Bergstra et al., 2011), a kind of
Bayesian optimizer widely used in AutoML, to our
TAA framework. Our optimization procedure is
illustrated in Figure 3. In a nutshell, the SMBO op-
timizer builds a probability model of the objective
function as a surrogate and uses it to samples the
most promising policy, then evaluates the policy in
the true objective function. In practice, we use Tree-
structured Parzen Estimator (TPE) (Bergstra et al.,
2011) as a surrogate agent M to model the function
between the policy and the objective loss in Eq. 7.

Algorithm 1: TAA Algorithm
Input: Number of iterations 7
Input: Training set Dirain
Input: Validation set Dy,

H+—0 // Initialize history

fori =1t T do
P < argmaxp EI(P) // Eg. 8
Train f; // Eq. 2
Evaluate 7; // Eq. 7
Update surrogate model M to fit H

end

f5P* =argmingey J // Eq. 4

PEH

return f* and P*

This process is carried out in an iterative manner.
At each iteration, the SMBO optimizer samples
an augmentation policy P; to synthesize the aug-
mented set Dyyg (P;), and then trains a model f;
based on it. The loss J; of the policy P; is then
evaluated by Eq. 7 and merged into the observation
history H to help update the surrogate model.

The specific updating procedure of TPE is intro-
duced in Appendix B. After that, we employ the
following Expected Improvement (EI) criterion as
an acquisition function to sample the next promis-
ing policy:

EI(P)=E [max <jT ~J, 0)} )

Here, J T is a threshold calculated by the observa-
tion history and the surrogate model. Eq. 8 is the
expectation under the surrogate model that the loss
J of a policy will exceed (negatively) the threshold
J'. Note that our target is to find the policy that
minimizes the loss 7, the policy that maximizes
the expected improvement will be chosen in the
next iteration. The TAA framework is summarized
in Algorithm 1.3

3 Experiments

3.1 Benchmark Datasets

We conduct experiments on six benchmark datasets,
including IMDB (Maas et al., 2011), SST-2, SST-
5 (Socher et al., 2013), TREC (Li and Roth, 2002),
YELP-2 and YELP-5 (Zhang et al., 2015). The
statistics of the datasets are listed in Appendix C.

3.2 Baselines

We compare our TAA method with the following
representative baselines:
3Due to limited space, please refer to Appendix B for the

detailed description of the surrogate model update and the EI
calculation.
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Back Translation (BT) (Sennrich et al., 2016;
Imamura et al., 2018). We utilize WMT’ 19 English-
German translation models (Ng et al., 2019) based
on Transformer (Vaswani et al., 2017) to translate
the text from English to German,* and then trans-
late it back to English. We use random sampling
for decoding as recommended by (Xie et al., 2020;
Edunov et al., 2018), and set the temperature to 0.8
to generate more diverse paraphrases.

Contextual Word Substitute (CWS) (Kobayashi,
2018). CWS masks some words in the original
text stochastically, then predicts new words for sub-
stitution using a label-conditional language model
(LM). The proportion « of words to be masked and
predicted is 0.15.

Easy Data Augmentation (EDA) (Wei and Zou,
2019). Given a text from the training set, EDA
randomly applies one of four simple editing oper-
ations including Synonym Replacement, Random
Insertion, Random Swap, and Random Deletion.
We set the proportion of words to be edited to 0.05
according to the recommendations in the paper.

Learning Data Manipulation (LDM) (Hu et al.,
2019b). LDM is also a learnable data augmenta-
tion method, but uses only one operation: afore-
mentioned CWS. LDM establishes a reinforcement
learning system to iteratively optimize the parame-
ters of the task model and label-conditional LM.

The main characteristics of the baselines are
summarized in Table 1.

3.3 Experimental Settings

We choose large-scale pre-trained BERT (base, un-
cased version) (Devlin et al., 2019) as the backbone
model. We adopt the Adam optimizer (Kingma and
Ba, 2015) and a linear warmup scheduler with an
initial learning rate of 4e-5. The training epoch is
20 for TREC and 10 for the reset datasets. We pick
the best checkpoint according to the validation loss.
Note that the validation loss is also the criterion for
policy optimization, so we split out two validation
sets with the same size during the phase of policy
optimization. One is used for evaluating the model
checkpoints, and the other is for evaluating the sam-
pled policy. All experiments are conducted with 8
Tesla P40 GPUs. Following previous works (Hu
et al., 2019b; Xie et al., 2020; Wei and Zou, 2019),

‘nttps://github.com/pytorch/fairseq/
blob/master/examples/translation/README.
md

Baselines Learnable Compositional Op. Level
BT X X Sentence
CWS X X Word
EDA X v Word
LDM v X Word
TAA (Ours) v v Word

Table 1: Comparison of baselines.

we verify the performance of all data augmentation
baselines in two special data scenarios:

Low-resource Regime. For every dataset in Sec-
tion 3.1, we constrain the amount of available la-
beled data by sub-sampling a smaller training and
validation set. In order to maintain the distribution
of the original dataset, we apply Stratified Shuf-
fleSplit (Esfahani and Dougherty, 2014) to split
the training and validation set. The final datasets
IMDB, SST-5, TREC, YELP-2, and YELP-5 have
80, 200, 120, 80, 200 labeled training samples, re-
spectively, which pose significant challenges for
learning a well-performing classifier. The number
of validation samples is 60, 150, 60, 60, 150, re-
spectively. In low-resource regime, we introduce a
parameter 7,,,, representing the magnification of
augmentation. For example, n,,g = 16 means that
we synthesize 16 samples for each given sample.

Class-imbalanced Regime. For binary sentiment
classification datasets IMDB and SST-2, we sub-
sample the training samples from an imbalanced
class distribution. After sub-sampling, the negative
class of the training set has 1000 samples, while the
positive class has only 20/50/100 training samples
respectively in three experiments. In this regime,
we only augment the samples in positive class by
50/20/10 times, so that the final data amount of the
positive and negative class are the same. We set
up another baseline Over-Sampling (OS) for this
scenario, which over-samples the training samples
in the positive class by 50/20/10 times. Following
the settings of the previous work (Ren et al., 2018;
Hu et al., 2019b), the validation set for training and
policy optimization is balanced.

In both low-resource and class-imbalanced
regimes, the test set for final evaluation is balanced
and intact without any reduction, which indicates
that accuracy is a fair metric for evaluation. The
size of policy IV and the number of the operations
sampled for each text N* is 8 and 2, respectively.
For a fair comparison, we use 3 random seeds for
data sub-sampling and run 5 times under each seed.
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Method IMDB (80) SST-5(200) TREC (120) YELP-2(80) YELP-5(200) Average

No Aug 64.74+£341  36.14+£3.99 69.31+£5.37 73.87+4.22 36.6244.67 56.14+4.33
CWS 73.44+356  39.2242.66 74.31+£5.01 78.87+3.96 43.05+2.18 61.77+£3.47
EDA 73.934+1.88  39.72+1.93 71.594+4.39 77.464+4.78 43.174+2.76 61.1743.15
LDM 70.3943.61  40.25+1.48 75.334+4.77 79.704+2.85 43.8540.96 61.9042.73
BT 74.1343.10  39.40+3.87 78.08+4.07 78.9742.95 42.1942.53 62.5543.30
TAA(Ours) 75.68"+327 40.28+1.80 81.47**+3.87 81.75%+3.57 45.29*+1.76  64.89+2.85

Table 2: Test accuracy (%) with standard deviation of different augmentation methods in low-resource regime.
IMDB (80) means the number of training samples after sub-sampling is 80. * and ** indicate statistically significant
(p < .05 and p < .01) improvements over the best baseline. Here n,,, = 16.

Finally, we report the results on the average of 15
runs with standard deviation (denoted as +).

3.4 Main Results

We train the model on the training set augmented by
baselines in Section 3.2, then conduct evaluations
on the balanced and intact test set.

Low-resource Regime. Table 2 shows the test ac-
curacy of TAA on five datasets. In the low-resource
regime, the model suffers from a severe overfitting
problem. For example, the accuracy on the sub-
training set of TREC is as high as 98.06%+1.34%,
while only obtains 69.3%=+5.4% on the test set.
Several kinds of data augmentation baselines have
greatly improved the generalization ability of the
model. As shown in Figure 1, however, the per-
formance of the augment operations is very sensi-
tive to their parameters like the magnitude. The
heuristic-based approaches such as EDA and CWS
are likely to be trapped in sub-optimum because of
the manually parameters setting. On the contrary,
our Text AutoAugment algorithm with a learnable
and compositional policy outperforms all the base-
lines by a considerable margin. Compared to the
model without augmentation, TAA boosts the accu-
racy by 8.8% averagely. Note that it does not cost
too much time of computation to achieve such per-
formance. When the number of iterations 1" (see
Algorithm 1) is 200, it only requires 4.2440.10
GPU hours on 8§ NVIDIA Tesla P40 GPUs to finish
the optimization.

Class-imbalanced Regime. To verify that TAA
can also improve the performance of the model in
class-imbalanced regime, we conduct experiments
based on the settings in Section 3.3. As illustrated
in Table 3, the over-sampling method alleviates
the overfitting problem to some extent but is not
as efficient as augmentation baselines. In contrast,

Target Dataset

IMDB  SST-5  TREC  YELP-2
(80) (200) (120) (80
1 1 1

YELP-5
(200)
1

-0.0

IMDB
(80) 0.88 0.55
--0.5
SST-5
“3 (200) 0.39 0.37
§ --1.0
TREC
o (120 -0.89  -0.90
g -1.5
3
YELP-2
2 (80) 0.00 -0.41
-2.0
YE 500 040 0.00

(200)
-2.5

Figure 4: Transferability of the policies searched by
TAA from one source dataset to other target datasets.
The number denotes the performance degradation
when the policy is transferred to the target dataset.

our TAA boosts the test accuracy by an average of
about 9.7 %, which surpasses other algorithms.

In both low-resource and class-imbalanced
regimes, our TAA framework based on multiple
learnable operations surpasses BT & CWS based
on single unlearnable operation, EDA based on
multiple unlearnable operations, and LDM based
on single learnable operation.

4 Analysis

We analyse the learned policies on four aspects in-
cluding transferability, scalability, magnification
and structure. Besides, we evaluate the diversity
and semantics preservation of the augmented data,
and further conduct a case study. The final poli-
cies searched by our TAA algorithm are listed in
Appendix D.

4.1 Transferability

We conduct experiments to study whether the poli-
cies searched on one source dataset can be applied
to other target datasets. As illustrated in Figure 4,
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Method SST-2 SST-2 SST-2 IMDB IMDB IMDB Average
(20:1000)  (50:1000) (100:1000) (20:1000) (50:1000)  (100:1000)

No Aug 50.17+1.30 55.01+633 68.014+8.80 50.054+0.00 51.844+4.56 65.81+£7.65 56.82+4.77
(N 52.01+1.80 58.58+5.56 68974348 52.2942.69 59.0846.33  68.63+4.67 59.93+4.09
BT 54.054+420 59.47+5.67 71.704529 52244290 57.434+6.85 67.20+6.89 60.35+5.46
EDA 52.91+3.87 59.53+5.86 70.0545.34 57.29+574 64.094+7.18  71.28+4.94 62.53+5.49
CWS 53.09+1.98 64.62+5.05 74.674+3.88 55.58+3.34 64.374+3.55 74334492 64.44+3.79
TAA(Ours) 56.45*+3.67 66.05+4.85 75.12+520 56.92+2.80 66.73*+420 77.87"+3.18 66.52+3.98

Table 3: Test accuracy (%) with standard deviation in class-imbalanced regime.

SST-2 (20:1000) means the

positive class of SST-2 has 20 training samples while the negative class has 1000 training samples. * indicates
statistically significant (p < .05) improvements over the best baseline.

Dataset No Aug TAA Improvement (1)
IMDB 88.77  89.37 0.60
SST-5 5229  52.55 0.26
TREC 96.40 97.07 0.67
YELP-2 9585 96.04 0.19
YELP-5 65.55 65.73 0.18
Average  79.77  80.15 0.38

Table 4: Test accuracy (%) of TAA on full datasets.
Here n,,, = 4 for IMDB, SST-5 and TREC. ng,, = 2
for YELP-2 and YELP-5.

the transfer of the policy to other datasets only re-
sults in a slight performance degeneration of 1.1%
on average and can boosts the test accuracy by
7.7% comparing to no augmentation. The policies
maintain better transferability when the gap of class
number and sequence length® is smaller between
the source and target datasets.

4.2 Scalability

In order to investigate whether the TAA policy is
still helpful as the amount of training data increases,
we apply the policies searched in the low-resource
regime to the corresponding full datasets. Note
that the only difference between the experimental
setting here and that in the low-resource and class-
imbalanced regimes is the amount of the training
data. The test sets are intact and balanced in all
three situations. As shown in Table 4, the policies
searched on a subset with only 2k training samples
on average have great scalability. Such policies can
improve the quality and diversity of the full training
set, and further, improve the model performance
by an average of 0.38.

SPlease refer to Appendix C

(a) SST-5 (b) TREC

Test Accuracy (%)

Figure 5: Test accuracy (%) with different 7,,, on SST-
5 and TREC, respectively. Each curve in the sub-figure
denotes a kind of baseline. Shaded regions indicate
standard deviation over 15 trials.

4.3 Impact of Augment Magnification

Figure 5 shows the results of each method with
different augment magnification n,ye. We find that
CWS and LDM achieve their best performance
on SST-5 when n,,; = 4, but the accuracy drops
sharply as 7,y continues to increase. The perfor-
mance improvement from methods with a single op-
eration cannot scale with more augmented samples,
presumably because of the lack of novel informa-
tion. Worsely, EDA, which is based on unlearnable
multiple operations, even harms the model training
on TREC, due to its inappropriate parameter set-
ting with human experience (Wei and Zou, 2019).
In virtue of the compositional and learnable pol-
icy, the augmented data synthesized by TAA are
effective and perform well in most cases.

4.4 TImpact of the Policy Structure

We change the size of the policy N and the number
of the operations sampled for each text N* and
re-execute the experiments to explore the impact
of the policy structure. The left panel in Figure 6
shows the results with different N*. As N* in-
creases, the original text is likely to be applied with
more operations sequentially, which causes slight
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Figure 6: Performance of TAA with respect to the struc-
ture of augmentation policy.

Method ‘ IMDB SST-5 TREC YELP-2 YELP-5 ‘ Average
(80)  (200) (120)  (80) (200)

CWS 0302 0731 0.827 0390  0.393 0.529

EDA 0304 0747 0839  0.397 0.399 0.537

BT 0.345 0745 0.849 0439 0440 | 0564

TAAOurs) | 0345 0751 0841 0445 0446 | 0.566

Table 5: Distinct-2 of different augmentation methods
in low-resource regimes.

damage to the performance of TAA. While the right
panel shows that the more operations a policy con-
tains, the better TAA performs. Therefore, for the
compositional data augmentation algorithm, it is
helpful to generate more diverse samples. Other
ablation studies on operation type and searching
algorithm can be found in Appendix E.

4.5 Diversity of Augmented Data

We evaluate the diversity of the augmented data
by computing the Dist-2 (Li et al., 2016), which
measures the number of distinct bi-grams in gen-
erated sentences. The metric is scaled using the
total number of bi-grams in the generated sentence,
which ranges from O to 1 where a larger value
indicates higher diversity. As shown in Table 5,
TAA achieves the best overall performance, even
slightly outperforms the generation-based method,
1.e., back-translation. The results validate the effec-
tiveness of applying various editing operations in
the compositional augmentation policy, and demon-
strate the superiority of our well-designed algo-
rithm for automatic hyper-parameters tuning.

4.6 Semantics Preservation of Augmented
Data

The augmented sentence are supposed to preserve
the semantic meaning of the original sentence, for
enriching rather than deviating from the original
data set support. We propose to evaluate seman-
tic similarity between the generated sentences and

the original ones, based on sentence embedding
cosine similarity. In more detail, for the sentence
pair (z, Tau) consists of the original sentence x
and the corresponding augmented text zaue, we
utilize Sentence-BERT (Reimers and Gurevych,
2019) library, which achieves the state-of-the-art
performance on various semantic textual similarity
benchmarks, to obtain dense vector representations
of sentences (X, Xaug). The semantic preservation
score SP(x, Zaug) is defined as:

X * Xaug

SP . = ——°
(= Tane) = e

(6)
We compute the average semantic preservation
score for the whole augmented datasets using differ-
ent augmentation methods, and the results are listed
in Table 6. It can be found that our TAA achieves
the best results, comparable with the generation-
based method back-translation. We note that our
method achieves the highest semantic preservation
score when the number of training samples is rela-
tively small, which demonstrates that our method
can generalize to extreme low-resource scenarios.

4.7 Case Study

Figure 7 shows some cases of augmented texts gen-
erated by TAA. Given the original text with the
label “positive", the modifications applied by TAA
distort the semantics and sentence structure at the
beginning. As the number of iteration 7’ increases,
TAA captures the feature of the dataset adaptively,
helping it achieve a better balance between diver-
sity and quality on augmented samples.

5 Related Work

Previous data augmentation algorithms in NLP can
be categorized into generation-based and editing-
based methods. For generation-based methods,
back-translation (Sennrich et al., 2016; Imamura
et al., 2018; Luque, 2019; Zhang et al., 2020) gen-
erates the paraphrase of a text by translating it to an
intermediate language and back. Kobayashi (2018)
masks some words then uses a label-conditional
language model to predict them. Anaby-Tavor et al.
(2020) and Kumar et al. (2020) leverage various
language models such as GPT-2 (Radford et al.,
2019) and BART (Lewis et al., 2020) to generate a
continuation of the original sentences. For editing-
based methods, Wei and Zou (2019) propose the
Easy Data Augmentation (EDA) technique, which
randomly selects editing operations from four can-
didates for the augmentation. Xie et al. (2020)
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Method IMDB (80) SST-5(200) TREC (120) YELP-2 (80) YELP-5(200) Average
CWS 0.698 0.796 0.784 0.739 0.736 0.751
EDA 0.738 0.665 0.610 0.785 0.785 0.717
BT 0.738 0.799 0.892 0.741 0.747 0.783
TAA(Ours) 0.771 0.776 0.847 0.794 0.726 0.783

Table 6: Cosine similarity of sentence embeddings between the augmented sentence and the original one. IMDB
(80) means the number of training samples after sub-sampling is 80. Here 1, = 16 and number of iterations 7" is

200.

Label: Positive

Original text: A deeply felt and vividly detailed story about newcomers in a strange new world.

Iteration

5B

Sampled operations

<WS, 0.9, 0.4> || <RD, 0.6, 0.5>

<RS,02,05> A deeply felt and vividly

Synthetic text

A deeply felt and vividly ina

detailed story about newcomers in a strange new world.

I cosply o
<T,02,0.8> A deeply feit and vividly story about newcomers in & strange new

A deeply felt and vividly

A deeply felt and vividly detailed story

about newcomers in a strange new world.

story about newcomers in a new world.

Figure 7: Examples of augmented texts generated by TAA on SST-5 after 1/100/200 iteration of exploration.
O = {t,p, A\) indicates it is finally applied according to probability p. We use RS (Random Swap), RD
(Random Delete), TI (TF-IDF Insert), TS (TF-IDF Substitute) and WS (WordNet Substitute) for abbreviation.

propose to substitute uninformative words with low
TF-IDF scores. These methods require a lot of
prior knowledge to preset their parameters and are
prone to fall into the sub-optimum.

Recently, some algorithms are proposed for auto-
matically learning augmentation policy in the field
of Computer Vision (Cubuk et al., 2019; Ho et al.,
2019; Lim et al., 2019; Hataya et al., 2020; Li et al.,
2020) and NLP (Cai et al., 2020; Miao et al., 2021).
However, their modelings are different from ours.
Specifically, AutoAugment (Cubuk et al., 2019)
establishes a Reinforcement Learning (RL) frame-
work to search for the best augmentation policy.
In order to reduce the time of policy exploration,
Ho et al. (2019) replace the RL framework with
a population-based algorithm. Lim et al. (2019)
leverage 5-fold cross-validation and augments the
validation set instead of the training set. While
in our proposed approach, the objective function
for policy optimization is designed as the loss that
models achieve on the validation set after trained
on the augmented set. Besides, we utilize SMBO
as the optimization algorithm, which can return a
promising result efficiently. In the field of NLP,
TAA surpasses both EDA (Wei and Zou, 2019)
and LDM (Hu et al., 2019b) via a learnable and
compositional augmentation policy.

6 Conclusion

In this paper, we propose an effective method called
Text AutoAugment (TAA) to establish a composi-
tional and learnable paradigm for data augmenta-
tion. TAA regards a combination of various editing
operations as an augmentation policy and utilizes
SMBO for policy learning. Experiments show that
TAA can substantially improve the generalization
ability of models as well as lighten the burden of
artificial augmentation designing.
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A Editing Operations for Augmentation

We use five simple and effect operations includ-
ing Random Swap (Wei and Zou, 2019), Ran-
dom Delete (Wei and Zou, 2019), WordNet Substi-
tute (Zhang et al., 2015; Mueller and Thyagarajan,
2016; Wei and Zou, 2019), TF-IDF Substitute (Xie
et al., 2020) and TF-IDF Insert (Xie et al., 2020)
as the basic component of our augmentation policy.
All operations used here are word-level, consider-
ing their low complexity and high effectiveness.
The detailed description is shown in Table 7.

B Sequential Model-based Global
Optimization (SMBO)

Recall the TAA framework in Section 2, our ob-
jective is to search for the optimal augmentation
policy P that minimizes the following loss:

\7 j(fa aug( ) Dval) . (7)

We leverage the Sequential Model-based Global
Optimization (SMBO) as our optimizer for the pol-
icy learning. The optimization procedure is carried
out in an iterative manner. To build the relation
between the policy P and the objective loss J and
sample the most promising policy at each itera-
tion, we use the Tree-structured Parzen Estimator
(TPE) (Bergstra et al., 2011) as a surrogate agent M
to model the conditional probability pys(J | P).
Besides, we employ the following Expected Im-
provement (EI) criterion as an acquisition function
for policy sampling in the current iteration:

EHP)zuz@mx(jT—gﬁoﬂ

:5/ﬁ(JT—J)mAJ|PmJ @)

—00

Here, J t is a threshold and Eq. 8 stands for the
expectation under the surrogate model that the loss
J of a policy will exceed (negatively) the threshold
J*t. We expect the loss of the sampled policy in
each iteration to be smaller than the current thresh-
old, thus the policy that maximizes the Expected
Improvement will be chosen in the next iteration.
Instead of directly representing py;(J | P) for
calculating the Expected Improvement, the TPE
builds a model of py/(P | J) by applying Bayes
rule. The TPE splits the historical observations of
policies in two groups: the best performing one
(e.g., the upper quartile) and the rest. The threshold
J1 is defined as the splitting value for the two

groups and the likelihood probability for being in
each of these groups is modeled as:

if 7 < gt
if 7> Jt

l(P)
9(P)

Here, [(P) models the distribution of previous sam-
pled policies whose loss is less than the threshold,
and g(P) models the distribution of the other poli-
cies whose loss is greater than the threshold. The
two densities [ and g are modeled using Parzen es-
timators (also known as kernel density estimators),
which are a simple average of kernels centered on
existing data points. With Bayes Rule, we can
prove that the Expected Improvement which we
are trying to maximize is proportional to the ratio

I(P)/g(P):

(P T) = { ©)

dj

10)
Accordingly, the maximization of the Expected
Improvement can be achieved by maximizing the
ratio [(P)/g(P). In other words, we should sam-
ple the polices which are more likely under [(P)
than under ¢g(P). The TPE works by drawing sam-
ple polices from [(P), evaluating them in terms
of [(P)/g(P), and returning the set that yields the
highest value under [(P)/g(P) corresponding to
the greatest expected improvement. These policies
are then evaluated on the objective function and the
results are merged into the observation history. The
algorithm builds {(P) and g(P) using the history
to update the probability model M of the objective
function that improves with each iteration.

C Statistics of Datasets

We conduct experiments on six popular datasets
including IMDB (Maas et al., 2011), SST-2, SST-
5 (Socher et al., 2013), TREC (Li and Roth, 2002),
YELP-2 and YELP-5 (Zhang et al., 2015). The
statistics of datasets used are listed in Table 8.
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Operation Name

Description

Random Swap (RS)
Random Delete (RD)

WordNet Substitute (WS)
TF-IDF Substitute (TS)

TE-IDF Insert (TT)

Swap two adjacent words randomly.
Delete words randomly.

Substitute words with their synonyms according to WordNet.

Substitute uninformative words with low TF-IDF scores.
Insert informative words with high TF-IDF.

Table 7: Description of all the augment operations in the search space.

Dataset  # Classes # Train samples # Test samples Average length Task

IMDB 2 25,000 25,000 326 Sentiment Analysis

SST-2 2 7,791 1,821 18 Sentiment Analysis

SST-5 5 9,643 2,210 19 Sentiment Analysis

TREC 6 5,452 500 10 Question Classification

YELP-2 2 560,000 38,000 139  Review Classification

YELP-5 5 650,000 50,000 141  Review Classification

Table 8: Statistics on the datasets.

Policy IMDB (80) SST-5 (200) TREC (120) YELP-2 (80) YELP-5 (200)

Opl (TS,0.77,0.07) (RD,0.44,0.22) (WS,0.75,0.44) (TS,0.95,0.26) (RD,0.34,0.32)

(WS, 0.33,0.26)
(RS, 0.60,0.02)
(WS, 0.59, 0.36)
(TI,0.59,0.17)

(RD, 0.08, 0.49)

(WS, 0.57,0.41)

(RD, 0.85,0.02)
RS, 0.30,0.15

(WS, 0.69,0.19)
(RD, 0.70,0.15)
(RD, 0.85,0.27)
TS, 0.72,0.35

Op2  (TS,0.50,0.31) (WS, 0.59,0.50)

Op3 (RD,0.72,0.05) (TI,0.66,0.11)

Op4  (TI,0.66,0.09) (TS,0.11,0.25)

Op5  (TI,0.69,0.13) (WS, 0.69,0.09)

Op6  (RS,0.26,0.05) (WS,0.41,0.07)

Op7  (TS,0.77,0.50) (TS,0.69,0.02) (

Op8  (TS,0.36,0.25) (WS,0.99,0.22) (RS,0.96,0.03)

(WS, 0.63,0.34)
TS, 0.22,0.37)

{ ¢ )
(TS, 0.55,0.05)  (RD,0.58,0.47)
(TS,0.63,0.34) (RS, 0.48,0.22)
(WS,0.13,0.28) (TS, 0.72,0.50)

Table 9: TAA policies searched in the low-resource regime. Each policy finally consists of 8 atomic editing
operations and each operation satisfies the form of O = (t,p,\). We use RS (Random Swap), RD (Random
Delete), WS (WordNet Substitute), TI (TF-IDF Insert), TS (TF-IDF Substitute) for simplification.

D Searched Policy

The policies searched by our TAA algorithm are
listed in Table 9. Each policy finally consists of 8
atomic editing operations and each operation sat-
isfies the form of O = (¢, p, A). All the policies
can be used directly to augment the full training
set to further boost the model performance on the
corresponding downstream tasks.

E Ablation Study of TAA Policy
E.1 Searching Algorithm Ablation

To verify the effectiveness of our optimization al-
gorithm, we re-execute the experiment on the same
search space described in Section 2.1, but do NOT
conduct any policy optimization. For each text in
the training set, a random policy is sampled to syn-
thesize the augmented data. We call this method
Text AutoAugment-Random (TAA-R). Table 10

illustrates the results of TAA and TAA-R. Gener-
ally, the augmentation policy after optimization
performs better than the random policy by 1.92%.
Note that we incorporate prior knowledge in Sec-
tion 2.1 to constrain the range of the operation
magnitude, which ensures the performance of the
operation and avoids generating bad samples.

E.2 Operation Type Ablation

We conduct operation type ablation study to exam-
ine the effect of the operation types search space.
Specifically, we eliminate one operation type while
keeps others for searching the optimal policy, and
evaluate the task performance using the learned pol-
icy. The task performance difference with different
ablated operations on IMDB and SST-2 dataset are
shown in Table 11. We find that the elimination of
operation type generally leads to a decrease of task
performance, indicating that the effect of differ-
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Low-resource Regime Class-imbalanced Regime Overall

IMDB SST-5 TREC IMDB IMDB IMDB
(80) (200) (120) (20:1000)  (50:1000)  (100:1000)

TAA-R 72644555  38.60+2.12  77.72+4.01  55.72+374 63.60+£5.71  74.37+422 63.78+4.23
TAA 75.68"+£327 40.28"+1.80 81.47°"+3.87 56.92+280 66.73*+420 77.87°+3.18 66.49+3.19

Method

Average

Table 10: Test accuracy (%) for TAA-R and TAA in low-resource and class-imbalanced regime. * and ** indicate
statistically significant (p < .05 and p < .01) improvements over TAA-R.

Dataset Full Space w/oRS w/oRD w/oTI w/oTS w/o WS
IMDB(80) 75.68 -0.12 -1.03 +40.89 -0.07 —-1.47
SST-2(50:1000) 66.05 -209 -1.64 —-094 -047 +1.27

Table 11: Test accuracy (%) in the ablation study of operation type. We use RS (Random Swap), RD (Random
Delete), WS (WordNet Substitute), TI (TF-IDF Insert), TS (TF-IDF Substitute) for simplification.

ent operations are complementary with each other.
We attribute it to that more operations types will
improve the diversity of the combinations of text
manipulation, thus boosting the dataset quality and
benefiting the generalizability of the model.
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