
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7633–7648
November 7–11, 2021. c©2021 Association for Computational Linguistics

7633

When Attention Meets Fast Recurrence:
Training Language Models with Reduced Compute

Tao Lei
ASAPP, Inc.

taoleics@gmail.com

Abstract

Large language models have become increas-
ingly difficult to train because of the grow-
ing computation time and cost. In this work,
we present SRU++, a highly-efficient archi-
tecture that combines fast recurrence and at-
tention for sequence modeling. SRU++ ex-
hibits strong modeling capacity and training
efficiency. On standard language modeling
tasks such as ENWIK8, WIKI-103 and BIL-
LION WORD datasets, our model obtains bet-
ter bits-per-character and perplexity while us-
ing 3x-10x less training cost compared to top-
performing Transformer models. For instance,
our model achieves a state-of-the-art result on
the ENWIK8 dataset using 1.6 days of train-
ing on an 8-GPU machine. We further demon-
strate that SRU++ requires minimal attention
for near state-of-the-art performance. Our re-
sults suggest jointly leveraging fast recurrence
with little attention as a promising direction
for accelerating model training and inference.1

1 Introduction

Many recent advances in language modeling have
come from leveraging ever larger datasets and
model architectures. As a result, the associated
computation cost for developing such models have
grown enormously, requiring hundreds of GPU
hours or days per experiment, and raising concerns
about the environmental sustainability of current
research (Schwartz et al., 2020). As a conse-
quence, it has become imperative to build compu-
tationally efficient models that retain top modeling
power while reducing computational costs.

The Transformer architecture (Vaswani et al.,
2017) was proposed to accelerate model training
and has become the predominant architecture in
NLP. Specifically, it is built entirely upon self-
attention and avoids the use of recurrence to en-
able strong parallelization. While this change has

1Our code, experimental setup and models are available
at https://github.com/asappresearch/sru.

Table 1

Effective GPU
hour

Transformer-XL SRU++ SRU++ (single
attention)

0 1.520

4 1.407

7 1.363

11 1.324

14 1.308

18 1.284

22 1.278

25 1.260

29 1.250

32 1.240

36 1.239

40 1.226

43 1.222

47 1.214

50 1.209

54 1.201

58 1.196

61 1.197

65 1.194

68 1.190

72 1.188

76 1.181

79 1.181

83 1.175

86 1.170

90 1.174

94 1.167

97 1.166

101 1.162

104 1.158

108 1.157

112 1.155

115 1.151

119 1.150

122 1.148

126 1.144

130 1.147

133 1.142

137 1.140

140 1.139

144 1.138

148 1.133

151 1.129

155 1.134

158 1.127

162 1.130

166 1.128

169 1.122

173 1.121

176 1.125

180 1.121

184 1.120

187 1.120

191 1.118

194 1.114

198 1.112

202 1.114

205 1.113

209 1.110

212 1.111

216 1.107

220 1.109

223 1.108

227 1.108

230 1.106

234 1.104

237 1.102

241 1.104

245 1.098

248 1.102

252 1.099

255 1.099

259 1.099

263 1.100

266 1.098

270 1.100

273 1.097

277 1.096

281 1.097

284 1.095

288 1.097

291 1.097

295 1.097

299 1.095

302 1.095

306 1.095

309 1.095

313 1.093

317 1.093

320 1.094

324 1.094

327 1.093

Bi
ts

 P
er

 C
ha

ra
ct

er
 (B

PC
)

1.0

1.2

1.3

1.5

Effective training hours

0 90 180 270 360

Transformer-XL
SRU++
SRU++ (single attention)

Bi
ts

 P
er

 C
ha

ra
ct

er
 (B

PC
)

1.00

1.17

1.33

1.50

Effective training hours

0 90 180 270 360

1.09

1.17

Transformer-XL
SRU++ (single attention)

5.1x efficiency

8.7x efficiency

Bi
ts

 P
er

 C
ha

ra
ct

er
 (B

PC
)

1.00

1.17

1.33

1.50

Effective training hours

0 90 180 270 360

Transformer-XL
SRU++ (single attention)

5.1x efficiency

8.7x efficiency

�1

Figure 1: Bits-per-character on ENWIK8 dev set vs.
GPU hours used for training. SRU++ obtains better
BPC by using 1/8 of the resources. We compare with
Transformer-XL as it is one of the strongest models on
the datasets tested. Models are trained with single pre-
cision and comparable training settings.

led to many empirical success and improved com-
putational efficiency, we are interested in revisit-
ing the architectural question: Is attention all we
need for modeling?

The attention mechanism permits learning de-
pendencies between any parts of the input, mak-
ing it an extremely powerful neural component
in many machine learning applications (Bahdanau
et al., 2015; Lin et al., 2017). We hypothesize
that this advantage can still be complemented with
other computation that is directly designed for se-
quential modeling. Indeed, several recent works
have studied and confirmed the same hypothesis
by leveraging recurrence in conjunction with at-
tention. For example, Merity (2019) demonstrates
that single-headed attention LSTMs can produce
results competitive to Transformer models in lan-
guage modeling. Other work have incorporated
RNNs into Transformer, and obtain better re-
sults in machine translation (Lei et al., 2018; Hao
et al., 2019) and language understanding bench-
marks (Huang et al., 2020). These results high-
light one possibility – we could build more effi-
cient models by combining attention and fast re-
current networks (Bradbury et al., 2017; Zhang
and Sennrich, 2019).

https://github.com/asappresearch/sru

7634

In this work, we validate this idea and present
a self-attentive recurrent unit that achieves strong
computational efficiency. Our work builds upon
the SRU (Lei et al., 2018), a highly paralleliz-
able RNN implementation that has been shown ef-
fective in language and speech applications (Park
et al., 2018; Kim et al., 2019; Hsu et al., 2020;
Shangguan et al., 2019). We incorporate atten-
tion into the SRU by simply replacing the linear
transformation of input with a self-attention com-
ponent. The proposed architecture, called SRU++,
enjoys enhanced modeling capacity and remains
equally parallelizable. Figure 1 compares its per-
formance with the Transformer-XL model (Dai
et al., 2019) on the ENWIK8 dataset. SRU++
achieves better results while using a fraction of the
training resources needed by the baseline.

We evaluate SRU++ on standard language mod-
eling benchmarks including the ENWIK8, WIKI-
103 and BILLION WORD datasets. SRU++ consis-
tently outperforms various Transformer models on
these datasets, delivering better or on par results
while using 3x-10x less computation. Our model
do not use positional encoding, multi-head atten-
tion and other techniques useful to Transformer
models. Furthermore, we demonstrate that a cou-
ple of attention layers are sufficient for SRU++
to obtain near state-of-the-art performance. These
changes not only highlight the effectiveness of re-
currence but also enable strong computation re-
duction in training and inference. Finally, we
also showcase the effectiveness of SRU++ on the
IWSLT’14 De→En translation task, and open
source our implementation in Pytorch to facilitate
future research.

2 Background: SRU

We first describe the Simple Recurrent Unit (SRU)
in this section. A single layer of SRU involves the
following computation:

f [t] = σ (Wx[t] + v � c[t-1] + b)

r[t] = σ
(
W′x[t] + v′ � c[t-1] + b′

)
c[t] = f [t]� c[t-1] + (1− f [t])� (W′′x[t])

h[t] = r[t]� c[t] + (1− r[t])� x[t]

where � is the element-wise multiplication, W,
W′ and W′′ are parameter matrices and v, v′,
b and b′ are parameter vectors to be learnt dur-
ing training. The SRU architecture consists of
a light recurrence component which successively

computes the hidden states c[t] by reading the in-
put vector x[t] for each step t. The computation
resembles other gated recurrent networks such as
LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Cho et al., 2014). Specifically, the state vec-
tor c[t] is a weighted average between the previous
state c[t-1] and a linear transformation of the input
W′′x[t]. The weighted aggregation is controlled
by a forget gate f [t] which is a sigmoid function
over the current input and hidden state. Once the
internal state c[t] is produced, SRU uses a high-
way network to introduce a skip connection and
compute the final output state h[t]. Similarly, the
information flow in the highway network is con-
trolled by a reset gate r[t].

Two important code-level optimizations are per-
formed to enhance the parallelism and speed
of SRU. First, given the input sequence X =
{x[1], · · · ,x[L]} where each x[t] ∈ Rd is a d-
dimensional vector, SRU combines the three ma-
trix multiplications across all time steps as a sin-
gle multiplication. This significantly improves
the computation intensity (e.g. GPU utilization).
Specifically, the batched multiplication is a linear
projection of the input tensor X ∈ RL×d:

U> =

 W
W′

W′′

X> , (1)

where U ∈ RL×3×d is the output tensor, L is the
sequence length and d is the hidden state size.

The second optimization performs all element-
wise operations in an efficient way. This involves

f [t] = σ(U[t, 0] + v � c[t-1] + b) (2)

r[t] = σ(U[t, 1] + v′ � c[t-1] + b′) (3)

c[t] = f [t]� c[t-1] + (1− f [t])�U[t, 2] (4)

h[t] = r[t]� c[t] + (1− r[t])� x[t]. (5)

Similar to other built-in operations such as atten-
tion and cuDNN LSTM (Appleyard et al., 2016),
SRU implements all these operations as a single
CUDA kernel to accelerate computation. Note that
each dimension of the hidden vectors is indepen-
dent once U is computed. The computation can
run in parallel across each hidden dimension (and
each input sequence given a mini-batch of multi-
ple sequences).

3 SRU++

The key modification of SRU++ is to incorporate
more expressive non-linear operations into the re-

7635

Elementwise recurrence

MatMul

MatMul

input x

output h, c

2048

512

2048*3

Elementwise recurrence

MatMul

input x

output h, c

2048

2048*3

Elementwise recurrence

MatMul

MatMul

Attention

input x

output h, c

2048

512

2048*3

(a) SRU (b) SRU w/ projection trick (c) SRU++ w/ attention

Figure 2: An illustration of SRU and SRU++ networks: (a) the original SRU, (b) the SRU variant with projection to
reduce the number of parameters, experimented in Lei et al. (2018) and (c) SRU++ proposed in this work. Numbers
indicate the dimension of intermediate inputs/outputs given hidden size d = 2048 and attention size d′ = 512.

current network. Note that the computation of U
(Equation 1) is a linear transformation of the in-
put sequence X. We can replace this linear trans-
formation with self-attention operation to enhance
modeling capacity.

Specifically, given the input sequence repre-
sented as a matrix X ∈ RL×d, the attention com-
ponent computes the query, key and value repre-
sentations using the following multiplications,

Q = Wq X>

K = Wk Q

V = Wv Q

where Wq ∈ Rd′×d, Wk,Wv ∈ Rd′×d′ are
model parameters. d′ is the attention dimension
that is typically much smaller than d. Note that
the keys K and values V are computed using Q
instead of X such that the weight matrices Wk

and Wv are significantly smaller. We also tested
another variant in which we first project X′ =
WX> into the lower dimension d′, and then apply
three independent d′-by-d′ matrix multiplications
over X′ to obtain the query, key and value repre-
sentations. This variant achieves similar results.

Next, we compute a weighted average output
A ∈ Rd′×L using the scaled dot-product attention
introduced in Vaswani et al. (2017),

A> = softmax
(
Q>K√
d′

)
V>.

The final output U required by the elementwise re-
currence is obtained by another linear projection,

U> = Wo (Q+ α ·A) .

where α ∈ R is a learned scalar and Wo ∈ R3d×d′

is a parameter matrix. Q + α · A is a residual

connection which improves gradient propagation
and stabilizes training. We initialize α to zero and
as a result,

U> = WoQ = (WoWq)X>

initially falls back to a linear transformation of
the input X skipping the attention transformation.
Intuitively, skipping attention encourages leverag-
ing recurrence to capture sequential patterns dur-
ing early stage of training. As |α| grows, the at-
tention mechanism can learn long-range depen-
dencies for the model. In addition, WoWq can
be interpreted as applying a matrix factorization
trick with a small inner dimension d′ < d, reduc-
ing the total number of parameters. Figure 2 (a)-
(c) compares the differences of SRU, SRU with
this factorization trick (but without attention), and
SRU++ proposed in this section.

The last modification is adding layer normaliza-
tion (Ba et al., 2016) to each SRU++ layer. In our
implementation, we apply normalization after the
attention operation and before the matrix multipli-
cation with Wo,

U> = Wo layernorm(Q+ α ·A).

This implementation is post-layer normalization in
which the normalization is added after the resid-
ual connection. Alternatively, pre-layer normal-
ization (Xiong et al., 2020) only applies to the non-
linear transformation. While pre-normalization
tends to be less sensitive to different learning rates,
we use post-normalization for better results fol-
lowing the observations in Liu et al. (2020b). We
analyze the effectiveness of layer normalization in
Appendix A.2.

7636

Model Batch size B ×M BPC ↓
Trans-XL 24×512 1.06
SRU++ 24×512 1.03
SRU++ 16×768 1.02

Table 1: Test BPC of SRU++ and Transformer-XL on
ENWIK8 dataset. We train SRU++ using the same
setting as Transformer-XL base model. Numbers are
smaller the better. B is the number of sequence. M is
the unroll size (and additional context size).

4 Experimental setup

Datasets We evaluate our model on four stan-
dard NLP benchmarks.

• ENWIK8 (Hutter, 2006) is a character-level
language modeling dataset consisting of
100M tokens taken from Wikipedia. The vo-
cabulary size of this dataset about 200. We
use the standard 90M/5M/5M splits as the
training, dev and test sets, and report bits-per-
character (BPC) as the evaluation metric.

• WIKI-103 (Merity et al., 2017) is a word-
level language modeling dataset. The train-
ing data contains 100M tokens extracted from
Wikipedia articles. Following prior work, we
use a vocabulary of 260K tokens, and adap-
tive embedding and softmax layers (Grave
et al., 2017; Baevski and Auli, 2019).

• BILLION WORD (Chelba et al., 2013) is one
of the largest language modeling datasets
containing 768M tokens for training. Unlike
WIKI-103 in which sentences in the same
article are treated as consecutive inputs to
model long context, the sentences in BIL-
LION WORD are randomly shuffled. Follow-
ing Baevski and Auli (2019), we use a vocab-
ulary of 800K tokens, adaptive embedding
and softmax layers.

• IWSLT’14 De→En is a low-resource ma-
chine translation dataset consists of 170K
translation pairs. We showcase SRU++ can
be applied to other tasks such as translation.
We follow the same setup of Lin et al. (2020)
and other previous work. The dataset uses a
shared vocabulary of 14K BPE tokens.

Models All our language models are constructed
with a word embedding layer, multiple layers of

Model Param BPC ↓ GPU hrs ↓
Trans-XL 41M 1.06 356
SHA-LSTM 54M 1.07 28†

k = 1

42M

1.022 37†

k = 2 1.025 29†

k = 5 1.032 24†

k = 10 1.033 22†

No attention 1.190 20†

Table 2: Results of SRU++ on ENWIK8 by enabling
attention every k layers. We adjust the hidden size so
the number of parameters are comparable. † indicates
mixed precision training.

SRU++ and an output linear layer followed by
softmax operation. We use single-head attention
in each layer and 10 SRU++ layers for all our mod-
els. We use the same dropout probability for all
layers and tune this value according to the model
size and the results on the dev set. By default, we
set the hidden dimension d : d′ = 4 : 1. We re-
port additional analysis and tune this ratio for best
results in Section 5 and Appendix A.

For simplicity, SRU++ does not use recent tech-
niques that are shown useful to Transformer such
as multi-head attention, compressed memory (Rae
et al., 2020), relative position (Shaw et al., 2018;
Press et al., 2021), nearest-neighbor interpola-
tion (Khandelwal et al., 2020) and attention vari-
ants to handle very long context (Sukhbaatar et al.,
2019a; Roy et al., 2021).

We compare with previous Transformer models
that incorporate one or several these techniques.
However, we do not compare with results that
use additional data or dynamic evaluation (Graves,
2013; Krause et al., 2018), for a fair comparison
between all models.

Optimization We use RAdam (Liu et al., 2020a)
with the default β values as our optimizer. RAdam
is a variant of Adam optimizer (Kingma and Ba,
2014) that is reported less sensitive to the choice
of learning rate and warmup steps while achiev-
ing similar results at the end. We use a fixed
weight decay of 0.1 and an initial learning rate of
0.0003 in our experiments. These values are se-
lected based on ENWIK8 dev set and used for other
tasks. See Appendix A.3 for more details. We use
a cosine learning rate schedule following Dai et al.
(2019). We do not change the initial learning rate
unless otherwise specified. See Appendix B for
the detailed training configuration of each model.

7637

Table 1

Effective GPU
hour

Transformer-XL SRU++ SRU++ (k=10,
mixed precision)

0 1.52

4 1.41

7 1.36

11 1.32

14 1.31

18 1.28

22 1.28

25 1.26

29 1.25

32 1.24

36 1.24

40 1.23

43 1.22

47 1.21

50 1.21

54 1.20

58 1.20

61 1.20

65 1.19

68 1.19

72 1.19

76 1.18

79 1.18

83 1.17

86 1.17

90 1.17

94 1.17

97 1.17

101 1.16

104 1.16

108 1.16

112 1.15

115 1.15

119 1.15

122 1.15

126 1.14

130 1.15

133 1.14

137 1.14

140 1.14

144 1.14

148 1.13

151 1.13

155 1.13

158 1.13

162 1.13

166 1.13

169 1.12

173 1.12

176 1.13

180 1.12

184 1.12

187 1.12

191 1.12

194 1.11

198 1.11

202 1.11

205 1.11

209 1.11

212 1.11

216 1.11

220 1.11

223 1.11

227 1.11

230 1.11

234 1.10

237 1.10

241 1.10

245 1.10

248 1.10

252 1.10

255 1.10

259 1.10

263 1.10

266 1.10

270 1.10

273 1.10

277 1.10

281 1.10

284 1.09

288 1.10

291 1.10

295 1.10

299 1.09

302 1.09

306 1.10

309 1.09

313 1.09

317 1.09

320 1.09

324 1.09

327 1.09

331 1.09

335 1.09

338 1.09

342 1.09

345 1.09

349 1.09

353 1.09

356 1.09

0 1.47

2 1.36

4 1.31

6 1.28

8 1.26

10 1.25

12 1.23

13 1.22

15 1.22

17 1.21

19 1.20

21 1.20

Bi
ts

 P
er

 C
ha

ra
ct

er
 (B

PC
)

1.0

1.2

1.3

1.5

 Effective training hours

0 90 180 270 360

Transformer-XL
SRU++
SRU++ (k=10, mixed precision)

�1

Figure 3: Dev BPC vs. total GPU hours used on EN-
WIK8 for each model. Using automatic mixed preci-
sion (amp) and only one attention sub-layer achieves
16x reduction. To compute the dev BPC, the maximum
attention length is the same as the unroll size M during
training.

Each training batch contains B sequences (i.e.
the batch size) and M consecutive tokens for each
sequence (i.e. the unroll size), which gives an ef-
fective size of B ×M tokens per batch. Follow-
ing standard practice, the previous training batch is
provided as additional context for attention, which
results in a maximum attention length of 2 ×M .
For ENWIK8 and WIKI-103 datasets, the training
data is partitioned into B chunks by concatenating
articles and ignoring the boundaries between arti-
cles. For BILLION WORD dataset, we follow Dai
et al. (2019) and concatenate sentences to create
the training batches. Sentences are randomly shuf-
fled and separated by a special token <s> indicat-
ing sentence boundaries.

5 Results

Does recurrence improve upon attention-only
model? We first conduct a comparison with the
Transformer-XL model (Dai et al., 2019) on EN-
WIK8 dataset2. Their base model consists of 41M
parameters and 12 Transformer layers. Follow-
ing the official instructions, we reproduced the re-
ported test BPC of 1.06 by training with 4 Nvidia
2080 Ti GPUs. The training took about 4 days or
a total of 360 GPU hours equivalently.

We train a 10-layer SRU++ model with 42M
parameters. For a fair comparison, we use the
same hyperparameter setting including the effec-
tive batch size, attention context length, learning
rate and the number of training iterations as the
Transformer-XL base model. Notably, our base
model can be trained using 2 GPUs due to less
GPU memory usage. After training, we set the at-

2https://github.com/kimiyoung/
transformer-xl/tree/master/pytorch

42M model

Dev BPC Test BPC

10 dev_bpc=1.072 test_bpc=1.053 dev_bpc=1.053 test_bpc=1.032 1.053 1.032

9 dev_bpc=1.074 test_bpc=1.055 dev_bpc=1.056 test_bpc=1.034 1.056 1.034

8 dev_bpc=1.073 test_bpc=1.053 dev_bpc=1.056 test_bpc=1.033 1.056 1.033

7 dev_bpc=1.074 test_bpc=1.054 dev_bpc=1.057 test_bpc=1.035 1.057 1.035

6 dev_bpc=1.074 test_bpc=1.055 dev_bpc=1.058 test_bpc=1.036 1.058 1.036

5 dev_bpc=1.077 test_bpc=1.057 dev_bpc=1.061 test_bpc=1.040 1.061 1.040

4 dev_bpc=1.079 test_bpc=1.059 dev_bpc=1.064 test_bpc=1.043 1.064 1.043

3 dev_bpc=1.081 test_bpc=1.062 dev_bpc=1.067 test_bpc=1.048 1.067 1.048

2 dev_bpc=1.085 test_bpc=1.068 dev_bpc=1.074 test_bpc=1.056 1.074 1.056

1 dev_bpc=1.174 test_bpc=1.177 dev_bpc=1.173 test_bpc=1.176 1.173 1.176

0 dev_bpc=1.176 test_bpc=1.184 dev_bpc=1.176 test_bpc=1.184

9 dev_bpc=1.069 test_bpc=1.048 dev_bpc=1.050 test_bpc=1.026 1.050

8 dev_bpc=1.070 test_bpc=1.048 dev_bpc=1.050 test_bpc=1.025 1.050

7 dev_bpc=1.069 test_bpc=1.048 dev_bpc=1.049 test_bpc=1.026 1.049

6 dev_bpc=1.070 test_bpc=1.049 dev_bpc=1.050 test_bpc=1.026 1.050

5 dev_bpc=1.073 test_bpc=1.053 dev_bpc=1.053 test_bpc=1.032 1.053

4 dev_bpc=1.073 test_bpc=1.053 dev_bpc=1.054 test_bpc=1.032 1.054

3 dev_bpc=1.073 test_bpc=1.054 dev_bpc=1.054 test_bpc=1.033 1.054

2 dev_bpc=1.075 test_bpc=1.055 dev_bpc=1.056 test_bpc=1.035 1.056

1 2 3 4 5 6 7 8 9 10

1.173

1.074 1.067 1.064 1.061 1.058 1.057 1.056 1.056 1.053

Dev BPC

Which layer to put the 1 attention

1

1.04

1.08

1.12

1.16

1.2

1 2 3 4 5 6 6 7 8 9 10

Dev BPC
Test BPC

Location of the attention

2 3 4 5 6 7 8 9

1.056 1.054 1.054 1.053
1.050 1.049 1.050 1.050

 1

Figure 4: Analyzing where to apply attention. We en-
able only one attention layer (top figure) or two (bottom
figure) in the SRU++ model. For the latter, we always
apply attention in the last layer and move the location
of the other. X-axis is the layer index. The layer closest
to the input embedding layer has index 1.

tention context length to 2048 for testing, similarly
to the Transformer-XL baseline. Table 1 presents
the results. Our model achieves a test BPC of 1.03,
outperforming the baseline by a large margin. This
result suggests that combining recurrence and at-
tention can greatly outperform an attention-only
model. We obtain a BPC of 1.02 by extending
the attention context length from 512 to 768, while
keeping the number of tokens per batch the same.

How much attention is needed? Merity (2019)
demonstrated that using a single attention layer
with LSTM retains most of the modeling capac-
ity compared to using multiple attention layers.
We conduct a similar analysis to understand how
much attention is needed in SRU++. To do so, we
only enable attention every k layers. The layers
without attention become the variant with dimen-
sion projection illustrated in Figure 2 (b). Note
that k = 1 gives the default SRU++ model with
attention in every layer, and k = 10 means only
the last layer has attention in a 10-layer model.

Table 2 presents the results by varying k. Our
base model is the same 10-layer SRU++ model
in Table 1. We see that using 50% less atten-
tion (k = 2) achieves almost no increase in
test BPC. Moreover, using only a single atten-
tion module (k = 10) leads to a marginal loss
of 0.01 BPC but reduces the training time by
40%. Our results still outperform Transformer-XL
model and single-headed attention LSTM (Merity,
2019) greatly by 0.03 BPC. Figure 3 showcases
the training efficiency of our model. SRU++ is

https://github.com/kimiyoung/transformer-xl/tree/master/pytorch
https://github.com/kimiyoung/transformer-xl/tree/master/pytorch

7638

Model Parameters ↓ Test BPC ↓ GPU days ↓
Longformer 30L (Beltagy et al., 2020) 102M 0.99 104†

All-attention network 36L (Sukhbaatar et al., 2019b) 114M 0.98 64
Transformer-XL 24L (Dai et al., 2019) 277M 0.99 -
◦ Compressive memory (Rae et al., 2020) - 0.97 -

Feedback Transformer (Fan et al., 2020) 77M 0.96 -
SRU++ Base 108M 0.97 6†

◦ only 2 attention layers (k = 5) 98M 0.98 4†

SRU++ Large 191M 0.96 12†

◦ d = 8 d′ 195M 0.95 13†

Table 3: Comparison with top-performing models on ENWIK8 dataset. We include the training cost (measured by
the number of GPUs used × the number of days) if it is reported in the previous work. Our results are obtained
using an AWS p3dn instance with 8 V100 GPUs. The reported training time of all-attention network is based on
V100 GPUs while the training time of Longformer is based on RTX8000 GPUs (which is about 90% speed of
V100). † indicates mixed precision training.

Ratio Dimensions d, d′ Dev BPC ↓
4 3072 768 0.997
6 3840 640 0.992
8 4480 560 0.991
10 5040 504 0.992

Table 4: Dev BPC on ENWIK8 by changing the ratio
d : d′ in the SRU++ model while fixing the number of
parameters to 108M.

5x faster to reach the dev BPC obtained by the
Transformer-XL model. Furthermore, using au-
tomatic mixed precision training and a single at-
tention layer (k = 10) achieves 16x reduction on
training cost.

Where to use attention? Next, we analyze if the
location of attention in SRU++ makes a non-trivial
difference. Figure 4 (top) compares the results by
enabling attention in only one of the SRU++ lay-
ers. Applying attention in the first bottom layer
achieves significantly worse result. We believe
this is due to the lack of positional information
for attention, since SRU++ does not use positional
encoding. Enabling attention in subsequent layers
gives much better and comparable results because
recurrence can encode positional information.

Moreover, SRU++ consistently achieves worse
results by moving the attention to lower layer
closer to the input embedding. We also enable a
second attention layer while fixing the first one
in the 10th layer. The corresponding results are
shown in Figure 4 (bottom). Similarly, SRU++
achieves worse results if the attention is added to

one of the lower layers. In contrast, results are
comparable once the attention is placed in a high-
enough layer. These observations suggest that the
model should first learn local features before atten-
tion plays a most effective role at capturing long-
range dependencies. More analyses can be found
in Appendix A.

Does the ratio d : d′matter? Transformer mod-
els by default use a FFN dimension that is 4 times
larger than the attention dimension (Vaswani et al.,
2017). We analyze the ratio of recurrence dimen-
sion d to attention dimension d′ for SRU++. A
small value of d′ can reduce the amount of com-
putation and the number of parameters used in at-
tention layers but may limit the modeling capac-
ity. Table 4 compares the results of using different
d : d′ ratio given a similar amount of model pa-
rameters. We fix the model size to around 108M
and use 10 SRU++ layers. Changing this ratio
from 4 to a higher value gives better result. The
best dev result is obtained with a ratio of 8.

Given this observation, we report SRU++ result
using a default ratio of 4 as well as a ratio of 8
in the subsequent result sections. This ensures we
conduct a comparison that uses a setup similarly to
the default of Transformer models, but also show-
cases stronger results SRU++ can achieve.

ENWIK8 Table 3 compares our model with other
top-performing models on the ENWIK8 dataset.
We train a base model with d = 3072 and a large
model with d = 4096 using 400K training steps.
The unroll size and attention context length are set
to 1024 during training and 3072 during evalua-

7639

Model Parameters ↓ Test PPL ↓ GPU days ↓
All-attention network 36L (Sukhbaatar et al., 2019b) 133M 20.6 -
Feedback Transformer (Fan et al., 2020) 139M 18.2 214
Transformer (Baevski and Auli, 2019) 247M 18.7 22†

Transformer-XL 18L (Dai et al., 2019) 257M 18.3 -
◦ Compressive memory (Rae et al., 2020) - 17.1 -

Routing Transformer (Roy et al., 2021) - 15.8 -
kNN-LM (Khandelwal et al., 2020) - 15.8 -
SRU++ Base 148M 18.3 8†

SRU++ Large 232M 17.4 14†

◦ d = 8 d′ 234M 17.1 15†

◦ only 2 attention layers (k = 5) 225M 17.3 11†

Table 5: Comparison with top-performing models on WIKI-103 dataset. We include the training cost (measured by
the number of GPUs used × the number of days) if it is reported in the previous work. The reported training costs
are based on V100 GPUs. Our results are similarly obtained using an AWS p3dn instance with 8 V100 GPUs. †
indicates mixed precision training.

Model Param PPL ↓ Days ↓

Transformer
331M

25.6 57†

25.2 147†

465M 23.9 192†

SRU++ 328M 25.1 36†

SRU++ (k = 5) 465M 23.5 63†

Table 6: Test perplexity and effective GPU days for
training of SRU++ models and the Transformer models
of Baevski and Auli (2019) on BILLION WORD dataset.

tion. To compare the computation efficiency we
report the effective GPU days – the number of
GPUs multiplied by the number of days needed
to finish training. Our base model achieves bet-
ter BPC and uses a fraction of the training cost
reported in previous work. Furthermore, our large
models achieve a new state-of-the-art result on this
dataset, reaching a test BPC of 0.96 when d = 4 d′

and 0.95 when d = 8 d′.

WIKI-103 Table 5 presents the result of SRU++
models and other top results on the WIKI-103
dataset. We train one base model with 148M pa-
rameters and a few large models which contain
about 230M parameters. As shown in the table,
our base model obtains a test perplexity of 18.3
using 8 GPU days of training, about 3x reduction
compared to the Transformer model in Baevski
and Auli (2019) and over 10x reduction com-
pared to Feedback Transformer (Fan et al., 2020).
Again, changing the hidden size ratio to d = 8 d′

improves the modeling capacity. Our big model

Model Speed↑ PPL↓
kNNLM (Khandelwal et al.) 145 15.8
Trans (Baevski and Auli) 2.5k 18.7
Trans-XL (Dai et al.) 3.2k 18.3
Shortformer (Press et al.) 15k 18.2
SRU++ Large 15k 17.1
SRU++ Large (k = 5) 22k 17.3

Table 7: Inference speed (tokens/second) on WIKI-103
test set. Results of baselines are taken from Press et al.
(2021). We use a single V100 GPU, a batch size of 1
and maximum attention length 2560 for consistency.

achieves a test perplexity of 17.1. The required
training cost remains significantly lower.

BILLION WORD We double our training itera-
tions to 800K and use a learning rate of 0.0002 for
the BILLION WORD dataset. We train a base model
using d = 4096, d′ = 1024 and an effective batch
size of 65K tokens per gradient update. We also
train a large model by increasing the hidden size
d to 7616 and the batch size to 98K. In addition,
we use only 2 attention layers (k = 5) for the large
model. Table 6 reports the test perplexity and asso-
ciated training cost. Our base and large model ob-
tain a test perplexity of 25.1 and 23.5 respectively,
outperforming the Transformer model of Baevski
and Auli (2019) given similar model size. More-
over, SRU++ achieves 3-4x training cost reduction
and is trained using 8 GPUs. In comparison, the
Transformer model uses 32 or 64 V100 GPUs.

7640

Model Param BLEU ↑ Hrs ↓
Transformer 20.1M 35.9±0.1 10.5
SRU++ 20.4M 36.3±0.2 8.5
SRU++ (k = 2) 19.6M 36.1±0.1 7.5

Table 8: Results on IWSLT’14 De→En test set. We
use a beam size of 5. BLEU scores and training time
are averaged over 4 independent runs.

Inference speed Table 7 compares the infer-
ence speed of SRU++ with other top-performing
models on WIKI-103 test set. We use a single
V100 GPU for inference. Our large model runs
at least 4.5x faster than all baseline models ex-
cept Shortformer (Press et al., 2021). In addition,
our model achieves 0.9-1.1 perplexity lower than
Shortformer and runs 50% faster when using 2 at-
tention layers (k = 5).

IWSLT Does SRU++ work well for other
tasks? We study this question by evaluating
SRU++ on the IWSLT’14 De→En translation
task. We use the open-sourced training and eval-
uation code of Lin et al. (2020). The base model
is an 8-layer Transformer model containing 20M
parameters. We train SRU++ models using 6 lay-
ers and d = 1024, resulting in similar number
of parameters. We use the original settings such
as learning rate and batch size, except that we
use RAdam optimizer for consistency and increase
the number of training epochs to 50. Both archi-
tectures achieve much higher BLEU scores given
more training epochs.3 Table 8 presents the test re-
sults. Without additional hyperparameter tuning,
SRU++ achieves 0.4 BLEU score higher and less
training time compared to the Transformer model
tuned in Lin et al. (2020).

Why does SRU++ reduce training cost in our
experiments? Several factors contribute to the
computation reduction observed in our experi-
ments. First, combining attention and recurrence
gives stronger modeling capacity. As shown in
our experiments, SRU++ often achieves compara-
ble results using fewer layers and/or fewer param-
eters. The required computation are much lower
for shallower and smaller models.

We also observe higher training efficiency, re-
quiring fewer training steps and smaller training
batch compared to several Transformer models.

3Lin et al. (2020) reports a test BLEU of 35.2. We obtain
35.9 for the same Transformer model by training longer.

For example, SRU++ uses a maximum effective
batch size of 98K tokens and 800K training steps
on the BILLION WORD dataset, while the Trans-
former model in comparison (Baevski and Auli,
2019) uses 128K tokens and near 1000K steps.
The reduced batch size and gradient updates cut
down the training cost.

Finally, model implementation is an important
factor for computation saving. Our implemen-
tation is highly efficient for two reasons. First,
the fast recurrence operation of SRU is a reusable
module that is already optimized for speed (Lei
et al., 2018). Second, since recurrence encodes
positional information, we can use simple single-
head attention and remove positional encoding.

On the contrary, advanced attention and po-
sitional encoding mechanism can generate non-
trivial computation overhead. To see this, we mea-
sure the running time of SRU++ and Transformer-
XL using Pytorch Profiler. Figure 5 (a) shows
the average model forward time of a single batch.
SRU++ runs 4-5x times faster compared to the
Transformer-XL implementation. Figure 5 (b)
breaks down the computation and highlights the
most time-consuming operations in both models.
The matrix multiplications are one of the most
expensive operations for both models. Surpris-
ingly, many operations in the relative attention of
Transformer-XL are computationally expensive.
For example, the relative attention requires shift-
ing the attention scores and adding up different at-
tention score matrices. Both require a lot of time
but they are not needed in non-relative attention.
In addition, the last column shows the running
time of tensor transpose operators needed by batch
matrix-matrix multiplications in attention. Again,
the relative attention uses an order of magnitude
more time compared to the simple single-head at-
tention used in our model implementation.4

6 Related Work

Accelerating common architectures for NLP has
become an increasingly important research topic
recently (Tay et al., 2020; Sun et al., 2020; Lan
et al., 2020). Our work is closely related to two
lines of research under this topic.

4Note that this high latency of tensor transpose might be
caused by sub-optimal implementation choices such as a poor
arrangement of tensor axes in the open-sourced model. There
is room for improvement. Nevertheless, relative attention and
positional encoding are reported to be non-trivially slower in
other works (Shaw et al., 2018; Tian et al., 2021).

7641

Table 1

Table 2

42M parameters 139M parameters

SRU++ 69.8 223.3

Transformer-XL 284.6 1175.6

0

300

600

900

1,200

41M parameters 139M parameters

1175.6

284.6
223.3

69.8

SRU++
Transformer-XL

Table 3

MatMul Mem concat Layernorm Recurrence Rel. position:
score shift

Rel. position:
score addition

Transpose

SRU++ 130.7 15.9 3.3 23.2 9.3

Transformer-XL 160.4 5 15 64.6 269.1 255.3

0

75

150

225

300

MatM
ul

Mem
 co

ncat

Laye
rnorm

Recu
rre

nce

Rel.
positi

on:

sco
re

shift

Rel.
positi

on:

sco
re

ad
ditio

n
Tra

nspose

SRU++
Transformer-XL

(a) (b)

 1

Figure 5: Profiling of SRU++ and Transformer-XL: (a) forward time (in milliseconds) of small and large models
and (b) forward time used in various types of time-consuming operations. We use a single GPU for profiling to
avoid extra overhead such as data synchronization between GPUs. We use an unroll size / context lengthM = 512
and 1024 respectively for small and large models. All models use a batch size B = 16 for profiling.

First, previous works have tackled the speed
problem of recurrent neural networks (RNNs)
and have proposed various fast RNN implemen-
tations (Diamos et al., 2016; Campos et al., 2018;
Zhang and Sennrich, 2019). Notably, the Quasi-
RNN (Bradbury et al., 2017) and SRU (Lei et al.,
2018) have invented highly-parallelizable recur-
rence and combined them with convolutions or
highway networks respectively. The resulting ar-
chitectures achieve equivalent parallelism as con-
volutional and attention models. This advance-
ment eliminates the need of avoiding recurrence
computation to trade model training efficiency, a
design choice made by the Transformer architec-
ture. Our model builds on top of SRU.

Second, several recent works have argued that
using attention alone is not the best architecture
in terms of model expressiveness. For example,
Dong et al. (2021) demonstrate theoretically and
empirically that using pure attention results in per-
formance degeneration. Gulati et al. (2020) have
combined convolution and attention and obtained
new state-of-the-art results for speech recogni-
tion. Moreover, RNNs have been incorporated
into Transformer architectures, resulting in im-
proved results in machine translation and language
understanding tasks (Lei et al., 2018; Huang et al.,
2020). Our work is built upon a similar hypoth-
esis that recurrence and attention are complemen-
tary at sequence modeling. We demonstrate that
jointly leveraging fast recurrence and attention not
only achieves state-of-the-art modeling results but
also obtain significant computation reduction.

Being orthogonal to our work, many recent
works improve the efficiency of Transformer mod-

els by accelerating attention computation (Zaheer
et al., 2020; Katharopoulos et al., 2020; Vyas
et al., 2020; Peng et al., 2021). Examples include
Longformer (Beltagy et al., 2020), Reformer (Ki-
taev et al., 2020), Linformer (Wang et al., 2020)
and Routing Transformer (Roy et al., 2021). In
contrast, our work optimizes computational effi-
ciency using recurrence combined with minimal
attention and our model can incorporate these at-
tention variants for additional speed improvement.

7 Conclusion

We present a highly-efficient architecture com-
bining fast recurrence and attention, and evalu-
ate its effectiveness on various language modeling
datasets. We demonstrate fast RNNs with little at-
tention not only achieve top results but also reduce
training cost significantly. Our work shares a dif-
ferent idea to accelerating attention, therefore pro-
viding an orthogonal direction to advancing state-
of-the-art model architecture. As future work, we
believe the model can be improved using stronger
attention or recurrent implementations, better nor-
malization or optimization techniques.

Acknowledgement

We would like to thank ASAPP Inc. for mak-
ing this work possible. We thank Hugh Perkins,
Joshua Shapiro, Sam Bowman, Danqi Chen and
Yu Zhang for providing invaluable feedback for
this work. Finally, we thank Jeremy Wohlwend,
Jing Pan, Prashant Sridhar and Kyu Han for help-
ful discussions, and ASAPP Language Technol-
ogy and Infra teams for the compute cluster setup
for our research experiments.

7642

References
Jeremy Appleyard, Tomas Kocisky, and Phil Blun-

som. 2016. Optimizing performance of recur-
rent neural networks on gpus. arXiv preprint
arXiv:1604.01946.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Alexei Baevski and Michael Auli. 2019. Adaptive in-
put representations for neural language modeling. In
International Conference on Learning Representa-
tions (ICLR).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR).

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document trans-
former. arXiv:2004.05150.

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2017. Quasi-Recurrent Neural Net-
works. In International Conference on Learning
Representations (ICLR).

Andrew Brock, Soham De, and Samuel L Smith. 2021.
Characterizing signal propagation to close the per-
formance gap in unnormalized resnets. In Interna-
tional Conference on Learning Representations.

Víctor Campos, Brendan Jou, Xavier Giró i Nieto,
Jordi Torres, and Shih-Fu Chang. 2018. Skip rnn:
Learning to skip state updates in recurrent neural
networks. In International Conference on Learning
Representations (ICLR).

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Tech-
nical report, Google.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics.

Greg Diamos, Shubho Sengupta, Bryan Catanzaro,
Mike Chrzanowski, Adam Coates, Erich Elsen,
Jesse Engel, Awni Hannun, and Sanjeev Satheesh.
2016. Persistent rnns: Stashing recurrent weights

on-chip. In Proceedings of The 33rd International
Conference on Machine Learning (ICML).

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas
Loukas. 2021. Attention is not all you need: pure at-
tention loses rank doubly exponentially with depth.
In Proceedings of the 38th International Conference
on Machine Learning (ICML).

Angela Fan, Thibaut Lavril, Edouard Grave, Armand
Joulin, and Sainbayar Sukhbaatar. 2020. Access-
ing higher-level representations in sequential trans-
formers with feedback memory. arXiv preprint
arXiv:2002.09402.

Edouard Grave, Armand Joulin, Moustapha Cissé,
Hervé Jégou, et al. 2017. Efficient softmax approx-
imation for gpus. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML).

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming
Pang. 2020. Conformer: Convolution-augmented
transformer for speech recognition. In Proceedings
of the 21st Annual Conference of the International
Speech (INTERSPEECH).

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang,
Jinfeng Zhang, and Zhaopeng Tu. 2019. Modeling
recurrence for transformer. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017.
Train longer, generalize better: closing the gener-
alization gap in large batch training of neural net-
works. In Advances in Neural Information Process-
ing Systems.

Yi-Te Hsu, Sarthak Garg, Yi-Hsiu Liao, and Ilya
Chatsviorkin. 2020. Efficient inference for neural
machine translation. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing.

Zhiheng Huang, Peng Xu, Davis Liang, Ajay Mishra,
and Bing Xiang. 2020. Trans-blstm: Transformer
with bidirectional lstm for language understanding.
arXiv preprint arXiv:2003.07000.

Marcus Hutter. 2006. The human knowledge compres-
sion contest. http://prize.hutter1.net/.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
RNNs: Fast autoregressive transformers with linear
attention. In Proceedings of the 37th International
Conference on Machine Learning (ICML).

https://arxiv.org/abs/1604.01946
https://arxiv.org/abs/1604.01946
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/1611.01576
https://arxiv.org/abs/1611.01576
https://openreview.net/forum?id=IX3Nnir2omJ
https://openreview.net/forum?id=IX3Nnir2omJ
https://openreview.net/pdf?id=HkwVAXyCW
https://openreview.net/pdf?id=HkwVAXyCW
https://openreview.net/pdf?id=HkwVAXyCW
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://aclanthology.org/P19-1285.pdf
https://aclanthology.org/P19-1285.pdf
http://proceedings.mlr.press/v48/diamos16.pdf
http://proceedings.mlr.press/v48/diamos16.pdf
http://proceedings.mlr.press/v139/dong21a/dong21a.pdf
http://proceedings.mlr.press/v139/dong21a/dong21a.pdf
https://arxiv.org/abs/2002.09402v3
https://arxiv.org/abs/2002.09402v3
https://arxiv.org/abs/2002.09402v3
http://proceedings.mlr.press/v70/grave17a/grave17a.pdf
http://proceedings.mlr.press/v70/grave17a/grave17a.pdf
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.21437/Interspeech.2020-3015
https://aclanthology.org/N19-1122.pdf
https://aclanthology.org/N19-1122.pdf
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://aclanthology.org/2020.sustainlp-1.7
https://aclanthology.org/2020.sustainlp-1.7
https://arxiv.org/abs/2003.07000
https://arxiv.org/abs/2003.07000
http://proceedings.mlr.press/v119/katharopoulos20a/katharopoulos20a.pdf
http://proceedings.mlr.press/v119/katharopoulos20a/katharopoulos20a.pdf
http://proceedings.mlr.press/v119/katharopoulos20a/katharopoulos20a.pdf

7643

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations (ICLR).

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations
(ICLR).

Ben Krause, Emmanuel Kahembwe, Iain Murray, and
Steve Renals. 2018. Dynamic evaluation of neural
sequence models. In Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations (ICLR).

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav
Artzi. 2018. Simple recurrent units for highly par-
allelizable recurrence. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Alexander Lin, Jeremy Wohlwend, Howard Chen, and
Tao Lei. 2020. Autoregressive knowledge distilla-
tion through imitation learning. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In International Conference on Learn-
ing Representations (ICLR).

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2020a. On the variance of the adaptive learning rate
and beyond. In International Conference on Learn-
ing Representations (ICLR).

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu
Chen, and Jiawei Han. 2020b. Understanding the
difficulty of training transformers. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Stephen Merity. 2019. Single headed attention rnn:
Stop thinking with your head. arXiv preprint
arXiv:1911.11423.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture
models. In International Conference on Learning
Representations (ICLR).

Jinhwan Park, Yoonho Boo, Iksoo Choi, Sungho Shin,
and Wonyong Sung. 2018. Fully neural network
based speech recognition on mobile and embedded
devices. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah Smith, and Lingpeng Kong. 2021.
Random feature attention. In International Confer-
ence on Learning Representations (ICLR).

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better language modeling using
shorter inputs. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learn-
ing Representations (ICLR).

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based
sparse attention with routing transformers. Transac-
tions of the Association for Computational Linguis-
tics.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren
Etzioni. 2020. Green AI. Communications of the
ACM.

Yuan Shangguan, Jian Li, Qiao Liang, Raziel Alvarez,
and Ian McGraw. 2019. Optimizing speech recogni-
tion for the edge. arXiv preprint arXiv:1909.12408.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Sheng Shen, Zhewei Yao, Amir Gholami, Michael Ma-
honey, and Kurt Keutzer. 2020. PowerNorm: Re-
thinking batch normalization in transformers. In
Proceedings of the 37th International Conference on
Machine Learning (ICML).

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019a. Adaptive at-
tention span in transformers. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume
Lample, Herve Jegou, and Armand Joulin. 2019b.
Augmenting self-attention with persistent memory.
arXiv preprint arXiv:1907.01470.

https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://aclanthology.org/D19-5632
https://aclanthology.org/D19-5632
https://aclanthology.org/D19-5632
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgNKkHtvB
http://proceedings.mlr.press/v80/krause18a/krause18a.pdf
http://proceedings.mlr.press/v80/krause18a/krause18a.pdf
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://arxiv.org/abs/1709.02755
https://arxiv.org/abs/1709.02755
https://arxiv.org/abs/2009.07253
https://arxiv.org/abs/2009.07253
https://openreview.net/forum?id=BJC_jUqxe
https://openreview.net/forum?id=BJC_jUqxe
https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/2004.08249
https://arxiv.org/abs/2004.08249
https://arxiv.org/abs/1911.11423
https://arxiv.org/abs/1911.11423
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.neurips.cc/paper/2018/file/42299f06ee419aa5d9d07798b56779e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/42299f06ee419aa5d9d07798b56779e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/42299f06ee419aa5d9d07798b56779e2-Paper.pdf
https://arxiv.org/abs/2103.02143
https://aclanthology.org/2021.acl-long.427.pdf
https://aclanthology.org/2021.acl-long.427.pdf
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://aclanthology.org/2021.tacl-1.4.pdf
https://aclanthology.org/2021.tacl-1.4.pdf
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/1909.12408
https://arxiv.org/abs/1909.12408
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
http://proceedings.mlr.press/v119/shen20e/shen20e.pdf
http://proceedings.mlr.press/v119/shen20e/shen20e.pdf
https://arxiv.org/abs/1905.07799
https://arxiv.org/abs/1905.07799
https://arxiv.org/abs/1907.01470

7644

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobile-
BERT: a compact task-agnostic BERT for resource-
limited devices. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732.

Ran Tian, Joshua Maynez, and Ankur P Parikh. 2021.
Shatter: An efficient transformer encoder with
single-headed self-attention and relative sequence
partitioning. arXiv preprint arXiv:2108.13032.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Apoorv Vyas, Angelos Katharopoulos, and François
Fleuret. 2020. Fast transformers with clustered at-
tention. In Advances in Neural Information Process-
ing Systems (NeurIPS).

Sinong Wang, Belinda Z Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-
attention with linear complexity. arXiv preprint
arXiv:2006.04768.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In
Proceedings of the 37th International Conference on
Machine Learning (ICML).

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang
Zhao, and Junyang Lin. 2019. Understanding and
improving layer normalization. In Advances in Neu-
ral Information Processing Systems (NeurIPS).

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems (NeurIPS).

Biao Zhang and Rico Sennrich. 2019. A lightweight
recurrent network for sequence modeling. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics.

https://www.aclweb.org/anthology/2020.acl-main.195.pdf
https://www.aclweb.org/anthology/2020.acl-main.195.pdf
https://www.aclweb.org/anthology/2020.acl-main.195.pdf
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2108.13032
https://arxiv.org/abs/2108.13032
https://arxiv.org/abs/2108.13032
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f6a8dd1c954c8506aadc764cc32b895e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f6a8dd1c954c8506aadc764cc32b895e-Paper.pdf
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf
http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf
https://arxiv.org/abs/1911.07013
https://arxiv.org/abs/1911.07013
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://aclanthology.org/P19-1149.pdf
https://aclanthology.org/P19-1149.pdf

7645

A Additional results

A.1 Detailed analysis of attention
Table 10 presents a more comprehensive analysis
of attention in SRU++ models. First, we change
the number of attention layers and their locations
in the model. As shown in the top block of Ta-
ble 10, using attention in 50% of the layers leads
to no (or negligible) loss in model performance.
This is consistent with the results in Table 2 using
a smaller model. Enabling attention in higher lay-
ers performs slightly better than evenly distribut-
ing attention from the bottom to top layers.

We also experiment with using more than one
attention head in each of the attention layer, as
shown in the middle block of the table. Unlike
Transformer models however, we do not observe
a significant improvement using multiple heads.
We hypothesize that the recurrence states can al-
ready carry different features or information that
are present in different input positions, making re-
dundant heads unnecessary.

Finally, changing the ratio d : d′ from 4 to 8
gives similar improvements regardless of using 2
attention layers or 10 attention layers. This sug-
gests that the amount of attention and the hid-
den size ratio can be tuned independently for best
model performance.

A.2 The effectiveness of layer normalization
In our experiments, we have always used layer
normalization to stabilize training. However, we
also found layer normalization to achieve worse
generalization for larger models that are more
prone to over-fitting. Figure 6 showcases our em-
pirical observation on the ENWIK8 dataset. Us-
ing layer normalization achieves more rapid train-
ing progress and lower training loss, but results
in higher dev loss in the case of training a 108M
model. This generalization gap remains even if
we tune the dropout rate carefully. In addition,
although using layer normalization in the smaller
model with 41M parameters gives slightly better
dev results, we still observe a larger generalization
gap (indicated by the difference between training
loss and dev loss) compared to the run without
layer normalization. Similar over-fitting patterns
are observed on Wiki-103 dataset, and also in pre-
vious work (Xu et al., 2019).

On the other hand, turning off layer normaliza-
tion can achieve better generalization but makes
training sensitive to learning rate and parameter

initialization. For example, we have to use a
smaller learning rate of 0.00025 or lower to avoid
sudden gradient explosion during training. These
results suggest possible future work by improv-
ing the normalization method (Shen et al., 2020;
Brock et al., 2021).

A.3 Tuning weight decay and learning rate

We find that tuning the weight decay and learn-
ing rate critical to the success of training SRU++
and achieving best results. Table 9 provides a sen-
sitivity analysis by testing different learning rates
and weight decay values. Increasing the weight
decay consistently gives better results for all learn-
ing rates tested. Tuning the learning rate is also
needed to reach the best result. The non-trivial
effect of weight decay seems to be unique for
SRU++.

On the other hand, the performance of SRU++
remains robust once the appropriate weight decay
and learning rate are set. As shown in previous
results and analyses, SRU++ achieves strong and
relatively stable results to various hidden sizes,
number of attention layers and datasets. In partic-
ular, using the same weight decay value general-
ize well for all datasets (including language mod-
eling and translation tasks) and model configura-
tions tested.

0.10 0.01 0.00

3× 10−4 1.014 - -
2× 10−4 1.022 1.035 1.047

1.5× 10−4 1.030 1.038 1.040

Table 9: Dev BPC of SRU++ given a learning rate ∈
{1.5, 2, 3}×10−4 and a weight decay ∈ {0.1, 0.01, 0}.
‘-‘ means the training run diverged or got gradient ex-
plosion.

B Training details

Language modeling We use the RAdam opti-
mizer5 with the default hyperparameters β1 = 0.9
and β2 = 0.999 for all our experiments. We use a
cosine learning rate schedule with only 1 cycle for
simplicity. For faster training, we also leverage the
native automatic mixed precision (AMP) training
and distributed data parallel (DDP) of Pytorch in
all experiments, except those in Table 1 and Fig-

5https://github.com/LiyuanLucasLiu/
RAdam

https://github.com/LiyuanLucasLiu/RAdam
https://github.com/LiyuanLucasLiu/RAdam

7646

ure 1 for a fair comparison with the Transformer-
XL implementation.

Table 11 shows the detailed training configura-
tion of SRU++ models on ENWIK8 dataset. Most
training options are kept the same for all models.
We tune the dropout probability more carefully as
we found training is more prone to over-fitting and
under-fitting for this dataset. The large model is
trained with 2x batch size. As a result, we increase
the learning rate proportionally by a factor of

√
2

(Hoffer et al., 2017), which results in a rounded
learning rate of 0.0004.

Table 12 presents the detailed training config-
uration on WIKI-103 dataset. Similarly we use
d = 3072 and d = 4096 for the base and large
model respectively for a hidden size ratio d : d′ =
4 : 1. Following (Baevski and Auli, 2019), we use
an adaptive word embedding layer and an adap-
tive softmax layer for our models, and we tie the
weight matrices of the two layers. We keep the
total number of parameters comparable when we
use a different hidden size ratio d : d′ = 8 : 1.

Machine translation We use the open-sourced
code from Lin et al. (2020) for the IWSLT’14
De→En translation task. The Transformer model
tuned by the original work uses 8 layers for both
the encoder and decoder and a total of 20M pa-
rameters. Most of the training configuration re-
mains the same as the original work6, except for
a couple of changes. First, we use RAdam opti-
mizer and the same β values for consistency with
the language model task. We use the same weight
decay value of 0.1 for SRU++. The Transformer
model uses a weight decay of 0 that is tuned based
on dev set performance. Second, we increase the
number of training epochs to 50 (or equivalently
64K training steps) since all models achieve better
BLEU scores by training longer. This ensures we
compare models when they reach the maximum
performance.

Our SRU++ model uses a hidden size d = 1024,
an attention size d′ = 256 and 6 layers for the en-
coder and decoder, resulting in a similar number
of parameters as the Transformer model in com-
parison. Let Xsrc be the output representation of
the SRU++ encoder. Each SRU++ decoder layer
make uses of Xsrc by simplying treating it as extra
attention context. That is, the query, key and value

6https://github.com/asappresearch/
imitkd/blob/master/configs/iwslt/
teacher.yaml

representations are computed by concatenating the
input of the current layer Xtgt with Xsrc,

Q = [Qsrc,Qtgt]

= Wq [Xsrc,Xtgt]
>

K = Wk Q

V = Wv Q

The resulting representations Qtgt, K and V are
used for the rest of the attention computation. The
attention mask is set such that each target token
can only attend to all source tokens and preceding
target tokens.

https://github.com/asappresearch/imitkd/blob/master/configs/iwslt/teacher.yaml
https://github.com/asappresearch/imitkd/blob/master/configs/iwslt/teacher.yaml
https://github.com/asappresearch/imitkd/blob/master/configs/iwslt/teacher.yaml

7647

Layers that has attention Num of heads d d′ Model size Dev BPC

All layers 1 3072 768 108M 0.997
6,7,8,9,10 102M 0.997
2,4,6,8,10 102M 0.999
8,9,10 3136 784 103M 1.000
3,6,9 1.001

5,10 1 3072 768 98M 1.002
2 1.002

10 1 97M 1.007
2 1.006

All layers 1 3072 768 108M 0.997
5,10 98M 1.002
All layers 4480 560 109M 0.991
5,10 104M 0.997

Table 10: Results of 10-layer SRU++ models by varying the attention setting. We report the dev BPC on the EN-
WIK8 dataset. The first column indicates layers where the attention are located. Smaller index numbers represent
layers that are closer to the input of the model.

w/o layernorm (train)

Wall time Step Value

1611337071.5371500 1000 2.657274007797240

1611337101.2236000 1200 2.529681444168090

1611337219.7553800 2000 2.169663906097410

1611337249.5076100 2200 2.107694625854490

1611337308.776290 2600 2.004533529281620

1611337338.5322400 2800 1.9634863138198900

1611337368.2808800 3000 1.9250108003616300

1611337427.8713000 3400 1.857570767402650

1611337457.7218200 3600 1.8287327289581300

1611337487.7397000 3800 1.8009421825408900

1611337517.8699700 4000 1.7779759168624900

1611337636.9908000 4800 1.6934561729431200

1611337906.0310200 6600 1.5519849061965900

1611337935.4139400 6800 1.540087342262270

1611337995.2831700 7200 1.5166194438934300

1611338084.6097400 7800 1.3757587671279900

1611338192.2343200 8000 1.3422778844833400

1611338251.5155600 8400 1.2865111827850300

1611338311.247780 8800 1.246571660041810

1611338341.3814700 9000 1.2302122116088900

1611338401.182700 9400 1.2039235830307000

1611338460.9054000 9800 1.1817585229873700

1611338491.2045100 10000 1.1716248989105200

1611338579.986360 10600 1.1438642740249600

1611338609.7874100 10800 1.1355069875717200

1611338640.2011400 11000 1.1273367404937700

1611338669.9184400 11200 1.1194311380386400

1611338699.8080100 11400 1.1118884086608900

1611338789.5217400 12000 1.0913453102111800

1611338819.2172100 12200 1.0847340822219800

1611338878.6564300 12600 1.0736950635910000

1611338938.634150 13000 1.0638755559921300

1611338968.3398900 13200 1.0596907138824500

1611338998.3212200 13400 1.0557032823562600

1611339028.213880 13600 1.0519869327545200

1611339117.329950 14200 1.041569709777830

1611339147.1197000 14400 1.0384671688079800

1611339177.1859300 14600 1.0354359149932900

1611339206.8670300 14800 1.0324267148971600

1611339266.3683800 15200 1.0270730257034300

1611339356.9129400 15800 1.0193467140197800

1611339584.4410800 16800 1.0082122087478600

1611339614.040620 17000 1.0062239170074500

1611339644.1845000 17200 1.0042963027954100

1611339674.0886400 17400 1.0023585557937600

1611339703.9688600 17600 1.0005073547363300

1611339734.3312200 17800 0.9987223744392400

1611339884.082410 18800 0.9902057647705080

1611340122.1803100 20400 0.9785571694374080

1611340211.9193500 21000 0.9747878909111020

1611340241.847840 21200 0.9735962748527530

1611340451.0443200 22600 0.965568482875824

1611340540.6210800 23200 0.9623193740844730

1611340600.2668500 23600 0.9603083729743960

1611340630.008350 23800 0.9593459963798520

1611340737.6202000 24000 0.9583930373191830

1611340856.9190000 24800 0.9547959566116330

1611340886.8481200 25000 0.9539097547531130

1611340916.538310 25200 0.9529796838760380

1611341006.068060 25800 0.9504586458206180

1611341035.730980 26000 0.9496104121208190

1611341125.1855200 26600 0.9472671151161190

1611341244.7483000 27400 0.9442614912986760

1611341304.3362200 27800 0.942823588848114

1611341364.2134900 28200 0.9414118528366090

1611341393.8960400 28400 0.9407221078872680

1611341423.7701300 28600 0.9400051832199100

1611341453.7358700 28800 0.9393438696861270

1611341572.7540600 29600 0.9367689490318300

1611341632.4866600 30000 0.9355084300041200

1611341721.9245800 30600 0.9335870146751400

1611341751.693580 30800 0.9329618811607360

1611341781.3765400 31000 0.9323965907096860

1611341840.70701 31400 0.9312952756881710

1611341870.8656600 31600 0.9307621121406560

1611341900.8361200 31800 0.9302324652671810

1611342068.1920400 32400 0.9285956621170040

1611342127.5092600 32800 0.9275936484336850

1611342158.0955600 33000 0.9270856976509090

1611342217.7881900 33400 0.9260081052780150

1611342247.5522200 33600 0.9255082607269290

1611342336.847130 34200 0.9240961670875550

1611342485.909570 35200 0.921694815158844

1611342515.6840200 35400 0.9212267398834230

1611342545.5141900 35600 0.9207830429077150

1611342604.88217 36000 0.919914722442627

1611342634.8365800 36200 0.91945481300354

1611342694.1477900 36600 0.9186022281646730

1611342753.1361600 37000 0.9177930355072020

1611342782.943090 37200 0.917381763458252

1611342812.6031400 37400 0.916907548904419

1611342842.197100 37600 0.9164507985115050

1611342901.6008600 38000 0.9156600832939150

w/o layernorm (dev)

Wall time Step Value

1611338188.9598500 8000 1.0663686990737900

1611339461.661960 16000 0.9641713500022890

1611340734.3594600 24000 0.9330013990402220

1611342004.957120 32000 0.9114237427711490

1611343273.7114700 40000 0.8965566158294680

1611344546.9411700 48000 0.8856385946273800

1611345817.9004100 56000 0.8756989240646360

1611347089.4916100 64000 0.8720692992210390

1611348360.7054900 72000 0.8686217665672300

1611349630.3297000 80000 0.8582323789596560

1611350901.0565900 88000 0.8546746969223020

1611352174.063930 96000 0.8520373702049260

1611353446.0834700 104000 0.8436130285263060

1611354715.4457800 112000 0.839104950428009

1611355987.3004200 120000 0.8373277187347410

1611357256.235530 128000 0.8320601582527160

1611358527.3281100 136000 0.8271564245224000

1611359798.74332 144000 0.8258444666862490

1611361069.4354800 152000 0.823585569858551

1611362340.716950 160000 0.817122220993042

1611363611.8503900 168000 0.8170658946037290

1611364885.2492400 176000 0.8112522959709170

1611366157.4374100 184000 0.8087211847305300

1611367430.2773400 192000 0.8067322969436650

1611368697.6260400 200000 0.803813636302948

1611369967.8688700 208000 0.7996566295623780

1611371239.9054200 216000 0.7956663966178890

1611372513.0585700 224000 0.7940474152565000

1611373787.0576800 232000 0.7916958928108220

1611375055.3947400 240000 0.7893047332763670

1611376325.6399600 248000 0.7844022512435910

1611377594.440950 256000 0.7830475568771360

1611378864.5893200 264000 0.7798649072647100

1611380133.4820300 272000 0.7771931886672970

1611381403.405950 280000 0.775232195854187

1611382675.2811500 288000 0.7718082070350650

1611383943.104460 296000 0.7713218927383420

1611385211.9628000 304000 0.767278254032135

1611386480.939330 312000 0.7652620077133180

1611387754.8526100 320000 0.7647847533226010

1611389025.2982300 328000 0.7623053193092350

1611390300.0603400 336000 0.7601140737533570

1611391572.798170 344000 0.7588826417922970

1611392841.4177200 352000 0.7573227286338810

1611394111.5734000 360000 0.7567527890205380

1611395381.0969100 368000 0.7558491230010990

1611396652.4800000 376000 0.7554975748062130

1611397924.6392000 384000 0.755299985408783

1611399203.1538300 392000 0.755027711391449

1611400486.0493300 400000 0.7549550533294680

w/ layernorm (train)

Wall time Step Value

1611336585.1795100 1000 2.119985580444340

1611336616.170890 1200 2.014101505279540

1611336740.0102600 2000 1.7642699480056800

1611336771.302070 2200 1.7258100509643600

1611336833.7248400 2600 1.6623579263687100

1611336864.8088900 2800 1.6381422281265300

1611336895.9084900 3000 1.6147537231445300

1611336958.114630 3400 1.5731769800186200

1611336989.4217000 3600 1.5555953979492200

1611337020.5708900 3800 1.5379095077514600

1611337051.9692100 4000 1.5242030620575000

1611337177.0957400 4800 1.470809817314150

1611337456.8190400 6600 1.3770489692688000

1611337488.0621600 6800 1.3685448169708300

1611337549.6526300 7200 1.351279854774480

1611337642.715610 7800 1.245132565498350

1611337756.2791600 8000 1.2252988815307600

1611337818.7660500 8400 1.1928768157959000

1611337881.578760 8800 1.1683428287506100

1611337913.0581700 9000 1.157269835472110

1611337975.783070 9400 1.1379694938659700

1611338037.9804700 9800 1.120625615119930

1611338069.0690400 10000 1.112343668937680

1611338162.5638600 10600 1.0888702869415300

1611338193.7687400 10800 1.0816880464553800

1611338225.2150600 11000 1.0745174884796100

1611338256.396260 11200 1.0675355195999100

1611338287.5100400 11400 1.0608973503112800

1611338380.4976600 12000 1.042535662651060

1611338411.5279200 12200 1.036475419998170

1611338472.8294700 12600 1.025826334953310

1611338535.0480400 13000 1.0157215595245400

1611338566.1592700 13200 1.0116504430770900

1611338597.1102400 13400 1.0079761743545500

1611338628.3485200 13600 1.004743218421940

1611338722.0753100 14200 0.9962643980979920

1611338753.3985300 14400 0.9937120079994200

1611338784.6021100 14600 0.9912429451942440

1611338815.953610 14800 0.9888066053390500

1611338878.8850800 15200 0.9843021631240850

1611338973.1256500 15800 0.9779269099235540

1611339210.3758000 16800 0.9688680768013

1611339241.5963800 17000 0.9672225117683410

1611339272.972990 17200 0.9655944108963010

1611339304.4491400 17400 0.9639755487442020

1611339336.1232700 17600 0.9623585343360900

1611339367.7075200 17800 0.9608253240585330

1611339524.4569400 18800 0.9537055492401120

1611339775.1552800 20400 0.9437184929847720

1611339868.1317500 21000 0.9404662251472470

1611339898.704870 21200 0.9393579959869390

1611340115.1396300 22600 0.9323247075080870

1611340207.9069300 23200 0.9294213652610780

1611340269.5831200 23600 0.9275630712509160

1611340300.221280 23800 0.9266935586929320

1611340413.4230900 24000 0.9258607029914860

1611340538.3761700 24800 0.9226695895195010

1611340569.5487200 25000 0.921903133392334

1611340600.8156200 25200 0.9210814833641050

1611340694.286360 25800 0.9187629222869870

1611340725.7628500 26000 0.9179810285568240

1611340819.9386000 26600 0.91579270362854

1611340944.4259200 27400 0.9129766225814820

1611341006.6115000 27800 0.9116482138633730

1611341069.1364000 28200 0.910325825214386

1611341100.2758100 28400 0.9097062945365910

1611341131.737250 28600 0.9090807437896730

1611341163.048630 28800 0.9084513187408450

1611341287.5370200 29600 0.9060854315757750

1611341350.0134600 30000 0.9048634171485900

1611341443.502870 30600 0.9030522704124450

1611341474.5326900 30800 0.9024683237075810

1611341505.3050900 31000 0.9018980264663700

1611341567.2212900 31400 0.9007482528686520

1611341598.4170500 31600 0.9002240300178530

1611341629.9051900 31800 0.8996858596801760

1611341805.8235500 32400 0.8980556130409240

1611341868.2460200 32800 0.89703369140625

1611341899.413220 33000 0.8965168595314030

1611341962.3077700 33400 0.895495593547821

1611341993.7472700 33600 0.8949951529502870

1611342088.1351600 34200 0.8935126066207890

1611342242.7875600 35200 0.891061007976532

1611342273.2558900 35400 0.890608549118042

1611342304.148320 35600 0.890160322189331

1611342366.6841200 36000 0.8892725706100460

1611342398.2851200 36200 0.8888065814971920

1611342460.4211300 36600 0.8879335522651670

1611342522.8538000 37000 0.887054443359375

1611342553.8458700 37200 0.8866237998008730

1611342585.2092600 37400 0.8861683011054990

1611342616.0320800 37600 0.8856978416442870

1611342678.5250100 38000 0.8848704695701600

w/ layernorm (dev)

Wall time Step Value

1611337751.4762900 8000 1.0214351415634200

1611339081.8197300 16000 0.939243495464325

1611340408.721070 24000 0.9097658395767210

1611341738.663950 32000 0.8873761296272280

1611343067.5646800 40000 0.8747373223304750

1611344401.873110 48000 0.8627641797065740

1611345732.8109500 56000 0.8536322712898250

1611347048.0255700 64000 0.8486016392707830

1611348367.725490 72000 0.8427955508232120

1611349690.5925300 80000 0.837395966053009

1611351013.3003600 88000 0.832574725151062

1611352332.728960 96000 0.8289396166801450

1611353660.6106600 104000 0.8239091634750370

1611354988.0951900 112000 0.8162994384765630

1611356315.117280 120000 0.8147459626197820

1611357636.103280 128000 0.8125931620597840

1611358964.5019200 136000 0.807649552822113

1611360293.1279000 144000 0.8055095672607420

1611361622.5774200 152000 0.8034166097640990

1611362953.502950 160000 0.7980242967605590

1611364284.5170000 168000 0.7979138493537900

1611365617.0539000 176000 0.7920936942100530

1611366946.1695700 184000 0.7901331186294560

1611368279.902790 192000 0.7885696887969970

1611369609.8335600 200000 0.7873808145523070

1611370934.3665800 208000 0.7831627726554870

1611372258.80488 216000 0.7794942855834960

1611373589.312810 224000 0.7778018712997440

1611374919.3646400 232000 0.7751069068908690

1611376249.6181500 240000 0.7731921672821050

1611377578.853580 248000 0.77020263671875

1611378906.2698500 256000 0.768462598323822

1611380236.9947000 264000 0.7674402594566350

1611381565.013780 272000 0.7644534111022950

1611382895.6540700 280000 0.7643362879753110

1611384225.2520600 288000 0.7619809508323670

1611385553.8424000 296000 0.7606557607650760

1611386881.7432300 304000 0.7560462355613710

1611388215.0718100 312000 0.7567671537399290

1611389542.786990 320000 0.7553955316543580

1611390870.9998500 328000 0.7532590627670290

1611392203.4092700 336000 0.7519116997718810

1611393528.784500 344000 0.7512940168380740

1611394857.3429300 352000 0.7508137226104740

1611396186.8103100 360000 0.750404417514801

1611397515.6988500 368000 0.7495713233947750

1611398845.7995100 376000 0.7493221759796140

1611400176.2838000 384000 0.748978853225708

1611401500.7605100 392000 0.7489020228385930

1611402826.5938500 400000 0.74882972240448

Table 1

Step w/o layernorm
(train)

w/o layernorm (dev) w/ layernorm
(train)

w/ layernorm
(dev)

1000 2.657274007797240

1200 2.529681444168090

2000 2.169663906097410

2200 2.107694625854490

2600 2.004533529281620

2800 1.9634863138198900

3000 1.9250108003616300

3400 1.857570767402650

3600 1.8287327289581300

3800 1.8009421825408900

4000 1.7779759168624900

4800 1.6934561729431200

6600 1.5519849061965900

6800 1.540087342262270

7200 1.5166194438934300

7800 1.3757587671279900

8000 1.3422778844833400

8400 1.2865111827850300

8800 1.246571660041810

9000 1.2302122116088900

9400 1.2039235830307000

9800 1.1817585229873700

10000 1.1716248989105200

10600 1.1438642740249600

10800 1.1355069875717200

11000 1.1273367404937700

11200 1.1194311380386400

11400 1.1118884086608900

12000 1.0913453102111800

12200 1.0847340822219800

12600 1.0736950635910000

13000 1.0638755559921300

13200 1.0596907138824500

13400 1.0557032823562600

13600 1.0519869327545200

14200 1.041569709777830

14400 1.0384671688079800

14600 1.0354359149932900

14800 1.0324267148971600

15200 1.0270730257034300

15800 1.0193467140197800

16800 1.0082122087478600

17000 1.0062239170074500

17200 1.0042963027954100

17400 1.0023585557937600

17600 1.0005073547363300

17800 0.9987223744392400

18800 0.9902057647705080

20400 0.9785571694374080

21000 0.9747878909111020

21200 0.9735962748527530

22600 0.965568482875824

23200 0.9623193740844730

23600 0.9603083729743960

23800 0.9593459963798520

24000 0.9583930373191830

24800 0.9547959566116330

25000 0.9539097547531130

25200 0.9529796838760380

25800 0.9504586458206180

26000 0.9496104121208190

26600 0.9472671151161190

27400 0.9442614912986760

27800 0.942823588848114

28200 0.9414118528366090

28400 0.9407221078872680

28600 0.9400051832199100

28800 0.9393438696861270

29600 0.9367689490318300

30000 0.9355084300041200

30600 0.9335870146751400

30800 0.9329618811607360

31000 0.9323965907096860

31400 0.9312952756881710

31600 0.9307621121406560

31800 0.9302324652671810

32400 0.9285956621170040

32800 0.9275936484336850

33000 0.9270856976509090

33400 0.9260081052780150

33600 0.9255082607269290

34200 0.9240961670875550

35200 0.921694815158844

35400 0.9212267398834230

35600 0.9207830429077150

36000 0.919914722442627

36200 0.91945481300354

36600 0.9186022281646730

37000 0.9177930355072020

37200 0.917381763458252

37400 0.916907548904419

37600 0.9164507985115050

38000 0.9156600832939150

0.69

0.78

0.87

0.96

0K 100K 200K 300K 400K

41M parameters

0.62

0.70

0.77

0.85

0K 100K 200K 300K 400K

w/o layernorm (train)
w/o layernorm (dev)
w/ layernorm (train)
w/ layernorm (dev)

108M parameters

 1

Figure 6: Understanding the empirical effect of layer normalization. We show the training and dev loss of SRU++
models using 41M parameters and 108M parameters on ENWIK8 dataset. The model with layer normalization fits
the training data better, but achieves worse generalization.

7648

Base model Base model Large model Large model
(k = 5)

Attention / unroll size - train 1024 1024 1024 1024
Attention / unroll size - test 3072 3072 3072 3072
Batch size × Num of GPUs 4×8 4×8 8×8 8×8
Dropout 0.22 0.22 0.32 0.35
Gradient clipping 1.0 1.0 1.0 1.0
Hidden size ratio d : d′ 4 4 4 8
Hidden size d 3072 3072 4096 6016
Hidden size d′ 768 768 1024 752
Learning rate 0.0003 0.0003 0.0004 0.0004
LR warmup steps 16K 16K 16K 16K
Training steps 400K 400K 400K 400K
Weight decay 0.1 0.1 0.1 0.1
Model size 98M 108M 191M 195M
Dev BPC 1.002 0.997 0.985 0.974
Test BPC 0.980 0.974 0.963 0.953

Table 11: Training details of SRU++ models on ENWIK8 dataset.

Base model Large model Large model Large model
(k = 5)

Attention / unroll size - train 768 1024 1024 1024
Attention / unroll size - test 2560 2560 2560 2560
Batch size × Num of GPUs 8×8 8×8 8×8 8×8
Dropout 0.15 0.2 0.2 0.2
Gradient clipping 1.0 1.0 1.0 1.0
Hidden size ratio d : d′ 4 4 8 8
Hidden size d 3072 4096 5952 5952
Hidden size d′ 768 1024 744 744
Learning rate 0.0003 0.0003 0.0003 0.0003
LR warmup steps 16K 16K 16K 16K
Training steps 400K 400K 400K 400K
Weight decay 0.1 0.1 0.1 0.1
Model size 148M 232M 225M 234M
Dev PPL 17.5 16.7 16.6 16.4
Test PPL 18.3 17.4 17.3 17.1

Table 12: Training details of SRU++ models on WIKI-103 dataset.

