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Abstract

Several studies have been carried out on re-
vealing linguistic features captured by BERT.
This is usually achieved by training a diagnos-
tic classifier on the representations obtained
from different layers of BERT. The subsequent
classification accuracy is then interpreted as
the ability of the model in encoding the corre-
sponding linguistic property. Despite provid-
ing insights, these studies have left out the po-
tential role of token representations. In this pa-
per, we provide a more in-depth analysis on
the representation space of BERT in search
for distinct and meaningful subspaces that can
explain the reasons behind these probing re-
sults. Based on a set of probing tasks and
with the help of attribution methods we show
that BERT tends to encode meaningful knowl-
edge in specific token representations (which
are often ignored in standard classification se-
tups), allowing the model to detect syntac-
tic and semantic abnormalities, and to distinc-
tively separate grammatical number and tense
subspaces. !

1 Introduction

Recent years have seen a surge of interest in pre-
trained language models, highlighted by extensive
research around BERT (Devlin et al., 2019) and
its derivatives. One strand of research has focused
on enhancing existing models with the primary ob-
jective of improving downstream performance on
various NLP tasks (Liu et al., 2019b; Lan et al.,
2019; Yang et al., 2019). Another strand analyzes
the behaviour of these models with the hope of get-
ting better insights for further developments (Clark
et al., 2019; Kovaleva et al., 2019; Jawahar et al.,
2019; Tenney et al., 2019; Lin et al., 2019).
Probing is one of the popular analysis methods,
often used for investigating the encoded knowledge
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in language models (Conneau et al., 2018; Ten-
ney et al., 2018). This is typically carried out by
training a set of diagnostic classifiers that predict a
specific linguistic property based on the representa-
tions obtained from different layers. Recent works
in probing language models demonstrate that ini-
tial layers are responsible for encoding low-level
linguistic information, such as part of speech and
positional information, whereas intermediate layers
are better at syntactic phenomena, such as syntac-
tic tree depth or subject-verb agreement, while in
general semantic information is spread across the
entire model (Lin et al., 2019; Peters et al., 2018;
Liu et al., 2019a; Hewitt and Manning, 2019; Ten-
ney et al., 2019). Despite elucidating the type of
knowledge encoded in various layers, these studies
do not go further to investigate the reasons behind
the layer-wise behavior and the role played by to-
ken representations. Analyzing the shortcomings
of pre-trained language models requires a scrutiny
beyond the mere performance (e.g., accuracy or
F-score) in a given probing task. This is particu-
larly important as recent studies point out that the
diagnostic classifier (applied to the model’s out-
puts) might itself play a significant role in learning
nuances of the task and hence suggest evaluating
probes with alternative criteria (Hewitt and Liang,
2019; Voita and Titov, 2020; Pimentel et al., 2020;
Zhu and Rudzicz, 2020).

We extend the layer-wise analysis to the token
level in search for distinct and meaningful sub-
spaces in BERT’s representation space that can
explain the performance trends in various prob-
ing tasks. To this end, we leverage the attribution
method (Simonyan et al., 2013; Sundararajan et al.,
2017; Smilkov et al., 2017) which has recently
proven effective for analytical studies in NLP (Li
et al., 2016; Yuan et al., 2019; Bastings and Filip-
pova, 2020; Atanasova et al., 2020; Wu and Ong,
2021; Voita et al., 2021). Our analysis on a set of
surface, syntax, and semantic probing tasks (Con-
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neau et al., 2018) shows that BERT usually en-
codes the knowledge required for addressing these
tasks within specific token representations, particu-
larly at higher layers. For instance, we found that
sentence-ending tokens (e.g., “[SEP]” and “.”) are
mostly responsible for carrying positional informa-
tion through layers, or when the input sequence un-
dergoes a re-ordering the alteration is captured by
specific token representations, e.g., by the swapped
tokens or the coordinator between swapped clauses.
Also, we observed that the ##s token is mainly
responsible for encoding noun number and verb
tense information, and that BERT clearly distin-
guishes the two usages of the token in higher layer
representations.

2 Related Work

Probing. Several analytical studies have been
conducted to examine the capacities and weak-
nesses of BERT, often by means of probing layer-
wise representations (Lin et al., 2019; Goldberg,
2019; Liu et al., 2019a; Jawahar et al., 2019; Ten-
ney et al., 2019). Particularly, Jawahar et al. (2019)
leveraged the probing framework of Conneau et al.
(2018) to show that BERT carries a hierarchy of
linguistic information, with surface, syntactic, and
semantic features respectively occupying initial,
middle and higher layers. In a similar study, Ten-
ney et al. (2019) employed the edge probing tasks
defined by Tenney et al. (2018) to show the hierar-
chy of encoded knowledge through layers. More-
over, they observed that while most of the syntactic
information can be localized in a few layers, se-
mantic knowledge tends to spread across the entire
network. Both studies were aimed at discovering
the extent of linguistic information encoded across
different layers. In contrast, in this paper we ex-
plore the role of token representations in the final
performance. More recently, Klafka and Ettinger
(2020) investigated the extent of information that
can be recovered from each word representation in
a sentence about the other words. Apart from using
different probing tasks and methodologies, most no-
tably they relied solely on classifier’s performance
score, whereas we make conclusion based on the
most contributed token representations.

Representation subspaces. In addition to layer-
wise representations, subspaces that encode spe-
cific linguistic knowledge, such as syntax, have
been a popular area of study. By designing a struc-
tural probe, Hewitt and Manning (2019) showed

that there exists a linear subspace that approxi-
mately encodes all syntactic tree distances. In a
follow-up study, Chi et al. (2020) showed that sim-
ilar syntactic subspaces exist for languages other
than English in the multilingual BERT and that
these subspaces are shared among languages to
some extent. This corroborated the finding of Pires
et al. (2019) that multilingual BERT has common
subspaces across different languages that capture
various linguistic knowledge.

As for semantic subspaces, Wiedemann et al.
(2019) showed that BERT places the contextual-
ized representations of polysemous words into dif-
ferent regions of the embedding space, thereby
capturing sense distinctions. Similarly, Reif et al.
(2019) studied BERT"s ability to distinguish differ-
ent word senses in different contexts. Using the
probing approach of Hewitt and Manning (2019),
they also found that there exists a linear transfor-
mation under which distances between word em-
beddings correspond to their sense-level relation-
ships. Our work extends these studies by revealing
other types of surface, syntactic, and high-level
semantic subspaces and linguistic features using
a pattern-finding approach on different types of
probing tasks.

Attribution methods. Recently, there has been
a surge of interest in using attribution methods to
open up the blackbox and explain the decision mak-
ings of pre-trained language models, from devel-
oping methods and libraries to visualize inputs’
contributions (Ribeiro et al., 2016; Han et al., 2020;
Wallace et al., 2019; Tenney et al., 2020) to apply-
ing them into fine-tuned models on downstream
tasks (Atanasova et al., 2020; Wu and Ong, 2021;
Voita et al., 2021). In particular, Voita et al. (2021)
adopted a variant of Layer-wise Relevance Propa-
gation (Bach et al., 2015) to evaluate the relative
contributions of source and target tokens to the
generation process in Neural Machine Translation
predictions. To our knowledge, this is the first time
that attribution methods are employed for layer-
wise probing of pre-trained language models.

3 Methodology

Our analytical study was mainly carried out on
a set of sentence-level probing tasks from SentE-
val (Conneau and Kiela, 2018). The benchmark
consists of several single-sentence evaluation tasks.
Each task provides 100k instances for training and
10k for test, all balanced across target classes. We
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used the test set examples for our evaluation and in-
depth analysis. Following the standard procedure
for this benchmark, we trained a diagnostic clas-
sifier for each task. The classifier takes sentence
representations as its input and predicts the specific
property intended for the corresponding task.

In what follows in this section, we first describe
how sentence representations were computed in
our experiments. Then, we discuss our approach
for measuring the attribution of individual token
representations to classifier’s decision.

3.1 Sentence Representation

For computing sentence representations for layer [,
we opted for a simple unweighted averaging (hf% )
of all input tokens (except for padding and [CLS]
token). This choice was due to our observation
that the mean pooling strategy retains or improves
[cLs] performance in most layers in our probing
tasks (cf. Appendix A.1 for more details). This
corroborates the findings of Reimers and Gurevych
(2019) who observed a similar trend on sentence
similarity and inference tasks. Moreover, the mean
pooling strategy simplifies our measuring of each
token’s attribution, discussed next.

Our evaluations are based on the pre-trained
BERT (base-uncased, 12-layer, 768-hidden size,
12-attention head, 110M parameters) obtained from
the HuggingFace’s Transformers library (Wolf
et al., 2020). We followed the recommended hy-
perparameters by Jawahar et al. (2019) to train the
diagnostic classifiers for each layer. In addition to
BERT, we carried out our evaluations on RoBERTa
(Liu et al., 2019b, base, 125M parameters). How-
ever, we observed highly similar patterns for the
two models. Hence, we only report results for the
BERT model.

3.2 Gradient-based Attribution Method

We leveraged a gradient-based attribution method
in order to enable an in-depth analysis of layer-wise
representations with the objective of explaining
probing performances. Specifically, we are inter-
ested in computing the attribution of each input
token to the output labels. This is usually referred
to as the saliency score of an input token to classi-
fier’s decision. Note that using attention weights
for this purpose can be misleading given that raw
attention weights do not necessarily correspond to
the importance of individual token representations
(Serrano and Smith, 2019; Jain and Wallace, 2019;
Abnar and Zuidema, 2020; Kobayashi et al., 2020).

Using gradients for attribution methods has been
a popular option in neural networks, especially for
vision (Simonyan et al., 2013; Sundararajan et al.,
2017; Smilkov et al., 2017). Images are constructed
from pixels; hence, computing their individual at-
tributions to a given class can be interpreted as
the spatial support for that class (Simonyan et al.,
2013). However, in the context of text processing,
input tokens are usually represented by vectors;
hence, raw feature values do not necessarily carry
any specific information. Li et al. (2016)’s solution
to this problem relies on the gradients over the in-
puts. Let w. be the derivative of class ¢’s output
logit (y.) with respect to the k-th dimension of the
input embedding (h[k)):

9ye
This gradient can be interpreted as the sensitivity of
class ¢ to small changes in h[k]. To have this at the
level of words (or tokens), Li et al. (2016) suggests
using the average of the absolute values of w.(h[k])
over all of the d dimensions of the embedding:

ey

d
Score,(h) = % S lwehlE)] @
k=1

Although the absolute value of gradients could be
employed for understanding and visualizing the
contributions of individual words, these values can
only express the sensitivity of the class score to
small changes without information about the direc-
tion of contribution (Yuan et al., 2019). We adopt
the method of Yuan et al. (2019) for our setting and
compute the saliency score for the i representa-
tion in layer [, i.e., hl, as:
!
Scorec(hl) = e _p 3)

Ohly,,

where /., denotes the probability that the classifier
assigns to class ¢ based on the ["-layer representa-
tions. Given that our aim is to explain the represen-
tations (rather than evaluating the classifier), we set
c in Equation 3 as the correct label. This way, the
scores reflect the contributions of individual input
tokens in a sentence to the classification decision.
In what follows in the paper, we use the analy-
sis method discussed in this section to find those
tokens that play the central role in different sur-
face (Section 4), syntactic (Sections 5 and 6.1) and
semantic (Section 6.3) probing tasks. Based on
these tokens we then investigate the reasons behind
performance variations across layers.
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Figure 1: Absolute normalized saliency scores for the
top-4 most attributed (high frequency, > 128) tokens
across five different layers.’

4 Sentence Length

In this surface-level task we probe the represen-
tation of a given sentence in order to estimate its
size, i.e., the number of words (not tokens) in it. To
this end, we used SentEval’s SentLen dataset, but
changed the formulation from the original classifi-
cation objective to a regression one which allows a
better generalization due to its fine-grained setting.
The diagnostic classifier receives average-pooled
representation of a sentence (cf. Section 3.1) as in-
put and outputs a continuous number as an estimate
for the input length.

Given that the ability to encode the exact length
of input sentences is not necessarily a critical fea-
ture, we do not focus on layer-wise performance
and instead discuss the reason behind the perfor-
mance variations across layers. To this end, we
calculated the absolute saliency scores for each in-
put token in order to find those tokens that played
pivotal role while estimating sentence length.

Rounding the regressed estimates and compar-
ing them with the gold labels in the test set, we
can observe a significant performance drop from
0.91 accuracy in the first layer to 0.44 in the last
layer (cf. Appendix A.1 for details). This decay is
not surprising given that the positional encodings,
which are added to the input embeddings in BERT
and are deemed to be the main players for such a
position-based task, get faded through layers (Voita
et al., 2019).

Sentence ending tokens retain positional infor-
mation. Figure 1 shows tokens that most con-
tributed to the probing results across different lay-
ers according to the attribution analysis. Finalizing
tokens (e.g. “[SEP]” and *“.”) are the main contribu-
tors in the higher layers. We further illustrate this in
Figure 2 in which we compare the representations

2Full figures (for all layers) are available in Appendix A.2
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[SEP]
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Figure 2: t-SNE plots of the representations of four se-

lected high frequency tokens (“[SEP]”, “” full stop,

“the”, “and”) in different sentences. Colors indicate the
corresponding token’s position in the sentence (darker
colors means higher position index). Finalizing tokens
(e.g., “[SEP]”, “’) preserve distinct patterns in final
layers, indicating their role in encoding positional in-
formation, while other (high frequency) tokens exhibit
no such behavior.

of a finalizing token with those of another frequent
non-finalizing token. Clearly, positioning informa-
tion is lost throughout layers in BERT; however,
finalizing tokens partially retain this information,
as visible from distinct pattern in higher layers.

5 Verb Tense and Noun Number

This analysis inspects BERT representations for
grammatical number and tense information. For
this experiment we used the Tense and ObjNum
tasks?: the former checks whether the main-clause
verb is labeled as present or past*, whereas the
latter classifies the object according to its number,
i.e., singular or plural (Conneau et al., 2018). On
both tasks, BERT preserves a consistently high
performance (> 0.82 accuracy) across all layers
(cf. Appendix A.1 for more details).

3We will not discuss the SubjNum results, since we ob-
served significant labeling issues (See Appendix A.3) that
could affect our conclusions. This can also explain low human
performance reported by Conneau et al. (2018) on this task.

“In Tense task, each sentence may include multiple verbs,
subjects, and objects, while the label is based on the main
clause (Conneau et al., 2018).
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Figure 3: The top-4 most attributed (high freq.) tokens across five different layers for the ObjNum and Tense tasks.
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Figure 4: t-SNE plots of the layer-wise representations of the ##s token in different sentences. Colors indicate
whether the token occurred in present- or past-labeled sentence in the Tense task (see Section 5). For the sake of
comparison, we also include two present verbs without the ##s token’(i.e., does and works) and two irregular plu-
ral nouns (i.e., men and children), in rounded boxes. The distinction between the two different usages of the token
(noun number as well as the tense information) is clearly encoded in higher layer contextualized representations.
As plural nouns can appear in both past- and present-labeled examples, the cluster belongs to the plural form of
##s token in higher layers may contain both types of examples.

Articles and ending tokens (e.g., ##s and
##ed) are key playmakers. Attribution analy-
sis, illustrated in Figure 3(a), reveals that article
words (e.g., “a” and “an”) and the ending ##s to-
ken, which makes out-of-vocab plural words (or
third person present verbs), are among the most
attributed tokens in the ObjNum task. This shows
that these tokens are mainly responsible for encod-
ing object’s number information across layers. As
for the Tense task, Figure 3(b) shows a consistently
high influence from verb ending tokens (e.g., ##ed
and #4#s) across layers which is in line with perfor-
mance trends for this task and highlights the role of
these tokens in preserving verb tense information.

##s — Plural or Present? The ##s token
proved influential in both tense and number tasks.
The token can make a verb into its simple present
tense (e.g., read — reads) or transform a singu-
lar noun into its plural form (e.g., book — books).
We further investigated the representation space to

Tokens that were not split by the tokenizer.

check if BERT can distinguish this nuance. Results
are shown in Figure 4: after the initial layers, BERT
recognizes and separates these two forms into two
distinct clusters (while BERT’s tokenizer made no
distinction among different usages). Interestingly,
we also observed that other present/plural tokens
that did not have the ##s token aligned well with
these subspaces.

6 Inversion Abnormalities

For this set of experiments, we opted for SentEval’s
Bi-gram Shift and Coordination Inversion tasks
which respectively probe model’s ability in detect-
ing syntactic and semantic abnormalities. The goal
of this analysis was to to investigate if BERT en-
codes inversion abnormality in a given sentence
into specific token representations.

6.1 Word-level inversion

Bi-gram Shift (BShift) checks the ability of a
model to identify whether two adjacent words
within a given sentence have been inverted (Con-
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[SEP] -
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Figure 5: Normalized layer-wise attribution scores
for a randomly sampled sentence from the test set
(left). The right figure shows how the attribution scores
changed when two words (“at” and “the”’) from the orig-
inal sentence were inverted.

neau et al., 2018). Probing results shows that the
higher half layers of BERT can properly distinguish
this peculiarity (Figure 7). Similarly to the previ-
ous experiments, we leveraged the gradient attri-
bution method to figure out those tokens that were
most effective in detecting the inverted sentences.
Given that the dataset does not specify the inverted
words, we reconstructed the inverted examples by
randomly swapping two consecutive words in the
original sentences of the test set, excluding the be-
ginning of the sentences and punctuation marks as
stated in (Conneau et al., 2018).

6.2 Results

Our attribution analysis shows that swapping two
consecutive words in a sentence results in a signifi-
cant boost in the attribution scores of the inverted
tokens. As an example, Figure 5 depicts attribution
scores of each token in a randomly sampled sen-
tence from the test set across different layers. The
classifier distinctively focuses on the token repre-
sentations for the shifted words (Figure 5 right),
while no such patterns exists for the original sen-
tence (Figure 5 left).

To verify if this observation holds true for other
instances in the test set, we carried out the fol-
lowing experiment. For each given sequence X
of n tokens, we defined a boolean mask M =
[m1, ma, ...my] which denotes the position of the
inversion according to the following condition:

1, z; € V
mi = . 4)
0, otherwise

where V' is the set of all tokens in the shifted bi-
gram (|V'| > 2, given BERT’s sub-word tokeniza-

0.5
a 0.4
_2 0.3
© —e— Shifted sentences
E 0.24 = Original sentences
©
gi 0.1
w
001 \/\/\/\\
—0.1

012345678 9101112
Layer

Figure 6: Spearman’s p correlation of gradient attribu-
tion scores with the mask array M (a one-hot indicat-
ing shifted indices), averaged on all examples across
all layers. High correlations indicate model’s increased
sensitivity to the shifted tokens, a trend which is not
seen in the original sentences.

| aererrae P e 1090
0.30 e Wl
| o’ re 10.85
8 0.25 N (.
< . . {0.80 5,
fr?. 0.20 N /‘ == Shifted tokens' distance g
8 515/ D e == Non-shifted tokens' distance 10.75 5
_E ' .l" ’/ =« Probing accuracy lo.70 é
v 0.10F .'/
o .
S . _, {065
0.05 - .,.? —— > —e
& e — 10.60
. o m— =
0-00'],—)‘—_. L L L L L L L L + 10.55
1 2 3 4 5 6 7 8 9 10 11 12

Figure 7: Average cosine distances of shifted tokens
(and other tokens) to themeselves, before and after in-
version in the BShift task. The trend for the shifted
token distances highly correlates with that of probing
performance, supporting our hypothesis of BERT en-
coding abnormalities in the shifted tokens.

tion). Then we computed the Spearman’s rank
correlation coefficient of the attribution scores with
M for all examples in the test set. Figure 6 re-
ports mean layer-wise correlation scores. We ob-
serve that in altered sentences the correlation sig-
nificantly grows over the first few layers which in-
dicates model’s increased sensitivity to the shifted
tokens.

We hypothesize that BERT implicitly encodes
abnormalities in the representation of shifted to-
kens. To investigate this, we computed the cosine
distance of each token to itself in the original and
shifted sentences. Figure 7 shows layer-wise statis-
tics for both shifted and non-shifted tokens. Dis-
tances between the shifted token representations
aligns well with the performance trend for this prob-
ing task (also shown in the figure).
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Figure 8: Evaluating the 3 map®for a single example in a specific layer (layer = 3). After computing the map for
the original (a) and inverted (b) forms of the sentence, to compute the Az map we need to reorder the inverted
map. The corresponding columns and rows for the inverted words (orange boxes) are swapped to re-construct the
original order (c). The Ag map (d) is the magnitude of the point-wise difference between the re-ordered and the
original maps. The Ag map for this example clearly shows that most of the changes have occurred within the

bi-gram inversion area. All values are min-max normalized.

6.2.1 Attention-norm behavior on bi-gram
inversion

Our observation implies that BERT somehow en-
codes oddities in word order in the representations
of the involved tokens. To investigate the root cause
of this, we took a step further and analyzed the
building blocks of these representations, i.e., the
self-attention mechanism. To this end, we made use
of the norm-based analysis method of Kobayashi
et al. (2020) which incorporates both attention
weights and transformed input vectors (the value
vectors in the self-attention layer). The latter com-
ponent enables a better interpretation at the token
level. This norm-based metric || Y af () ||-for the
sake of convenience we call it attention-norm-—is
computed as the vector-norm of the i token to the
jth token over all attention heads (H = 12) in each
layer {:

H

l head,l phead,l (1,1
Bz‘,j:H Z Oéi,ja free (hJ)H

head=1

(&)

where «; ; is the attention weight between the two
tokens and f°*®(z) is a combination of the value
transformation in layer [ of the head and the matrix
which combines all heads together (see Kobayashi
et al. (2020)’s paper for more details).

We computed the attention-norm map in all lay-
ers, for both the original and shifted sentence. To
be able to compare these two maps, we re-ordered

The value of the cell Bij (@ row, " column) in the
map denotes the attention-norm of the i*" token to the ;"
token. The contextualized embedding for the it" token is
constructed based on a weighted combination of their corre-
sponding attention-norms in the 7" row.

Layer 3 Layer 6 Layer 12

C i el

[ L [

Figure 9: A cumulative view of the attention-norm
changes (Ag:) centered around the bi-gram position
(the approximate bi-gram position is marked on each
figure). Each plot indicates the cumulative layer-wise
changes until a specific layer. Each row indicates
the corresponding token’s attention-norms to every to-
ken in the sentence (including itself). Although the
changes slightly spread out to the other tokens as we
move up to higher layers, they mostly occur in the
bi-gram area. Given BERT’s contextualization mecha-
nism, variations in attention-norms in each row directly
result in a change in the corresponding token’s repre-
sentation. Therefore, the tokens in the bi-gram undergo
most changes in their representations.

the shifted sentence norms to match the original
order. The magnitude of the difference between
the original and the re-ordered map A 5 shows the
amount of change in each token’s attention-norm
to each token. Figure 8 illustrates this procedure
for a sample instance. Given that bi-gram locations
are different across each instance, to compute an
overall Ag we centered each map based on the po-
sition of the inversion. As a result of this procedure,
we obtained a A 5 map for each layer and for all
examples. Centering and averaging all these maps
across layers produced Figure 9.

Figure 9 indicates that after inverting a bi-gram,
both words’ attention-norms to their neighboring
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tokens change and this mostly affects their own
representations rather than others. This observation
suggests that the distinction formed between the
representations of the original and shifted tokens,
as was seen in Figure 7, can be rooted back to the
changes in attention heads’ patterns.

6.3 Phrasal-level inversion

The Coordination Inversion (CoordInv) task is a
binary classification that contains sentences with
two coordinated clausal conjoints (and only one
coordinating conjunction). In half of the sentences
the clauses’ order is inverted and the goal is to de-
tect malformed sentences at phrasal level (Conneau
et al., 2018). Since the phrasal-level inversion does
not alter the syntax structure of the sentence, the
task could be considered as a semantic one (Con-
neau et al., 2018). For an example:

the glass broke and i cut myself . — Original

i cut myself and the glass broke . — Inverted

While both sentences are syntactically correct, we
should rely on the meaning of the sequence of the
events in order to detect the abnormality in the
second sentence.

BERT’s performance on this task increases
through layers and then slightly decreases in the
last three layers. We observed that the attribu-
tion scores for “but” and “and” coordinators to
be among the highest (see Appendix A.2) and that
these scores notably increase through layers. We
hypothesize that BERT might implicitly encodes
phrasal level abnormalities in specific token repre-
sentations.

Odd Coordinator Representation. To verify
our hypothesis, we filtered the test set to ensure
all sentences contain either a “but” or an “and” co-
ordinator’. We reconstructed the original examples
by inverting the order of the two clauses in the
inverted instances since no sentence appears with
both labels in the dataset. Feeding this to BERT, we
extracted token representations and computed the
cosine distance between the representations of each
token in the original and inverted sentences. Figure
10 shows these distances, as well as the normalized
saliency score for coordinators (averaged on all ex-
amples in each layer), and layer-wise performance
for the CoordInv probing task. Surprisingly, all

79,883 of the 10K examples in the test set meet this condi-
tion.
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Figure 10: Averaged cosine distances between coordi-
nators in the original and inverted sentences. We also
show the normalized saliency scores for the coordina-
tors across layers which correlate with the performance
scores of the task. The distance curve for other tokens
is a baseline to highlight that the representation of co-
ordinators significantly change after inversion.

these curves exhibit a similar trend. As we can see,
when the order of the clauses are inverted, the rep-
resentations of the coordinators “but” or “and” play
a pivotal role in making sentence representations
distinct from one another while there is nearly no
change in the representation of other words. This
observation implies that BERT somehow encodes
oddity in the coordinator representations (corrobo-
rating part of the findings of our previous analysis
of BShift task in Section 6.1).

7 Control Experiments

The main motivation behind designing a control
task in probing studies is to check whether it is
the representations that encode linguistic knowl-
edge or the diagnostic classifier itself which plays
a significant role in learning nuances of the task
(Hewitt and Liang, 2019). In this regard, most of
our experiments throughout the paper (similarity
curves, tSNE plots, or attention-norm analysis) all
rely on fixed representations and do not need any
classifier or training; hence, they all serve as con-
trol experiments or sanity checks. For example,
in our attention-norm analysis (which requires no
training and comes from a different perspective) we
arrive at the same results as our attribution analysis.
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Pearson’s r Spearman’s p

Task Mean Max. Mean Max.
SentLen 080 097 0.71 0.94
ObjNum  0.60 091 0.63 0.98
Tense 0.84 093 0.67 091
BShift 084 092 0.79 0.87
Coordlnv 0.63 090 0.54 0.85

Table 1: The Pearson’s r and Spearman’s p correla-
tions averaged over all examples, reporting the mean
and maximum values across all layers.®

Computation of attribution scores based on
trained diagnostic classifiers is the only part of our
experiments which involves a training procedure.
Hence, we carried out a control study inspired by
Talmor et al. (2020) to check the consistency of
attribution patterns. The intuition behind this is in
line with Voita and Titov (2020) who stated that if
there is a strong regularity in the representations
with respect to the labels, this can be revealed even
with fewer training data points.

To this end, we used only 10% of the training
data to train the diagnostic classifiers and computed
the attribution scores for each task. Then, we com-
puted the correlation between attribution scores
for each sentence obtained by these classifiers and
those obtained from the original classifiers (trained
on full training data). After averaging the correla-
tions over all examples, we report the mean and
maximum statistics among all layers in Table 1.
The strong correlations imply that a similar pat-
tern exist in the attribution scores even when fewer
training instances are used. This highlights the fact
that task-specific knowledge is well encoded and
regularized in the representations, nullifying the
possibility of the classifier playing a major role.

8 Conclusions

In this paper we carried out an extensive gradient-
based attribution analysis to investigate the nature
of BERT token representations. To our knowledge,
this is the first effort to explain probing perfor-
mance results from the viewpoint of token repre-
sentations. We found that, while most of the po-
sitional information is diminished through layers,
sentence-ending tokens are partially responsible
for carrying this knowledge to higher layers in the

8Results are averaged over three runs.

model. Furthermore, we analyzed the grammati-
cal number and tense information throughout the
model. Specifically, we observed that BERT tends
to encode verb tense and noun number information
in the ##s token and that it can clearly distinguish
the two usages of the token by separating them
into distinct subspaces in the higher layers. Also,
we found that abnormalities can be captured by
specific token representations, e.g., in two consecu-
tive swapped tokens or a coordinator between two
swapped clauses.

Our approach in using a simple diagnostic clas-
sifier and incorporating attribution methods pro-
vides a novel way of extracting qualitative results
in probing studies. This can be seamlessly applied
to various deep pre-trained models, providing a
wide range of options in sentence-level tasks and
from the fine-grained viewpoint of tokens. We
hope this will spur future probing studies in other
evaluation scenarios. Future work might investi-
gate how subspaces are evolved or transformed
during fine-tuning and whether they are beneficial
at inference time to various downstream tasks (e.g.
syntactic abnormalities, grammatical number and
tense subspaces in grammar-based tasks like CoLA
Warstadt et al., 2019) or to check whether these be-
haviors are affected by different training objectives.
Furthermore, our token-level analysis can provide
insights for enhancing model efficiency based on
token importance, something we plan to pursue in
future work.
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A Appendices

A.1 Probing Performance Results

Table A.1 shows the results for our average sen-
tence representation strategy (cf. Section 3.1) for
all layers and across all tasks. We trained the di-
agnostic classifiers three times and reported the
expected test performance for each task (Dodge
et al., 2019). Each task consists of 100k examples
for training and 10k examples for validating the
diagnostic classifiers. The test set includes 10k ex-
amples that are used for our evaluation and in-depth
analysis. All dataset splits are balanced for their
target classes. The performance trends in our ex-
periments are similar to those observed by Jawahar
et al. (2019).
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Table A.1: Layer-wise performance scores (accuracy)
for the average sentence representation strategy on dif-
ferent probing tasks.

Mean Pooling vs. [CLS] Pooling. In order to
show the reliability of our average-based pooling
method for probing BERT, in Table A.2 we provide
a comparison against the [CLS] methodology of
Jawahar et al. (2019). Specifically, we show layer-
wise performance differences of the two represen-
tations, with the green color indicating improve-
ments of our strategy. The results clearly highlight
that average representations are more suited to the
task, providing improvements across many layers
in most tasks.

A.2  Full 12-layer Figures

In this section we provide the full 12-layer version
of the previous summarized layer-wise figures.

A.3 SubjNum Mislabelling

The SubjNum probing data suffers from numerous
incorrect labels which are more obvious within
samples which starts with a name that ends with an
“s” and labelled as plural. We show five examples
with this issue in Table A.3.

& & & S
A S ey o
1 +0.03 +0.07 +0.05 +0.07 +0.02
2 +0.05 +0.17 +0.03 +0.03 +0.02
3 +0.12 +0.19 +0.02 +0.06 +0.02
4 +0.15 +0.14 +0.02 +0.04 +0.05
5 +0.24 +0.07 0.00 +0.05 +0.03
6 +0.3 +0.08 -0.01 +0.06 +0.02
7 +0.31 +0.08 0.00 +0.05 0.00
8 +0.29 +0.07 0.00 +0.04 -0.01
9 +0.24 +0.04 0.00 +0.04 -0.02
10 +0.17 +0.04 0.00 +0.04 -0.04
11 +0.15 +0.04 0.00 +0.04 -0.04
12 +0.19 +0.02 0.00 +0.05 -0.03

Table A.2: Layer-wise performance scores comparison
between average and [CLS] representations across dif-
ferent probing tasks. Average pooling retains or im-
proves [CLS] performance in all layers and tasks, ex-
cept for some layers in CoordInv.
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Figure A.1: Full 12 layer t-SNE plots — (Figure 2)
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Figure A.2: Full 12 layers for the top-4 most attributed high frequency tokens in the Sentence Length task - (Figure
1))
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Figure A.3: Full 12 layers for the top-4 most attributed high frequency tokens in the ObjNum task - (Figure 3)
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Figure A.4: Full 12 layers for the top-4 most attributed high frequency tokens in the Tense task - (Figure 3)
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Figure A.5: Full 12 layers attention-norm changes (A g:) - (Figure 9)
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Label

Sentence

NNS
NNS
NNS
NNS
NNS

Zeus is the child of Cronus and Rhea , and the youngest of his siblings .
Jess had never done anything this wild in her life .

Lois had stopped in briefly to visit , but didn ’t stay very long .

Tomas sank back on the seat , wonder on his face .

Justus was an unusual man .

Table A.3: Five examples from SentEval’s SubjNum data that are incorrectly labelled as plural (NNS) while the
subject is clearly singular (NN). There are numerous such mislabeled instances in the test set.

Normalized Saliency Score
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Figure A.6: Full 12 layers for the top-4 most attributed high frequency tokens in the CoordInv task
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