Structured Context and High-Coverage Grammar for Conversational
Question Answering over Knowledge Graphs

Pierre Marion*
Sorbonne Université, CNRS
Laboratoire de Probabilités, Statistique et Modélisation, LPSM

F-75005, Paris, France
pierre.marion@sorbonne-universite.fr

Pawel Krzysztof Nowak and Francesco Piccinno
Google Research
{pawelnow,piccinno}@google.com

Abstract

We tackle the problem of weakly-supervised
conversational Question Answering over large
Knowledge Graphs using a neural semantic
parsing approach. We introduce a new Log-
ical Form (LF) grammar that can model a
wide range of queries on the graph while re-
maining sufficiently simple to generate super-
vision data efficiently. Our Transformer-based
model takes a JSON-like structure as input, al-
lowing us to easily incorporate both Knowl-
edge Graph and conversational contexts. This
structured input is transformed to lists of em-
beddings and then fed to standard attention
layers. We validate our approach, both in
terms of grammar coverage and LF execution
accuracy, on two publicly available datasets,
CSQA and ConvQuestions, both grounded in
Wikidata. On CSQA, our approach increases
the coverage from 80% to 96.2%, and the
LF execution accuracy from 70.6% to 75.6%,
with respect to previous state-of-the-art results.
On ConvQuestions, we achieve competitive re-
sults with respect to the state-of-the-art.

1 Introduction

Graphs are a common abstraction of real-world
data. Large-scale knowledge bases can be repre-
sented as directed labeled graphs, where entities
correspond to nodes and subject-predicate-object
triplets are encoded by labeled edges. These so-
called Knowledge Graphs (KGs) are used both in
open knowledge projects (YAGO, Wikidata) and
in the industry (Yahoo, Google, Microsoft, etc.). A
prominent task on KGs is factual conversational
Question Answering (Conversational KG-QA) and

*Work done while an intern at Google Research.

it has spurred interest recently, in particular due to
the development of Al-driven personal assistants.

The Conversational KG-QA task involves diffi-
culties of different nature: entity disambiguation,
long tails of predicates (Saha et al., 2018), conver-
sational nature of the interaction. The topology of
the underlying graph is also problematic. Not only
can KGs be huge (up to several billion entities),
they also exhibit hub entities with a large number
of neighbors.

A recent prominent approach has been to cast
the problem as neural semantic parsing (Jia and
Liang, 2016; Dong and Lapata, 2016, 2018; Shen
et al., 2019). In this setting, a semantic parsing
model learns to map a natural language question to
a logical form (LF), i.e. a tree of operators over the
KG. These operators belong to some grammar, ei-
ther standard like SPARQL or ad-hoc. The logical
form is then evaluated over the KG to produce the
candidate answer. In the weak supervision training
setup, the true logical form is not available, but
only the answer utterance is (as well as annotated
entities in some cases, see Section 5.4). Hence the
training data is not given but it is instead generated,
in the format of (question, logical form) pairs. We
refer to this data as silver data or silver LFs, as
opposed to unknown gold ground truth.

However, this approach has two main issues.
First, the silver data generation step is a complex
and often resource-intensive task. The standard
procedure employs a Breadth-First Search (BFS)
exploration (Guo et al., 2018; Shen et al., 2019), but
this simple strategy is prone to failure, especially
when naively implemented, for questions that are
mapped to nested LFs. This reduces the coverage,
i.e. the percentage of training questions associated

8813

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8813-8829
November 7-11, 2021. (©)2021 Association for Computational Linguistics

to a Logical Form. Shen et al. (2020) proposes to
add a neural component for picking the best oper-
ator, in order to reduce the computational cost of
this task, however complicating the model. Cao
et al. (2020) proposes a two-step semantic parser:
the question is first paraphrased into a “‘canonical
utterance”, which is then mapped to a LF. This ap-
proach simplifies the LF generation by separating
it from the language understanding task.

Second, most of the semantic parsing models do
not leverage much of the underlying KG structure
to predict the LF, as in Dong and Lapata (2016);
Guo et al. (2018). Yet, this contextual graph infor-
mation is rich (Tong et al., 2019), and graph-based
models leveraging this information yield promising
results for KG-QA tasks (Vakulenko et al., 2019;
Christmann et al., 2019). However these alterna-
tive approaches to semantic parsing, that rely on
node classification, have their inherent limitations,
as they handle less naturally certain queries (see
Appendix C.3) and their output is less interpretable.
This motivates the desire for semantic parsing mod-
els that can make use of the KG context.

Approach and contributions We design a new
grammar, which can model a large range of queries
on the KG, yet is simple enough for BFS to work
well. We obtain a high coverage on two KG-QA
datasets. On CSQA (Saha et al., 2018), we achieve
a coverage of 96%, a 16% improvement over the
baseline (Shen et al., 2020). On ConvQuestions
(Christmann et al., 2019), a dataset with a large
variety of queries, we reach a coverage of 86%.
To leverage the rich information contained in
the underlying KG, we propose a semantic parsing
model that uses the KG contextual data in addition
to the utterances. Different options could be con-
sidered for the KG context, e.g. lists of relevant
entities, annotated with metadata or pre-trained en-
tity embeddings that are graph-aware (Zhang et al.,
2020). The problem is that this information does
not come as unstructured textual data, which is
common for language models, but is structured.
To enable the use of context together with a
strong language model, we propose the Object-
Aware Transformer (OAT) model, which can take
as input structured data in a JSON-like format. The
model then transforms the structured input into em-
beddings, before feeding them into standard Trans-
former layers. With this approach, we improve the
overall execution accuracy on CSQA by 5.0% com-
pared to a strong baseline (Shen et al., 2019). On

ConvQuestions, we improve the precision by 4.7%
compared to Christmann et al. (2019).

2 Related work

Neural semantic parsing Our work falls within
the neural semantic parsing approaches for
Knowledge-Based QA (Dong and Lapata, 2016;
Liang et al., 2017; Dong and Lapata, 2018; Guo
et al., 2019b; Hwang et al., 2019). The more spe-
cific task of conversational KG-QA has been the
focus of recent work. Guo et al. (2018) intro-
duces D2A, a neural symbolic model with mem-
ory augmentation. This model has been extended
by S2A+MAML (Guo et al., 2019a) with a meta-
learning strategy to account for context, and by
D2A+ES (Shen et al., 2020) with a neural com-
ponent to improve BES. Saha et al. (2019) pro-
poses a Reinforcement Learning model to benefit
from denser supervision signals. Finally, Shen et al.
(2019) introduces MaSP, a multi-task model that
performs both entity linking and semantic parsing,
with the hope of reducing erroneous entity link-
ing (see Appendix C.2 for a comparison with our
setup). Recently, Plepi et al. (2021) extended the
latter in CARTON. They first predict the LF us-
ing a Transformer architecture, then specify the
KG items using pointer networks. This work was
further extended in Kacupaj et al. (2021), which
includes a graph attention network to exploit cor-
relations between entities and predicates. Another
related contemporaneous work is Thirukovalluru
et al. (2021), where the decoder is informed with
entity embeddings coming from KG random walks.

Learning on Knowledge Graphs Classical
graph learning techniques can be applied to the
specific case of KGs. In CONVEX (Christmann
et al., 2019), at each turn, a subgraph is expanded
by matching the utterance with neighboring entities.
Then a candidate answer is found by a node classi-
fier. Other methods include unsupervised message
passing (Vakulenko et al., 2019). However, these
approaches lack strong NLP components. Other
directions include learning differentiable operators
over a KG (Cohen et al., 2019), or applying Graph
Neural Networks (Kipf and Welling, 2017; Hamil-
ton et al., 2017) (GNNs) to the KG, which has been
done for entity classification and link prediction
tasks (Schlichtkrull et al., 2018). GNNs have also
been used to model relationships between utter-
ances and entities (Shaw et al., 2019).

8814

Structured Input for neural models Our ap-
proach of using JSON-like input falls in the line
of computing neural embeddings out of structured
inputs. Tai et al. (2015) introduced Tree-LSTM
for computing tree embeddings bottom-up. It has
then been applied for many tasks, including com-
puter program translation (Chen et al., 2018), se-
mantic tree structure learning (such as JSON or
XML) (Woof and Chen, 2020) and supervised KG-
QA tasks (Tong et al., 2019; Zafar et al., 2019;
Athreya et al., 2021). In the latter context, Tree-
LSTM is used to model the syntactic structure of
the question. Other related approaches include tree
transformer (Harer et al., 2019) and tree attention
(Ahmed et al., 2019). Syntactic structures were
also modeled as graphs (Xu et al., 2018; Li et al.,
2020). Specific positional embeddings can also be
used to encode structures (Shiv and Quirk, 2019;
Herzig et al., 2020).

3 A grammar for KG exploration

Several previous KG-QA works were based on the
grammar from D2A (Guo et al., 2018). We also
take inspiration from their grammar, but redesign
it to model a wider range of queries. By defining
more generic operators, we achieve this without
increasing the number of operators nor the average
depth of LFs. Section 3.4 presents a comparison.

3.1 Definitions

An entity (e.g. Marie Curie)is a node in the
KG. Two entities can be related through a di-
rected labeled edge called a property (e.g. award
received). A property can also relate an entity
to a value, which can be a date, a boolean, a quan-
tity or a string. Entities and properties have several
attributes, prominently a name and an integer ID.
The membership property is treated separately;
it relates a member entity (e.g. Marie Curie)
to a class entity (e.g. human being).

The objects we will consider in the following
are entities, properties, classes, and values. The
grammar consists of a list of operators that take
objects or sets of objects as arguments. A Logical
Form is a binary expression tree of operators.

In several places, we perform Named Entity Link-
ing (NEL), i.e. mapping an utterance to a list of
KG objects. Section 5.4 details how this is done.

Table 1 lists the operators we use, grouped in
five categories. Most of them are straightforward,
except meta-operators, which we explain next.

3.2 Meta-operators

Meta-operators are useful for questions such as:
Which musical instrument is played by the maxi-
mum number of persons?. To answer this question,
we first compute the set of all musical instruments
in the KG. For each entity in this set, we then fol-
low the property played by, producing a set of
people who play that instrument. Finally, we com-
pute the max cardinality of all these sets and return
the associated instrument.
The corresponding LF is the following:
argmax (
cardinality (
follow_property (
for_each (
members (musical instrument),
)y
played by)))
for_each creates a parallel computation over
each entity in its argument, which can be ter-
minated by three operators (arg, argmax and
argmin). We refer to Appendix B.1 for details.

3.3 Silver LF generation

To generate silver LFs, we explore the space of LFs
with a BFS strategy, similarly to Guo et al. (2018);
Shen et al. (2019). More precisely, to initialize the
exploration, we perform NEL to find relevant enti-
ties, values and classes that appear in the question.
LFs of depth 0 simply return an annotated object.
Then, assume that LFs of depth less or equal to
n have been generated and we want to generate
those of depth n 4+ 1. We loop through all possible
operators; for each operator, we choose each of its
arguments among the already-generated LFs. This
algorithm brings two challenges, as highlighted in
Shen et al. (2020): computational cost and spurious
LFs. We refer to Appendix B.2 for implementation
details that mitigate these difficulties.

3.4 Comparison with D2A (Guo et al., 2018)

Section 5.5 shows that our grammar achieves
higher coverage with a similar average LF depth. A
more thorough quantitative comparison is delicate,
as it would require reimplementing D2A within
our framework, which is beyond the scope of this
paper. On a qualitative basis, we use more ele-
mentary types: in addition to theirs, we introduce
set of classes, strings and set of values (which
can be strings, numerals or booleans). We use
eight less operators than D2A; among our oper-

8815

Category Name Signature Description
Returns the entities which are linked by prop-
follow_property (SE,P)— SE erty P to at least one element of SE.

h R h iti hich are link -
Grap follow backward (SE. P)—s SE eturns the entities which are linked by prop
operators erty P from at least one element of SE.

R he val hich are link -
get_value (SE.P) — SV eturns the values which are linked by prop
erty P to at least one element of SE.
max, min SV — SV Returns the max (resp. min) value from SV.
. han, . .
Numerical greater_than Filters SV to keep values strictly greater than
equals, (SV,V) —» SV .
operators (resp. equal to, strictly lesser than) V.
lesser_than
cardinality SE—V Returns the cardinality of SE.
: . (a: SE, b: SE) Returns a boolean set: for each entity in a, the
is_in . N
Set - — SV mask equals True if the entity is in b.
get_first SE — SE Returns the first entity from SE.
operators , : - - - .
union, intersect, Returns the union (resp. intersection, differ-
. (SE,SE) — SE .
difference ence) of input sets.
Class members SC — SE Returns the members of classes in SC.
operators keep (SE,SC) — SE Filters SE to keep the members of SC.
for each SE — SE I.n?tlal.lzes a.parallel computation over all en-
tities in the input set.
SV — SE or Ends a parallel computation by returning all
Meta- arg ..
SE — SE entities that gave a non-empty result.
operators Ends a parallel computation by returning all
argmax, argmin SV — SE p p y £

entities that gave the max (resp. min) value.

Table 1: List of operators in our grammar. Their variables can be entities (E), classes (C), values (V), ordered sets

of such elements (resp. SE, SC and SV), or properties (P).

ators, six are in common (follow_property,
follow_backward, cardinality, union,
intersect, difference), four are modified
(keep, is_in, argmax, argmin), and the other
ten are new. New intents that can be modeled in-
clude numerical reasoning (e.g. What actor plays
the younger child?), temporal reasoning (e.g. What
is the number of seasons until 2018?), ordinal rea-
soning (e.g. What was the first episode date?),
textual form reasoning (e.g. What was Elvis Pres-
ley given name?). We refer to Appendix C.1 for
more details and comparison methodology.

4 Model

4.1 Overview

The model, called Object-Aware Transformer
(OAT), is a Transformer-based (Vaswani et al.,
2017) auto-regressive neural semantic parser. As
illustrated in Figure 1, the model has several steps.

The first step consists of retrieving relevant ob-
jects, annotated with metadata, that might appear

in the resulting LF. This step is performed using
NEL on the utterances and KG lookups to retrieve
the graph context information. At this point, the in-
put is composed of lists of objects with their fields.
After embedding each field value in a vector space,
we perform successive layers of input flattening
and Transformer encoding. The Flattener layer
is useful to transform the structured input into a
list of embeddings. Then a decoder Transformer
layer produces a linearized LF, i.e. a list of string
tokens. Finally, we evaluate the LF over the KG to
produce a candidate answer. In the next sections,
we describe each step in details.

4.2 Structured Input computation

Hierarchical structure For each query, we con-
struct the input as a JSON-like structure, consisting
of lists of objects with their fields (represented in
the left part of Figure 1). We chose this representa-
tion as it allows to incorporate general structured
information into the model. A field can be a string,
a KG integer ID, a numerical value, or a list thereof.

8816

Candidate answer

Nobel Prize in
Chemistry,
Nobel Prize in
Physics, ...

!

(© Evaluation

follow_prop

Name: mother E E M 3
Property 2 | ID: P25 e
Entity IDs: Q37463 5
Name: award received B¢ [FE_.
— Property 1 | ID: P166 - —
Entity IDs: Q7186, Q37463 |t oy =
®©
S Name: birth name e et E) —) pr—
A Property 0 | ID: P1477 [CPo) 3 s
g Entity IDs: Q7186 o y :- = E
g Class 0 | Name: human being | F54 <> 5 i = ! ==
Class ID: Q5 Sl |zl §
<] w
Name: Marie Curie oy = |3 || =3 =
Entity 1 | ID: Q7186 E = == B == ==]
Class ID: Q5 o % |23 5|23 3
Name: Pierre Curie | 54 - e | =g
. Entity 0 | ID: Q37463 [en] rza| |3 |# L
S Class ID: Q5 —) |=
o -
g | & follow_prop
li; h M h 'f f '-] : :
S [o [VREEET R EEEEE
: Y= == (===l = =
@ Prev. A | Marie Curie IE E % -
=
curq | She received which IE | = =
| v’ == I _ I J
Input dialog (3 Embedding @ Encoding (® Decoding

Figure 1: Architecture of the proposed model. The initial field embeddings are Positional (P), Property ID (PID),
Entity ID (EID), and Class ID (CID). After the first Flattener layer, we obtain Property Embeddings (PE), Class
Embeddings (CE), Entity Embeddings (EE). There are also Grammar Token (GT) embeddings in the output. Note
that the entity IDs are actually randomized (not shown here).

To construct the input, we start from the last ut-
terances in the dialog: the current query, previous
query and previous answer. We first perform NEL
to retrieve a list of entities £ (and numerical values)
matching the utterances. The KG is then queried
to retrieve additional contextual information: the
classes of the entities, and all outgoing and incom-
ing properties from these entities £. This gives a
list of properties P. For each property p € P, we
fill several fields: its ID, its name, and an Entity
IDs field, which corresponds to all entities e € £
such that at least one graph operator gives a non-
empty result when applied to e and p. For instance,
in Wikidata, the property birth name (P1477)
is filled for Marie Curie but not for Pierre Curie,
so the Entity IDs field of the birth name
property only contains Marie Curie.

Let us introduce some formal notations, useful to
explain the computation of the input’s embeddings
(Section 4.3). The input is a tree where the root cor-
responds to the whole input, and each leaf contains
the primitive values. For a non-leaf node =, we de-
note by ¢(z) its children. For instance, in Figure 1,
the node Property 2 has three children (leaves)
whose values are mother, P25 and Q37463. A
node z has also a type, and T, (z) denotes the
types of all nodes on the path from the root to z.

For instance, for the mother node, T, (z) is equal
to (root, property, name). In our setup,
the depth of the input is at most 2.

ID randomization Directly giving the entity ID
to the model would mean training a categorical clas-
sifier with millions of possible outcomes, which
would lead to poor generalization. To avoid this, we
replace the integer ID with a random one, thereby
forcing the model to learn to predict the correct
entity from the list of entities in input by copying
their randomized entity ID to the output.

For numerical values, we associate each value to
an arbitrary random ID, that the model should learn
to copy in the output. For properties and classes,
since there are fewer possibilities in the graph (a
few thousand), we do not randomize them.

4.3 Embedding

Preprocessing We apply BERT tokenization
(Devlin et al., 2019) to textual inputs. A vocab-
ulary V; is generated for each of the non-textual
input types t.

Token embedding The goal of this step is to as-
sociate an embedding to each field of each object in
the input. We do so by using a learned embedding
for each input type: BERT embeddings (Devlin

8817

et al., 2019) for textual inputs, and categorical em-
beddings for non-textual inputs. When the input is
a list (textual tokens or Entity IDs field), we
add to this embedding a positional embedding. To
reduce the size of the model, list embeddings are
averaged into a single embedding. Formally, the
embedding step associates a matrix of embeddings
h(z) € R¥4 to each leaf of the input tree.

4.4 Encoding layers

There are two types of encoding layers: Flattener
layers and Transformer layers.

Flattener The goal of these layers is to compute
the embeddings of tree nodes bottom-up. They are
successively applied until we are able to compute
the embedding of the root node, i.e. of the whole
input. This operation can be seen as flattening the
JSON-like structure, hence their name.

Say we want to compute the embedding of some
parent node z. An affine projection is first applied
to the embedding of each child, then the embed-
ding of the parent node is computed by applying
a reduction operation R, which can be either a
sum or a concatenation. The weights of the pro-
jections are shared between all nodes having the
same types T, (z). For example, all class name
nodes - with types (root, class, name) -
share the same weights, but they do not share the
weights of entity name nodes - with types (root,
entity, name). Hence the embedding of x is

) = Rycetey ({ Womagidv) + 0,50 }) -

If the reduction is a sum, all children embeddings
need to be matrices of the same dimension, and the
dimension of the parent embedding is also the same.
If the reduction is a concatenation, the dimension
of the parent embedding is (Zyec(x) d(y), dh).

Transformer This layer is a classical multi-head
Transfomer encoder layer (Vaswani et al., 2017),
taking as input a matrix of embeddings of dimen-
sions (n,dy), performing self-attention between
the input embeddings, and outputting another ma-
trix of the same dimensions. Detailed setup can be
found in Appendix B.4.

Architecture We apply a first Transformer layer
only to the utterances, and in parallel a first Flat-
tener layer with sum reduction to all other inputs.
The latter computes one embedding for each ob-
ject. We add a positional embedding to each object,

to account for its position in the list of objects of
the same type. Then we apply a second Flattener
layer with concatenation to all outputs of the first
layer. This creates a single matrix of embeddings
containing the embeddings of all the objects and
utterances. Finally, a second Transformer layer is
applied to this matrix.

4.5 Decoding layers

The output is a list of tokens, which correspond
to a prefix representation of the LF tree. Note
that the model architecture is grammar agnostic, as
this output structure is independent of the grammar
and we do not use grammar-guided decoding. The
tokens can belong to one of the non textual input
types or be a grammar token. Remember that we
computed a vocabulary V; for all token types ¢t € T
We augment the vocabulary with a STOP token.

The decoder predicts the output list of tokens
iteratively. Assume that we are given the first j to-
kens y1,...,y;. We then apply an auto-regressive
Transformer decoder on the full sequence, and we
condition on the last embedding h; of the sequence
to predict the next token ¢; 1. Several categorical
classifiers are used to predict 7;11. We first decide
whether we should stop decoding:

§j+1 = argmax Pstop,j (D

where pgop; = softmax(Woph;) is a distribu-
tion over {0, 1} given by a binary classifier. If
5j4+1 = 1, the decoding is finished, and we set
;j+1 to STOP; otherwise, we predict the type of the
token:

Ltj+1 = argmax Ptype,j ()

where pypej = softmax(Wiypeh;) is a distribu-
tion over 7 given by a |7 |-class classifier.

Finally, depending on the predicted type, we
predict the token itself

R tit1
Yj+1 = argmaxpyp.., ; (3)
t; t; . .
where p,7; 0 - = softmax(W, ;. ;) is a distribu-

-class classifier.

tion over V; given by a ’ngﬂ

Training We train by teacher forcing: for some
training sample (X, [y1,---,ynm]) and for each
step j, the embedding h; is computed using
the expected output at previous steps: h; =
h(y;;X,y1,--- ,yj—1). The loss is the cross-
entropy between the expected output y; 1 and the
distributions produced by the model. Precisely, let

8818

T : U7 Ve — T be the mapping which projects
tokens to their type. We denote by p(x) the value
of a categorical distribution p for the category .
Then, omitting the step subscripts j, the loss equals

l(p7 y) = log(pstop(o))
— [108(pype(T(1))) + log(pi 0 ()|

for all steps except the last, and I(p,y) =
—log(pstop(1)) for the last step. pstop, Prype, and
Droken are computed as explained above. The to-
tal loss is obtained by averaging over all training
samples and over all steps.

5 [Experiments

Additional comments about the datasets, setups,
and additional results can be found in the appendix.

5.1 Datasets

We use two weakly supervised conversational QA
datasets to evaluate our method, Complex Sequen-
tial Question Answering (CSQA)! (Saha et al.,
2018) and ConvQuestions? (Christmann et al.,
2019), both grounded in Wikidata’. CSQA con-
sists of about 1.6M turns in 200k conversations
(152k/16k/28k splits), versus 56k turns in 11k con-
versations (7k/2k/2k splits) for ConvQuestions.

CSQA was created by asking crowd-workers
to write turns following some predefined patterns,
then turns were stitched together into conversations.
The questions are organized in different categories,
e.g. simple, logical or comparative questions.

For ConvQuestions, crowd-workers wrote a 5-
turn dialog in a predefined domain (e.g. Books or
Movies). The dialogs are more realistic than in
CSQA, however at the cost of a smaller dataset.

As presented in Table 2, the datasets have differ-
ent characteristics, which make them an interesting
test bed to assess the generality of our approach.

5.2 CSQA Experimental Setup

Metrics To evaluate our grammar, we report the
coverage, i.e. the percentage of training questions
for which we found a candidate Logical Form.

To evaluate the QA capabilities, we use the same
metrics as in Saha et al. (2018). F1 Score is used
for questions whose answers are entities, while
accuracy is used for questions whose answer is

"https://amritasahal81l2.github.io/CSQA
2https ://convex.mpi-inf.mpg.de
*https://www.wikidata.org

boolean or numerical. We don’t report results for
“Clarification” questions, as this question type can
be accurately modeled with a simple classification
task, as reported in Appendix A. Similarly the av-
erage metric “Overall” (as defined in Saha et al.
2018) is not reported in Table 3, as it depends on
“Clarification”, but can be found in the Appendix.

Baselines We compare our results with several
baselines introduced in Section 2: D2A (Guo et al.,
2018), D2A+ES (Shen et al., 2020), S2A+MAML
(Guo et al., 2019a), and MaSP (Shen et al., 2019).

5.3 ConvQuestions Experimental Setup

Metrics We use the coverage as above, and the
P@1 metric as defined in Christmann et al. (2019).

Baseline The only baseline to our knowledge is
CONVEX (Christmann et al., 2019), which casts the
problem to a node classification task. For compari-
son, we tried to make our setup as close as possible
to theirs, and refer to Appendix C.3 for details.

Data augmentation Given the small size of the
dataset, we merge it with two other data sources:
CSQA, and 3.6M examples generated by random
sampling. The latter are single-turn dialogs made
from graph triplets, e.g. the triplet (Marie Curie,
instance of, human) generates the dialog: Q: Marie
Curie instance of? A: Human. More details are
given in Appendix B.3. The ConvQuestions dataset
is upsampled to match the other data sources sizes.

5.4 Named Entity Linking setup

We tried to use a similar setup as baselines for
fair comparison. For CSQA, the previous gold an-
swer is given to the model in an oracle-like mode,
as in baselines. In addition, we use simple string
matching between utterances and names of Wiki-
data entities to retrieve candidates that are given in
input to the model. For ConvQuestions, we use the
gold seed entity (as in the CONVEX baseline we
compare with), and the Google Cloud NLP service.
We refer to Appendices B.2 and B.4 for details.
Regarding CARTON (Plepi et al., 2021), their
results are not directly comparable as their model
uses gold entity annotations as input and hence is
not affected by NEL errors. This different NEL
setup does have a strong influence on the perfor-
mance, as running our model on CSQA with a
setup similar to CARTON improves our Total Aver-
age score by over 10%. We refer to Appendix D.2
for details. More generally, a more thorough study

8819

https://amritasaha1812.github.io/CSQA
https://convex.mpi-inf.mpg.de
https://www.wikidata.org

CSQA ConvQuestions

Average length of a dialog 8 turns 5 turns
Possible change of topic
inside a conversation

Yes No

Entities (usually a single one),
boolean, date, quantity, string
Only the seed entity (topic of the

Answer type Entities, boolean, quantity

Entity annotations in the . .
y Yes, with coreference resolution

dataset dialog) and the answer entities
Coreferences in questions Yes, to the previous turn Yes, to any preceding turn
Table 2: Some characteristics of the benchmark datasets.
Methods ‘ D2A D2A+ES S2A+MAML MaSP OAT (Ours)
Question type # Examples F1
Simple (Direct) 82k 91.41 83.00 92.66 85.18 82.69
Simple (Coreferenced) 55k 69.83 64.62 71.18 76.47 79.23
Simple (Ellipsis) 10k 81.98 83.94 82.21 83.73 84.44
Logical 22k 43.62 72.93 44.34 69.04 81.57
Quantitative 9k 50.25 63.95 50.30 73.75 74.83
Comparative 15k 44.20 55.05 48.13 68.90 70.76
Question type # Examples Accuracy
Verification (Boolean) 27k 45.05 45.80 50.16 60.63 66.39
Quantitative (Count) 23k 40.94 41.35 46.43 43.39 71.79
Comparative (Count) 15k 17.78 20.93 18.91 22.26 36.00
Total Average | 260k | 64.47 64.75 66.54 70.56 75.57

Table 3: QA performance on CSQA. The metric is the F1 score for question types above the vertical separator,
and accuracy for those under. The Total Average score is an average over all question types.

of the impact of the NEL step on the end-to-end

performance would be an interesting direction of Question type D2A D2A+ES Ours
future work (see also Section 5.6).

Comparative 28.6 45 84.9
5.5 Results Logical 48.2 92 100.0
Quantitative 58.1 62 91.1
Our grammar reaches high coverage. With ap- Simple 94.4 96 99.7
proximately the same numbers of operators as in Verification 77.9 85 91.4
baselines, we improve the CSQA coverage by 16%, Overall 13 20 96.2

as presented in Table 4. The improvement is par-
ticularly important for the most complex questions.
We reach a coverage of 86.2% on ConvQuestions,
whose questions are more varied than in CSQA.
Most queries can be expressed as relatively shal-
low LFs in our grammar, as illustrated by Table 5. Depth 1 2 3 4+
This is especially interesting for the ConvQues-
tions dataset, composed of more realistic dialogs.
On CSQA, the average depth of our LFs (2.9) is
slightly slower than with D2A grammar (3.2).

Table 4: Coverage per question type for CSQA.

CSQA (D2A) 0.0 47.0 30.9 22.0
CSQA (Ours) 5.5 679 7.4 19.2
ConvQuestions 53.9 43.7 2.4 0.0

We improve the QA performance over baseline Table 5: Silver LF depth distribution for both datasets.

on both datasets. For CSQA, our model outper-
8820

Domain | 15 turn | Follow-up CONVEX
Books 68.1 20.9 19.8
Movies 54.2 31.3 25.9
Music 37.5 18.1 19.0
Soccer 43.8 22.8 18.8
TV 66.3 31.8 17.8
Overall | 54.0 | 25.0 20.3

Table 6: ConvQuestions results by domain. The
first two columns are our results. The baseline (Ora-
cle+CONVEX) only reports follow-up turns.

forms baselines for all question types but Direct
Simple questions, as shown in Table 3. Overall, our
model improves the performance by 5%. For Conv-
Questions, Table 6 shows that our model improves
over the baseline for all domains but one, yielding
an overall improvement of 4.7%. A precise evalua-
tion of the impact of the various components of our
KG-QA approach (grammar, entity linking, model
inputs, model architecture, size of the training data,
etc.) on the end-to-end performance was out of
the scope of this paper, and is left for future work.
Nevertheless, the fact that we are able to improve
over baselines for two types of Simple questions
and for Logical questions, for which the grammar
does not matter so much, as these question types
correspond to relatively shallow LFs, suggests that
our proposed model architecture is effective.

5.6 Error analysis

CSQA By comparing the silver and the predicted
LFs on 10k random errors, we could split the errors
in two main categories: first, the LF general form
could be off, meaning that the model did not pick
up the user intent. Or the form of the LF could
be right, but (at least) one of the tokens is wrong.
Table 7 details the error statistics. The most fre-
quent errors concern entity disambiguation. There
are two types of errors: either the correct entity
was not part of the model input, due to insufficient
recall of the NEL system. Or the model picked
the wrong entity from the input due to insufficient
precision. It is known that the noise from NEL
strongly affects model performance (Shen et al.,
2019). We tried an oracle experiment with perfect
recall NEL (see Appendix D.2), which corroborates
this observation, in particular for Simple questions.
As we focused on modeling complex questions, im-
proving NEL was not our main focus, but would an
interesting direction for future work, in particular

via multi-task approaches (Shen et al., 2019).

ConvQuestions We manually analyzed 100 ex-
amples. Errors were mostly due to the LF general
form, then to a wrong property token.

The model learns the grammar rules. In all in-
spected cases, the predicted LF is a valid LF ac-
cording to the grammar, i.e. it could be evaluated
successfully. This shows that grammar-guided de-
coding is not needed to achieve high performance.

Error category Overall Simple Dir.
LF general form 31.8 24.1
Entity ID token 36.2 38.2
insuff. recall 17.1 16.8
insuff. precision 19.6 21.6
Property ID token 4.2 2.9
Class ID token 24.7 37.6
Grammar token 11.6 2.6

Table 7: Distribution of errors in CSQA. The numbers
are (non exclusive) percentages.We also report statis-
tics for the Simple Direct type, as it is the largest.

6 Conclusion

For the problem of weakly-supervised conversa-
tional KG-QA, we proposed Object-Aware Trans-
former, a model capable of processing structured
input in a JSON-like format. This allows to flexibly
provide the model with structured KG contextual
information. We also introduced a KG grammar
with increased coverage, which can hence be used
to model a wider range of queries. These two con-
tributions are fairly independent: on the one hand,
since the model predicts LFs as a list of tokens, it
is grammar agnostic, and thus it could be used with
another grammar. On the other hand, the grammar
is not tied to the model, and can be used to generate
training data for other model architectures. Experi-
ments on two datasets validate our approach. We
plan to extend our model with richer KG context,
as we believe there is headroom for improvements.

Acknowledgments

We thank Yasemin Altun, Eloise Berthier, Guil-
laume Dalle, Maxime Godin, Clément Mantoux,
Massimo Nicosia, Slav Petrov, and anonymous re-
viewers, for their constructive feedback, and Daya
Guo for providing results with the D2A grammar.
P.M. was supported by a Corps des Mines stipend.

8821

Ethical considerations

This work is not connected to any specific real-
world application, and solely makes use of publicly
available data (KG and QA datasets). The predom-
inant ethical concern of the paper is the computing
power associated with the experiments. To limit the
energy impact of the project, we did not perform
hyper-parameter tuning for model training. Using
the formulas from Patterson et al. (2021), we esti-
mate the GHG emissions associated with one run
of model training to be approximately 29 - 42 kg
of CO2e. For the silver LF generation, we iterated
on a small subset of the datasets, then computed
the LFs for the entire datasets as a one-off task.

References

M. Ahmed, M. R. Samee, and R. E. Mercer. 2019. Im-
proving Tree-LSTM with Tree Attention. In 2079
IEEE 13th International Conference on Semantic
Computing (ICSC), pages 247-254.

Ram G Athreya, Srividya K. Bansal, Axel-
Cyrille Ngonga Ngomo, and Ricardo Usbeck.
2021. Template-based question answering using
recursive neural networks. In 2021 IEEE 15th
International Conference on Semantic Computing

(ICSC), pages 195-198.

Ruisheng Cao, Su Zhu, Chenyu Yang, Chen Liu, Rao
Ma, Yanbin Zhao, Lu Chen, and Kai Yu. 2020. Un-
supervised dual paraphrasing for two-stage semantic
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6806—-6817, Online. Association for Computa-
tional Linguistics.

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-
to-tree neural networks for program translation. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurlPS 2018, December 3-8,
2018, Montréal, Canada, pages 2552-2562.

Philipp Christmann, Rishiraj Saha Roy, Abdalghani
Abujabal, Jyotsna Singh, and Gerhard Weikum.
2019. Look before you hop: Conversational ques-
tion answering over knowledge graphs using judi-
cious context expansion. In Proceedings of the
28th ACM International Conference on Information
and Knowledge Management, CIKM 2019, Beijing,
China, November 3-7, 2019, pages 729-738. ACM.

William W. Cohen, Matthew Siegler, and Alex Hofer.
2019. Neural Query Language: A Knowledge Base
Query Language for Tensorflow. Computing Re-
search Repository, arXiv:1905.06209.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33-43, Berlin, Germany. Association for Computa-
tional Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731-742, Melbourne, Australia. Association
for Computational Linguistics.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2018. Dialog-to-action: Conversational
question answering over a large-scale knowledge
base. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada, pages 2946—
2955.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2019a. Coupling retrieval and meta-
learning for context-dependent semantic parsing. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 855—
866, Florence, Italy. Association for Computational
Linguistics.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019b. Towards complex text-to-SQL in cross-
domain database with intermediate representation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
45244535, Florence, Italy. Association for Compu-
tational Linguistics.

William L. Hamilton, Zhitao Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 1024—-1034.

Jacob Harer, Chris Reale, and Peter Chin. 2019. Tree-
Transformer: A Transformer-Based Method for Cor-
rection of Tree-Structured Data. Computing Re-
search Repository, arXiv:1908.00449.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual

8822

https://doi.org/10.1109/ICOSC.2019.8665673
https://doi.org/10.1109/ICOSC.2019.8665673
https://doi.org/10.1109/ICSC50631.2021.00041
https://doi.org/10.1109/ICSC50631.2021.00041
https://doi.org/10.18653/v1/2020.acl-main.608
https://doi.org/10.18653/v1/2020.acl-main.608
https://doi.org/10.18653/v1/2020.acl-main.608
https://proceedings.neurips.cc/paper/2018/hash/d759175de8ea5b1d9a2660e45554894f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d759175de8ea5b1d9a2660e45554894f-Abstract.html
https://doi.org/10.1145/3357384.3358016
https://doi.org/10.1145/3357384.3358016
https://doi.org/10.1145/3357384.3358016
http://arxiv.org/abs/1905.06209
http://arxiv.org/abs/1905.06209
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://proceedings.neurips.cc/paper/2018/hash/d63fbf8c3173730f82b150c5ef38b8ff-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d63fbf8c3173730f82b150c5ef38b8ff-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d63fbf8c3173730f82b150c5ef38b8ff-Abstract.html
https://doi.org/10.18653/v1/P19-1082
https://doi.org/10.18653/v1/P19-1082
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
http://arxiv.org/abs/1908.00449
http://arxiv.org/abs/1908.00449
http://arxiv.org/abs/1908.00449
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398

Meeting of the Association for Computational Lin-
guistics, pages 43204333, Online. Association for
Computational Linguistics.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park,
and Minjoon Seo. 2019. A Comprehensive Explo-
ration on WikiSQL with Table-Aware Word Con-
textualization. ~ Computing Research Repository,
arXiv:1902.01069. Version 2. Presented at KR2ML
Workshop at NeurIPS 2019.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12-22, Berlin, Germany. Association for Computa-
tional Linguistics.

Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh
Thakkar, Jens Lehmann, and Maria Maleshkova.
2021. Conversational question answering over
knowledge graphs with transformer and graph at-
tention networks. In Proceedings of the 16th Con-
ference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume,
pages 850-862, Online. Association for Computa-
tional Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,
Fengyuan Xu, and Sheng Zhong. 2020. Graph-to-
tree neural networks for learning structured input-
output translation with applications to semantic pars-
ing and math word problem. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 2841-2852, Online. Association for
Computational Linguistics.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D.
Forbus, and Ni Lao. 2017. Neural symbolic ma-
chines: Learning semantic parsers on Freebase with
weak supervision. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 23-33,
Vancouver, Canada. Association for Computational
Linguistics.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Car-
bon emissions and large neural network training.
Computing Research Repository, arXiv:2104.10350.

Joan Plepi, Endri Kacupaj, Kuldeep Singh, Harsh
Thakkar, and Jens Lehmann. 2021. Context trans-
former with stacked pointer networks for conversa-
tional question answering over knowledge graphs.
In The Semantic Web, pages 356-371, Cham.
Springer International Publishing.

Amrita Saha, Ghulam Ahmed Ansari, Abhishek
Laddha, Karthik Sankaranarayanan, and Soumen
Chakrabarti. 2019. Complex program induction for
querying knowledge bases in the absence of gold
programs. Transactions of the Association for Com-
putational Linguistics, 7:185-200.

Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answering: To-
wards learning to converse over linked question an-
swer pairs with a knowledge graph. In Proceed-
ings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 705—
713. AAAI Press.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling Relational Data with Graph Convo-
lutional Networks. In The Semantic Web, Proceed-
ings of the 15th International Conference, ESWC
2018, pages 593-607, Heraklion, Crete, Greece.
Springer, Cham.

Peter Shaw, Philip Massey, Angelica Chen, Francesco
Piccinno, and Yasemin Altun. 2019. Generating log-
ical forms from graph representations of text and
entities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 95-106, Florence, Italy. Association for Com-
putational Linguistics.

Tao Shen, Xiubo Geng, Guodong Long, Jing Jiang,
Chengqi Zhang, and Daxin Jiang. 2020. Effec-
tive search of logical forms for weakly supervised
knowledge-based question answering. In Proceed-
ings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2020, pages
2227-2233. ijcai.org.

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2442—
2451, Hong Kong, China. Association for Computa-
tional Linguistics.

Vighnesh Leonardo Shiv and Chris Quirk. 2019. Novel
positional encodings to enable tree-based transform-
ers. In Advances in Neural Information Processing

8823

http://arxiv.org/abs/1902.01069
http://arxiv.org/abs/1902.01069
http://arxiv.org/abs/1902.01069
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://www.aclweb.org/anthology/2021.eacl-main.72
https://www.aclweb.org/anthology/2021.eacl-main.72
https://www.aclweb.org/anthology/2021.eacl-main.72
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://doi.org/10.1162/tacl_a_00262
https://doi.org/10.1162/tacl_a_00262
https://doi.org/10.1162/tacl_a_00262
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.24963/ijcai.2020/308
https://doi.org/10.24963/ijcai.2020/308
https://doi.org/10.24963/ijcai.2020/308
https://doi.org/10.18653/v1/D19-1248
https://doi.org/10.18653/v1/D19-1248
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html

Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
12058-12068.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556-1566, Beijing, China. Association for
Computational Linguistics.

Raghuveer Thirukovalluru, Mukund Sridhar, Dung
Thai, Shruti Chanumolu, Nicholas Monath, Sankara-
narayanan Ananthakrishnan, and Andrew McCal-
lum. 2021. Knowledge informed semantic parsing
for conversational question answering. In Proceed-
ings of the 6th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2021), pages 231-240, On-
line. Association for Computational Linguistics.

Peihao Tong, Qifan Zhang, and Junjie Yao. 2019.
Leveraging Domain Context for Question Answer-
ing Over Knowledge Graph. Data Science and En-
gineering, 4(4):323-335.

Svitlana Vakulenko, Javier David Fernandez Garcia,
Axel Polleres, Maarten de Rijke, and Michael
Cochez. 2019. Message passing for complex ques-
tion answering over knowledge graphs. In Pro-
ceedings of the 28th ACM International Conference
on Information and Knowledge Management, CIKM
2019, Beijing, China, November 3-7, 2019, pages
1431-1440. ACM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998-6008.

William Woof and Ke Chen. 2020. A Frame-
work for End-to-End Learning on Semantic Tree-
Structured Data. Computing Research Repository,
arXiv:2002.05707.

Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Li-
wei Chen, and Vadim Sheinin. 2018. Exploiting
rich syntactic information for semantic parsing with
graph-to-sequence model. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 918-924, Brussels, Bel-
gium. Association for Computational Linguistics.

Hamid Zafar, Giulio Napolitano, and Jens Lehmann.
2019. Deep Query Ranking for Question Answering
over Knowledge Bases. In Machine Learning and
Knowledge Discovery in Databases, Proceedings of
the European Conference, ECML PKDD 2018, Lec-
ture Notes in Computer Science, pages 635-638,
Dublin, Ireland. Springer International Publishing.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and
Li Sun. 2020. Graph-Bert: Only Attention
is Needed for Learning Graph Representations.
Computing Research Repository, arXiv:2001.05140.
Version 2.

A Clarification Questions in CSQA

Take the following dialog as example:

Can you tell me which cities border
T1 Verderio Inferiore?
Cornate d’ Adda, Bernareggio, Robbiate
And which cities flank that one?
Did you mean Robbiate?
No, I meant Cornate d’Adda.
Bottanuco, Busnago, Trezzo sull’ Adda

T2

T3

The second turn is a “Clarification” question: the
system asks the user for disambiguation. The dis-
ambiguation question usually takes the form “Did
you mean”, followed by an entity chosen among
the previous turn answers. This choice appears to
be entirely random. For this reason, we found that
it would not be very interesting to try to predict this
entity, as baselines propose. Hence we only ask the
model to predict that the question is a Clarification
(via a special clarification operator).

We report in Table 8 the scores for Clarification
questions, as well as the “Overall” score, as defined
in Saha et al. (2018). The results are not directly
comparable as the baseline systems report an F1
score, while our approach uses accuracy.

B Detailed experimental setup

B.1 Meta-operators

Take the example given in the main paper: “Which
musical instrument is played by the maximum num-
ber of persons?”. The corresponding LF is:
argmax (
cardinality (
follow_property (
for_each (
members (musical instrument)),
played by)))
Assume that the KG contains exactly two
musical instruments, piano and violin, i.e.
members (musical instrument) equals
{piano,
for_each creates a dictionary of entities.
Each (key, value) pair corresponds to one entity
in the argument of for_each, where the key is
the entity itself and the value is a singleton set

violin}.

8824

https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.18653/v1/2021.repl4nlp-1.24
https://doi.org/10.18653/v1/2021.repl4nlp-1.24
https://doi.org/10.1007/s41019-019-00109-w
https://doi.org/10.1007/s41019-019-00109-w
https://doi.org/10.1145/3357384.3358026
https://doi.org/10.1145/3357384.3358026
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2002.05707
http://arxiv.org/abs/2002.05707
http://arxiv.org/abs/2002.05707
https://doi.org/10.18653/v1/D18-1110
https://doi.org/10.18653/v1/D18-1110
https://doi.org/10.18653/v1/D18-1110
https://doi.org/10.1007/978-3-030-10997-4_41
https://doi.org/10.1007/978-3-030-10997-4_41
http://arxiv.org/abs/2001.05140
http://arxiv.org/abs/2001.05140

Question type ‘ # Examples ‘ D2A D2A+ES S2A+MAML MaSP OAT (Ours)

Clarification | 12k | 18.31

36.66

19.12 80.79 99.63

Overall | 206k | 62.88

72.02

N/R 79.26 81.49

Table 8: QA performance on CSQA, including “Clarification” questions. The “Overall” metric is the average F1
scores of the following question types: “Simple (Direct)”, “Simple (Coreferenced)”, “Simple (Ellipsis)”, “Logical”,

“Quantitative”, “Comparative” and “Clarification”.

containing the entity. Here for_each ({piano,
violin}) gives the following dictionary:
{ piano: {violin} }
We then apply the same computation to each of
the dictionary values, while keeping the keys un-

touched. In our example, we apply the expression

{piano}, violin:

cardinality (
follow_backward(.

),

which gives the result
{piano: 20392, violin: 7918},

Finally, an aggregation operator is computed
over the values, and the result is a subset of the keys.
argmax returns the set of keys associated with the
maximum values, in our example {pianoc}. In
other cases, we want to return all the keys associ-
ated to a non-empty value, arg allows to do so.

, played by)

B.2 Silver LF generation

Wikidata version For CSQA, we used the pre-
processed version of Wikidata made available by
the authors, which contains 21.2M triplets over
12.8M entities and 567 distinct properties. For
ConvQuestions, we used a more recent version of
Wikidata, containing 1.1B triplets over 91.8M enti-
ties and 7869 distinct properties.

Named Entity Linking For ConvQuestions, we
use gold entity annotations and Google Cloud NLP
entity linking service. For CSQA, we use gold
entity annotations.

To resolve the coreferences, in ConvQuestions,
we use entity annotations from previous utterances
during the silver LF generation step. In CSQA,
since coreferences are already resolved by the gold
annotations, we just use annotations from the cur-
rent utterance.

Simplifying the BFS We observed that reach-
ing a depth of 4+ is needed for some queries (see
Table 5 of the main paper), but is impractical by
exhaustive BFS, as the size of the space of LFs
grows very quickly with their depth. To improve
the efficiency, we used the following ideas:

* Stopping criteria to abort the exploration:
timeout ¢y, and maximum depth dpax.

* Type checking: by leveraging the operators’
signatures (presented in Table 1 of the main
paper), we only construct legal LFs.

* Putting constraints on the form of the LF:
we manually forbid certain combinations of
operators, e.g. follow_backward after
follow_property.

* Restriction of the list of operators: for
ConvQuestions, we use the graph opera-
tors, the numerical operators, is_in, and
get_first. The removal of some set oper-
ators and of meta-operators strongly reduces
the complexity of the BFS. For CSQA, all
operators are needed, but we add more con-
straints to keep the BFS simple enough.

We choose dpyax = 3 for ConvQuestions and
dmax = 7 for CSQA, and ¢,,,x = 1200 seconds.

All LFs found by BFS are evaluated over the
KG, which gives candidate answers. We keep the
LFs whose candidate answers have the highest F1
score w.r.t. the gold answer. The minimal F1 score
for keeping a LF is 0.3.

Scores for LF ranking The BFS often returns
several LFs (with the top F1 score, as explained
above), among which some are spurious: they do
not correspond to the semantic meaning of the ques-
tion, but their evaluation over the KG yields the
correct result by chance. As we keep only one for
training, we need a way to rank the candidate LFs.
We use the following heuristic scores to do so:

» Complexity: the score is 1 — (@=1)/(dmax—1)
where d is the depth of the LF and dp,ax is
defined above.

* Property lexical matching: for each prop-
erty appearing in the LF, we compute the Jac-
card index of the words appearing in its name
and of the words of the question.

8825

* Annotation coverage: among the entities re-
trieved by NEL, we compute the percentage
of entities which appear in the LF.

As these three scores are between 0 and 1, we
average them and keep the LF with the highest total
score. We found that this simple method is a good
way to reduce spurious LFs, which are often either
too complex or not matching lexically the question.

B.3 Random examples generation

To generate the random examples for data aug-
mentation for ConvQuestions training, we first
sample uniformly 80k entities from the graph.
Then, for each entity, we generate a conversa-
tion for each triplet that links it to other enti-
ties. The question text is made by stitching
the entity name and the property name. For in-
stance, the triplet (Marie Curie, native
language, Polish) generates the dialog: Q-
Marie Curie native language? A: Polish. We also
generate variants where the property name is re-
placed by aliases, which are alternative names in
Wikidata, for example mother tongue for native
language. When the question or answer has
more than 256 characters, we eliminate it.

B.4 Modeling
Wikidata version Asin B.2.

Named Entity Linking NEL is performed again,
this time to create the structured context in input to
the model. Due to the randomization step described
in Section 4.2, missing entities in the input cannot
be retrieved by the model, so we want to have a
high NEL recall. The trade-off is that the NEL
precision is low: we have many spurious entities in
the input, which the model has to learn to ignore.

For CSQA, we use simple string matching be-
tween the utterances and the names of Wikidata
entities. Note that in our model, as well as in all
CSQA baselines (in particular Guo et al., 2018;
Shen et al., 2019), the previous gold answer is
given as input to the model in an oracle-like setup.

For ConvQuestions, we use the gold seed entity
and the Google Cloud NLP entity linking service.

To resolve coreferences, we use entities from the
dialog history: all preceding turns for ConvQues-
tions and only the previous turn for CSQA.

Implementation details We tokenize the input
using the BERT-uncased tokenizer. All embed-
dings in the model have dimension 768. The two

transformer encoders share the same configuration:
2 layers each, with output dimension 768, inter-
mediate dimension 2048, 12 attention heads, and
dropout probability set to 0.1. The model has 260M
parameters. The transformer implementation is
based on publicly available BERT code. We initial-
ize the word embedding from a BERT checkpoint,
but do not load the transformer layer weights, in-
stead training them from scratch. We train for 600k
steps with batch size 128, using the ADAM opti-
mizer (Kingma and Ba, 2015) with learning rate
3 x 1075, Training takes around 14 hours on 16
TPU v3 with 32 cores.

C Comparison with baselines

C.1 Comparison with D2A grammar

The D2A (Guo et al., 2018) grammar is the main
baseline in previous KG-QA works. We com-
pare with the grammar implemented in their open-
sourced code*, which is a bit different from the
published one. Numbers for D2A in Tables 4 and
5 were computed thanks to the results of the BFS
gracefully provided by the authors.

Table 9 presents some intents which we are able
to model in our grammar and are not straightfor-
ward to model with D2A grammar. First, textual
form reasoning corresponds to questions about
string attributes of entities, which are not included
in the D2A grammar. Second, to handle numerical
and temporal reasoning, computations based on
numerical values are needed, which is not possible
with the D2A grammar. Finally, the D2A grammar
does not model the order of relations in the graph
and the selection of class members, which we start
to tackle with respectively the get_first and
members operators.

C.2 Comparison with MaSP architecture

MaSP (Shen et al., 2019) also follows the seman-
tic parsing approach, where the LF is encoded as a
sequence of operators and graph items IDs. Regard-
ing the model input, they only use the utterances,
whereas we add additional KG context structured
as a JSON tree. The training method differs: MaSP
uses multi-task learning to learn jointly entity link-
ing and semantic parsing, whereas we chain both,
and trust the model to pick the good entity. Our
approach is simpler in this regard, but we pay it by
*https://github.com/guoday/
Dialog-to—-Action/blob/

bb2cbb9de474c0633bac6d01clleca24c79b951f/
BFS/parser.py

8826

https://github.com/guoday/Dialog-to-Action/blob/bb2cbb9de474c0633bac6d01c10eca24c79b951f/BFS/parser.py
https://github.com/guoday/Dialog-to-Action/blob/bb2cbb9de474c0633bac6d01c10eca24c79b951f/BFS/parser.py
https://github.com/guoday/Dialog-to-Action/blob/bb2cbb9de474c0633bac6d01c10eca24c79b951f/BFS/parser.py
https://github.com/guoday/Dialog-to-Action/blob/bb2cbb9de474c0633bac6d01c10eca24c79b951f/BFS/parser.py

Intent Question example

Missing in D2A

Textual form reasoning

What was Elvis Presley given name?

string type

Numerical reasoning

What actor plays the younger child?

get_value, for_each,

argmin
Numerical reasoning How old is the younger child? min
Selection of the mem- Which television programs have been

members

bers of a class

dubbed by at least 20 people ?

Temporal reasoning

What is the number of seasons until 2018?

for_each, get_value,
lesser_than, arg

Ordinal reasoning

What was the first episode date?

get_first

Table 9: Examples of questions that are difficult to model with the D2A grammar. Examples are mostly chosen
from ConvQuestions, as their questions look more realistic than CSQA.

having a slightly lower performance on Simple Di-
rect questions (see Table 3). Finally, we do not use
beam search for the decoding, contrarily to them.

C.3 Comparison with node classification

An alternative to the semantic parsing approach is
to train classifiers to predict entities as nodes of the
KG. A precise comparison of both approaches is
out of the scope of this paper. Nevertheless, we
think that the semantic parsing approach is better
suited to our purpose of modeling complex ques-
tions. For instance, complex intents involving nu-
merical comparisons can be expressed naturally by
a LF, but would be difficult to perform using solely
node classifiers. Examples include the numerical
and temporal reasoning in Table 9. Additional ex-
amples include The series consists of which amount
of books? (ConvQuestions) or Which television pro-
grams have been dubbed by at least 20 people ?,
How many episodes is it longer than the second
longest season out of the three? (CSQA).

CONVEX (Christmann et al., 2019) is an exam-
ple of such an approach. It is an unsupervised graph
exploration method: at each turn, a subgraph is ex-
panded by matching the utterance with neighboring
entities. Then a candidate answer is found in the
subgraph by a node classifier. On our side, we pro-
pose a semantic parsing approach that makes use
of entities annotated by an external entity linking
service. This is a similar setup to the CSQA base-
lines (Shen et al., 2019), which we re-purposed for
ConvQuestions in order to assess the quality of our
proposal on another dataset. In order to be closer
to the CONVEX baseline, we changed our CSQA
setup by applying the entity linker only to the ques-
tions’ text and not to the answers’ text. In addition,

Domain Coverage

Books 88.6
Movies 87.6
Music 90.0
Soccer 78.6
TV 86.2
Overall 86.2

Table 10: ConvQuestions coverage per domain.

as we use the gold seed entity, we compare with the
Oracle+CONVEX setup of Christmann et al. (2019),
which also uses the gold seed entity (and the gold
first turn answer entity). Finally, we make use of
data augmentation to train our model on ConvQues-
tions, whereas the baseline does not.

C.4 BERT or no BERT, that is the question

The baselines of Table 3 do not use BERT. MaSP
authors provide a variant of their model using a
fine-tuned BERT base architecture. The Total Av-
erage score of this variant is 72.60%, which is
2% above their vanilla variant and 3% under our
model. Since we are only using the word embed-
dings (loaded from a publicly available BERT base
checkpoint) and not loading the transformer layer
weights, we decided to compare with the vanilla
variant of MaSP. Finally, CARTON is using a pre-
trained BERT base model as a sentence encoder.

D Additional results

D.1 Coverage and performance results

Table 10 shows the coverage per domain for Conv-
Questions. Regarding the evolution of the coverage
over turns, it is stable for both datasets, hence we

8827

do not report this result.

Tables 11 and 12 show the evolution of the per-
formance over turns for both datasets. For CSQA,
the performance drops after the first two turns, then
remains constant. For ConvQuestions, the perfor-
mance decreases throughout the turns. There is a
sharp decrease after the first turn, probably because
it is simpler as there is no coreference or ellipsis.
The different behavior between the datasets may
be due to the realism of ConvQuestions.

Tarns O 1 2 3 4
Score 85 87 75 74 74

Turns 5-6 7-8 9-10 11-12 13+
Score 75 75 75 74 74

Table 11: Average performance over turns for CSQA.
For brevity, we average over turn ranges after turn 5.

Turn 0 1 2 3 4
Av.P@1 54 35 20 29 15

Table 12: Performance over turns for ConvQuestions.

D.2 Oracle setup and CARTON comparison

CARTON (Plepi et al., 2021) gives the entities
annotated in the dataset as part of the model in-
put (entities appearing in the previous turn and in
the current question), contrarily to the models in
Table 3 which all use an entity linker. For a fair
comparison, we tested our model in an oracle setup,
where we also give the gold annotations as input.
As shown in Table 13, the Total Average score of
our model increases by 10% w.r.t. the baseline ap-
proach. The improvement is particularly important
for the most simple question types (Simple and
Logical Questions). In this setup, our performance
is 8% higher than CARTON, and we obtain a better
score for 7 out of 10 question types.

D.3 Further error analysis

An alternative approach for error analysis is to as-
sess the performance of the decoding classifiers
(see Section 4.5) in a teacher forcing setup, i.e. to
assess how often they predict the next token cor-
rectly, given the true previous tokens. Table 14
reports the results on the eval split of both datasets.

Question type CARTON Ours

Simple (Direct) 85.92 96.95
Simple (Coreferenced) 87.09 94.77
Simple (Ellipsis) 85.07 96.66
Logical 80.80 95.54
Quantitative 80.62 76.44
Comparative 62.00 76.66
Verification (Boolean) 77.82 67.02
Quantitative (Count) 57.04 75.89
Comparative (Count) 38.31 35.10
Total Average 77.89 85.85

Table 13: QA performance on CSQA in oracle mode.

Metric CSQA ConvQuestions
Token type 99.88 94.77
Grammar token 98.86 82.12
Entity ID 92.47 50.79
Property ID 99.45 30.26
Class ID 94.64 N/A
Numerical value 99.91 N/A
Avg. token 97.70 61.53
Table 14: LF token accuracy metrics, on the eval

splits. For ConvQuestions, Class ID, numerical value
and their relative operators are not used (see B.2).

The results corrobate the analysis presented in Sec-
tion 5.6. First, the model learns the grammar rules,
as it nearly always predicts the good token type.
For CSQA, the most frequent errors concern entity
ID and class ID. For ConvQuestions, they concern
primarily entities and properties.

D.4 Case study

Table 15 presents examples from ConvQuestions
where we are able to predict the good LFs, although
there exists very similar properties in the graph.
The textual forms of the questions are not sufficient
to infer the good property to use, implying that the
model had to learn elements from the graph struc-
ture in order to answer correctly these questions.
Nevertheless, Table 14 shows that there is still sig-
nificant room for improvement in that direction.

8828

Question

Property

When did Seinfeld first air?
When did Camp Rock come out?

start time (P580)
publication date (P577)

Who screen wrote it?
Who wrote it?

screenwriter (P58)
author (P50)

What country are they from?

Belleville of which country?

What country did the band Black Sabbath originally come from?
What country is Son Heung-min from originally?

country (P17)

country (P17)

country of origin (P945)
country for sport (P1532)

Table 15: Examples of ConvQuestions questions for which the model was able to pick up the good property,

although there are very similar properties in the graph.

8829

