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Abstract

Large language models have become increas-
ingly difficult to train because of the grow-
ing computation time and cost. In this work,
we present SRU++, a highly-efficient archi-
tecture that combines fast recurrence and at-
tention for sequence modeling. SRU++ ex-
hibits strong modeling capacity and training
efficiency. On standard language modeling
tasks such as ENWIKS, WIKI-103 and BIL-
LION WORD datasets, our model obtains bet-
ter bits-per-character and perplexity while us-
ing 3x-10x less training cost compared to top-
performing Transformer models. For instance,
our model achieves a state-of-the-art result on
the ENWIKS8 dataset using 1.6 days of train-
ing on an 8-GPU machine. We further demon-
strate that SRU++ requires minimal attention
for near state-of-the-art performance. Our re-
sults suggest jointly leveraging fast recurrence
with little attention as a promising direction
for accelerating model training and inference.'

1 Introduction

Many recent advances in language modeling have
come from leveraging ever larger datasets and
model architectures. As a result, the associated
computation cost for developing such models have
grown enormously, requiring hundreds of GPU
hours or days per experiment, and raising concerns
about the environmental sustainability of current
research (Schwartz et al., 2020). As a conse-
quence, it has become imperative to build compu-
tationally efficient models that retain top modeling
power while reducing computational costs.

The Transformer architecture (Vaswani et al.,
2017) was proposed to accelerate model training
and has become the predominant architecture in
NLP. Specifically, it is built entirely upon self-
attention and avoids the use of recurrence to en-
able strong parallelization. While this change has

'Our code, experimental setup and models are available
athttps://github.com/asappresearch/sru.
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Figure 1: Bits-per-character on ENWIKS8 dev set vs.
GPU hours used for training. SRU++ obtains better
BPC by using 1/8 of the resources. We compare with
Transformer-XL as it is one of the strongest models on
the datasets tested. Models are trained with single pre-
cision and comparable training settings.

led to many empirical success and improved com-
putational efficiency, we are interested in revisit-
ing the architectural question: Is attention all we
need for modeling?

The attention mechanism permits learning de-
pendencies between any parts of the input, mak-
ing it an extremely powerful neural component
in many machine learning applications (Bahdanau
et al., 2015; Lin et al., 2017). We hypothesize
that this advantage can still be complemented with
other computation that is directly designed for se-
quential modeling. Indeed, several recent works
have studied and confirmed the same hypothesis
by leveraging recurrence in conjunction with at-
tention. For example, Merity (2019) demonstrates
that single-headed attention LSTMs can produce
results competitive to Transformer models in lan-
guage modeling. Other work have incorporated
RNNs into Transformer, and obtain better re-
sults in machine translation (Lei et al., 2018; Hao
et al., 2019) and language understanding bench-
marks (Huang et al., 2020). These results high-
light one possibility — we could build more effi-
cient models by combining attention and fast re-
current networks (Bradbury et al., 2017; Zhang
and Sennrich, 2019).
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In this work, we validate this idea and present
a self-attentive recurrent unit that achieves strong
computational efficiency. Our work builds upon
the SRU (Lei et al., 2018), a highly paralleliz-
able RNN implementation that has been shown ef-
fective in language and speech applications (Park
et al., 2018; Kim et al., 2019; Hsu et al., 2020;
Shangguan et al., 2019). We incorporate atten-
tion into the SRU by simply replacing the linear
transformation of input with a self-attention com-
ponent. The proposed architecture, called SRU++,
enjoys enhanced modeling capacity and remains
equally parallelizable. Figure 1 compares its per-
formance with the Transformer-XL. model (Dai
et al.,, 2019) on the ENWIK8 dataset. SRU++
achieves better results while using a fraction of the
training resources needed by the baseline.

We evaluate SRU++ on standard language mod-
eling benchmarks including the ENWIKS, WIKI-
103 and BILLION WORD datasets. SRU++ consis-
tently outperforms various Transformer models on
these datasets, delivering better or on par results
while using 3x-10x less computation. Our model
do not use positional encoding, multi-head atten-
tion and other techniques useful to Transformer
models. Furthermore, we demonstrate that a cou-
ple of attention layers are sufficient for SRU++
to obtain near state-of-the-art performance. These
changes not only highlight the effectiveness of re-
currence but also enable strong computation re-
duction in training and inference. Finally, we
also showcase the effectiveness of SRU++ on the
IWSLT’ 14 De—En translation task, and open
source our implementation in Pytorch to facilitate
future research.

2 Background: SRU

We first describe the Simple Recurrent Unit (SRU)
in this section. A single layer of SRU involves the
following computation:

flt] = (Wx[]+v® [t-1] + b)

r[t] = o (Wx[t] + v/ ® c[t-1] + b’)

clt] = fit]©cft-1] + (1 — £[t]) © (W"x[t])
hii] = rft] © cft] + (1 —r[t]) © x[t]

where © is the element-wise multiplication, W,
W’ and W” are parameter matrices and v, v/,
b and b’ are parameter vectors to be learnt dur-
ing training. The SRU architecture consists of
a light recurrence component which successively

computes the hidden states c[t] by reading the in-
put vector x[t] for each step . The computation
resembles other gated recurrent networks such as
LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Cho et al., 2014). Specifically, the state vec-
tor c[t] is a weighted average between the previous
state c[t-1] and a linear transformation of the input
W’x]t]. The weighted aggregation is controlled
by a forget gate f[t] which is a sigmoid function
over the current input and hidden state. Once the
internal state c[t] is produced, SRU uses a high-
way network to introduce a skip connection and
compute the final output state h[t]. Similarly, the
information flow in the highway network is con-
trolled by a reset gate r[t].

Two important code-level optimizations are per-
formed to enhance the parallelism and speed
of SRU. First, given the input sequence X =
{x[1],--- ,x[L]} where each x[t] € R is a d-
dimensional vector, SRU combines the three ma-
trix multiplications across all time steps as a sin-
gle multiplication. This significantly improves
the computation intensity (e.g. GPU utilization).
Specifically, the batched multiplication is a linear
projection of the input tensor X € RL*:

W
U = | W
W’

X", (1

where U € RE*3%4 5 the output tensor, L is the

sequence length and d is the hidden state size.
The second optimization performs all element-

wise operations in an efficient way. This involves

f[t] = o(U[t,0] + v © c[t-1] + b) )
r[t] = o(U[t, 1] + v/ © c[t-1] + b') 3)
clt] = flt] © c[t-1] + (1 — f[t]) © U[t,2] (4)
h[i] = rt] © cft] + (1 — r[t]) © x[t]. Q)

Similar to other built-in operations such as atten-
tion and cuDNN LSTM (Appleyard et al., 2016),
SRU implements all these operations as a single
CUDA kernel to accelerate computation. Note that
each dimension of the hidden vectors is indepen-
dent once U is computed. The computation can
run in parallel across each hidden dimension (and
each input sequence given a mini-batch of multi-
ple sequences).

3 SRU++

The key modification of SRU++ is to incorporate
more expressive non-linear operations into the re-
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Figure 2: An illustration of SRU and SRU++ networks: (a) the original SRU, (b) the SRU variant with projection to
reduce the number of parameters, experimented in Lei et al. (2018) and (c) SRU++ proposed in this work. Numbers
indicate the dimension of intermediate inputs/outputs given hidden size d = 2048 and attention size d’ = 512.

current network. Note that the computation of U
(Equation 1) is a linear transformation of the in-
put sequence X. We can replace this linear trans-
formation with self-attention operation to enhance
modeling capacity.

Specifically, given the input sequence repre-
sented as a matrix X € RL*4, the attention com-
ponent computes the query, key and value repre-
sentations using the following multiplications,

Q=wiXx"
K=WFQ
V=W'Q

where W7 e R¥*d Wk W? ¢ RY* gre
model parameters. d’ is the attention dimension
that is typically much smaller than d. Note that
the keys K and values V are computed using Q
instead of X such that the weight matrices W*
and WYV are significantly smaller. We also tested
another variant in which we first project X' =
WX T into the lower dimension d’, and then apply
three independent d’-by-d’ matrix multiplications
over X' to obtain the query, key and value repre-
sentations. This variant achieves similar results.

Next, we compute a weighted average output
A € R¥*L ysing the scaled dot-product attention
introduced in Vaswani et al. (2017),

T
AT = softmax QiK v’
Va

The final output U required by the elementwise re-
currence is obtained by another linear projection,

U ' =W°(Q+a-A).

where o € R is a learned scalar and W, € R34xd’
is a parameter matrix. Q + « - A is a residual

connection which improves gradient propagation
and stabilizes training. We initialize « to zero and
as a result,

Ul =w°Q=(W°W9 X"

initially falls back to a linear transformation of
the input X skipping the attention transformation.
Intuitively, skipping attention encourages leverag-
ing recurrence to capture sequential patterns dur-
ing early stage of training. As |«| grows, the at-
tention mechanism can learn long-range depen-
dencies for the model. In addition, W°W¥? can
be interpreted as applying a matrix factorization
trick with a small inner dimension d’ < d, reduc-
ing the total number of parameters. Figure 2 (a)-
(c) compares the differences of SRU, SRU with
this factorization trick (but without attention), and
SRU++ proposed in this section.

The last modification is adding layer normaliza-
tion (Ba et al., 2016) to each SRU++ layer. In our
implementation, we apply normalization after the
attention operation and before the matrix multipli-
cation with W?,

U = W° layernorm(Q + o - A).

This implementation is post-layer normalization in
which the normalization is added after the resid-
ual connection. Alternatively, pre-layer normal-
ization (Xiong et al., 2020) only applies to the non-
linear transformation. While pre-normalization
tends to be less sensitive to different learning rates,
we use post-normalization for better results fol-
lowing the observations in Liu et al. (2020b). We
analyze the effectiveness of layer normalization in
Appendix A.2.
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Model Batchsize B x M BPC | Model Param BPC| GPUhrs]
Trans-XL 24x512 1.06 Trans-XL 41M 1.06 356
SRU++ 24x512 1.03 SHA-LSTM  54M 1.07 28T
SRU++ 16x768 1.02 k=1 1.022 377
k=2 1.025 29t
Table 1: Test BPC of SRU++ and Transformer-XL on k=5 42M 1.032 241
ENWIKS dataset. We train SRU++ using the same k=10 1.033 29t
setting as Transformer-XL base model. Numbers are No attention 1.190 20t

smaller the better. B is the number of sequence. M is
the unroll size (and additional context size).

4 Experimental setup

Datasets We evaluate our model on four stan-
dard NLP benchmarks.

e ENWIK8 (Hutter, 2006) is a character-level
language modeling dataset consisting of
100M tokens taken from Wikipedia. The vo-
cabulary size of this dataset about 200. We
use the standard 90M/5M/5M splits as the
training, dev and test sets, and report bits-per-
character (BPC) as the evaluation metric.

e WIKI-103 (Merity et al., 2017) is a word-
level language modeling dataset. The train-
ing data contains 100M tokens extracted from
Wikipedia articles. Following prior work, we
use a vocabulary of 260K tokens, and adap-
tive embedding and softmax layers (Grave
et al., 2017; Baevski and Auli, 2019).

e BILLION WORD (Chelba et al., 2013) is one
of the largest language modeling datasets
containing 768M tokens for training. Unlike
WIKI-103 in which sentences in the same
article are treated as consecutive inputs to
model long context, the sentences in BIL-
LION WORD are randomly shuffled. Follow-
ing Baevski and Auli (2019), we use a vocab-
ulary of 800K tokens, adaptive embedding
and softmax layers.

e [WSLT’ 14 De—En is a low-resource ma-
chine translation dataset consists of 170K
translation pairs. We showcase SRU++ can
be applied to other tasks such as translation.
We follow the same setup of Lin et al. (2020)
and other previous work. The dataset uses a
shared vocabulary of 14K BPE tokens.

Models All our language models are constructed
with a word embedding layer, multiple layers of

Table 2: Results of SRU++ on ENWIK8 by enabling
attention every k layers. We adjust the hidden size so
the number of parameters are comparable. t indicates
mixed precision training.

SRU++ and an output linear layer followed by
softmax operation. We use single-head attention
in each layer and 10 SRU++ layers for all our mod-
els. We use the same dropout probability for all
layers and tune this value according to the model
size and the results on the dev set. By default, we
set the hidden dimension d : d' = 4 : 1. We re-
port additional analysis and tune this ratio for best
results in Section 5 and Appendix A.

For simplicity, SRU++ does not use recent tech-
niques that are shown useful to Transformer such
as multi-head attention, compressed memory (Rae
et al., 2020), relative position (Shaw et al., 2018;
Press et al.,, 2021), nearest-neighbor interpola-
tion (Khandelwal et al., 2020) and attention vari-
ants to handle very long context (Sukhbaatar et al.,
2019a; Roy et al., 2021).

We compare with previous Transformer models
that incorporate one or several these techniques.
However, we do not compare with results that
use additional data or dynamic evaluation (Graves,
2013; Krause et al., 2018), for a fair comparison
between all models.

Optimization Weuse RAdam (Liu et al., 2020a)
with the default 3 values as our optimizer. RAdam
is a variant of Adam optimizer (Kingma and Ba,
2014) that is reported less sensitive to the choice
of learning rate and warmup steps while achiev-
ing similar results at the end. We use a fixed
weight decay of 0.1 and an initial learning rate of
0.0003 in our experiments. These values are se-
lected based on ENWIKS dev set and used for other
tasks. See Appendix A.3 for more details. We use
a cosine learning rate schedule following Dai et al.
(2019). We do not change the initial learning rate
unless otherwise specified. See Appendix B for
the detailed training configuration of each model.
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Figure 3: Dev BPC vs. total GPU hours used on EN-
WIKS8 for each model. Using automatic mixed preci-
sion (amp) and only one attention sub-layer achieves
16x reduction. To compute the dev BPC, the maximum
attention length is the same as the unroll size M during
training.

Each training batch contains B sequences (i.e.
the batch size) and M consecutive tokens for each
sequence (i.e. the unroll size), which gives an ef-
fective size of B x M tokens per batch. Follow-
ing standard practice, the previous training batch is
provided as additional context for attention, which
results in a maximum attention length of 2 x M.
For ENWIK8 and WIKI-103 datasets, the training
data is partitioned into B chunks by concatenating
articles and ignoring the boundaries between arti-
cles. For BILLION WORD dataset, we follow Dai
et al. (2019) and concatenate sentences to create
the training batches. Sentences are randomly shuf-
fled and separated by a special token <s> indicat-
ing sentence boundaries.

5 Results

Does recurrence improve upon attention-only
model? We first conduct a comparison with the
Transformer-XL model (Dai et al., 2019) on EN-
WIKS dataset®. Their base model consists of 41M
parameters and 12 Transformer layers. Follow-
ing the official instructions, we reproduced the re-
ported test BPC of 1.06 by training with 4 Nvidia
2080 Ti GPUs. The training took about 4 days or
a total of 360 GPU hours equivalently.

We train a 10-layer SRU++ model with 42M
parameters. For a fair comparison, we use the
same hyperparameter setting including the effec-
tive batch size, attention context length, learning
rate and the number of training iterations as the
Transformer-XL base model. Notably, our base
model can be trained using 2 GPUs due to less
GPU memory usage. After training, we set the at-

https://github.com/kimiyoung/
transformer-xl/tree/master/pytorch

/lm 73 < Dev BPC
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Figure 4: Analyzing where to apply attention. We en-
able only one attention layer (top figure) or two (bottom
figure) in the SRU++ model. For the latter, we always
apply attention in the last layer and move the location
of the other. X-axis is the layer index. The layer closest
to the input embedding layer has index 1.

tention context length to 2048 for testing, similarly
to the Transformer-XL baseline. Table 1 presents
the results. Our model achieves a test BPC of 1.03,
outperforming the baseline by a large margin. This
result suggests that combining recurrence and at-
tention can greatly outperform an attention-only
model. We obtain a BPC of 1.02 by extending
the attention context length from 512 to 768, while
keeping the number of tokens per batch the same.

How much attention is needed? Merity (2019)
demonstrated that using a single attention layer
with LSTM retains most of the modeling capac-
ity compared to using multiple attention layers.
We conduct a similar analysis to understand how
much attention is needed in SRU++. To do so, we
only enable attention every k layers. The layers
without attention become the variant with dimen-
sion projection illustrated in Figure 2 (b). Note
that £ = 1 gives the default SRU++ model with
attention in every layer, and £ = 10 means only
the last layer has attention in a 10-layer model.
Table 2 presents the results by varying k. Our
base model is the same 10-layer SRU++ model
in Table 1. We see that using 50% less atten-
tion (k = 2) achieves almost no increase in
test BPC. Moreover, using only a single atten-
tion module (k¢ = 10) leads to a marginal loss
of 0.01 BPC but reduces the training time by
40%. Our results still outperform Transformer-XL
model and single-headed attention LSTM (Merity,
2019) greatly by 0.03 BPC. Figure 3 showcases
the training efficiency of our model. SRU++ is
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Model Parameters | Test BPC | GPU days |

Longformer 30L (Beltagy et al., 2020) 102M 0.99 1047

All-attention network 36L (Sukhbaatar et al., 2019b) 114M 0.98 64

Transformer-XL 24L (Dai et al., 2019) 27TM 0.99 -
o Compressive memory (Rae et al., 2020) - 0.97 -

Feedback Transformer (Fan et al., 2020) 7IM 0.96 -

SRU++ Base 108M 0.97 67
o only 2 attention layers (k = 5) 98M 0.98 4t

" SRU++ Large 91 09% 12

o d=28d 195M 0.95 137

Table 3: Comparison with top-performing models on ENWIKS dataset. We include the training cost (measured by
the number of GPUs used x the number of days) if it is reported in the previous work. Our results are obtained
using an AWS p3dn instance with 8 V100 GPUs. The reported training time of all-attention network is based on
V100 GPUs while the training time of Longformer is based on RTX8000 GPUs (which is about 90% speed of

V100). t indicates mixed precision training.

Ratio Dimensions d, d  Dev BPC |
4 3072 768 0.997
6 3840 640 0.992
8 4480 560 0.991
10 5040 504 0.992

Table 4: Dev BPC on ENWIK8 by changing the ratio
d : d’ in the SRU++ model while fixing the number of
parameters to 108M.

5x faster to reach the dev BPC obtained by the
Transformer-XL model. Furthermore, using au-
tomatic mixed precision training and a single at-
tention layer (k = 10) achieves 16x reduction on
training cost.

Where to use attention? Next, we analyze if the
location of attention in SRU++ makes a non-trivial
difference. Figure 4 (top) compares the results by
enabling attention in only one of the SRU++ lay-
ers. Applying attention in the first bottom layer
achieves significantly worse result. We believe
this is due to the lack of positional information
for attention, since SRU++ does not use positional
encoding. Enabling attention in subsequent layers
gives much better and comparable results because
recurrence can encode positional information.
Moreover, SRU++ consistently achieves worse
results by moving the attention to lower layer
closer to the input embedding. We also enable a
second attention layer while fixing the first one
in the 10th layer. The corresponding results are
shown in Figure 4 (bottom). Similarly, SRU++
achieves worse results if the attention is added to

one of the lower layers. In contrast, results are
comparable once the attention is placed in a high-
enough layer. These observations suggest that the
model should first learn local features before atten-
tion plays a most effective role at capturing long-
range dependencies. More analyses can be found
in Appendix A.

Does the ratio d : d’ matter? Transformer mod-
els by default use a FFN dimension that is 4 times
larger than the attention dimension (Vaswani et al.,
2017). We analyze the ratio of recurrence dimen-
sion d to attention dimension d’ for SRU++. A
small value of d’ can reduce the amount of com-
putation and the number of parameters used in at-
tention layers but may limit the modeling capac-
ity. Table 4 compares the results of using different
d : d' ratio given a similar amount of model pa-
rameters. We fix the model size to around 108M
and use 10 SRU++ layers. Changing this ratio
from 4 to a higher value gives better result. The
best dev result is obtained with a ratio of 8.

Given this observation, we report SRU++ result
using a default ratio of 4 as well as a ratio of 8
in the subsequent result sections. This ensures we
conduct a comparison that uses a setup similarly to
the default of Transformer models, but also show-
cases stronger results SRU++ can achieve.

ENWIKS8 Table 3 compares our model with other
top-performing models on the ENWIKS& dataset.
We train a base model with d = 3072 and a large
model with d = 4096 using 400K training steps.
The unroll size and attention context length are set
to 1024 during training and 3072 during evalua-
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Model Parameters | Test PPL | GPU days |
All-attention network 36L (Sukhbaatar et al., 2019b) 133M 20.6 -
Feedback Transformer (Fan et al., 2020) 139M 18.2 214
Transformer (Baevski and Auli, 2019) 247TM 18.7 22f
Transformer-XL 18L (Dai et al., 2019) 25T™M 18.3 -
o Compressive memory (Rae et al., 2020) - 17.1 -
Routing Transformer (Roy et al., 2021) - 15.8 -
kNN-LM (Khandelwal et al., 2020) - 15.8 -
SRU++ Base 148M 183 8T
" SRU++Large " 2o™M7 174 147
o d=28d 234M 17.1 157
o only 2 attention layers (k = 5) 225M 17.3 117

Table 5: Comparison with top-performing models on WIKI- 103 dataset. We include the training cost (measured by
the number of GPUs used x the number of days) if it is reported in the previous work. The reported training costs
are based on V100 GPUs. Our results are similarly obtained using an AWS p3dn instance with 8 V100 GPUs. {

indicates mixed precision training.

Model Param PPL| Days]| Model Speedt PPL]
33IM 25.6 57t kNNLM (Khandelwal et al.) 145 15.8
Transformer 25.2 147t Trans (Baevski and Auli) 2.5k 18.7
465M 23.9 1921 Trans-XL (Dai et al.) 3.2k 18.3
SRU++ 328M 25.1 367 Shortformer (Press et al.) 15k 18.2
SRU++ (kK =5) 465M 23.5 63" SRU++ Large 15k 17.1
SRU++ Large (k = 5) 22k 17.3

Table 6: Test perplexity and effective GPU days for
training of SRU++ models and the Transformer models
of Baevski and Auli (2019) on BILLION WORD dataset.

tion. To compare the computation efficiency we
report the effective GPU days — the number of
GPUs multiplied by the number of days needed
to finish training. Our base model achieves bet-
ter BPC and uses a fraction of the training cost
reported in previous work. Furthermore, our large
models achieve a new state-of-the-art result on this
dataset, reaching a test BPC of 0.96 whend = 4 d’
and 0.95 when d = 8d'.

WIKI-103 Table 5 presents the result of SRU++
models and other top results on the WIKI-103
dataset. We train one base model with 148M pa-
rameters and a few large models which contain
about 230M parameters. As shown in the table,
our base model obtains a test perplexity of 18.3
using 8 GPU days of training, about 3x reduction
compared to the Transformer model in Baevski
and Auli (2019) and over 10x reduction com-
pared to Feedback Transformer (Fan et al., 2020).
Again, changing the hidden size ratio to d = 8d’
improves the modeling capacity. Our big model

Table 7: Inference speed (tokens/second) on WIKI-103
test set. Results of baselines are taken from Press et al.
(2021). We use a single V100 GPU, a batch size of 1
and maximum attention length 2560 for consistency.

achieves a test perplexity of 17.1. The required
training cost remains significantly lower.

BILLION WORD We double our training itera-
tions to 800K and use a learning rate of 0.0002 for
the BILLION WORD dataset. We train a base model
using d = 4096, d’ = 1024 and an effective batch
size of 65K tokens per gradient update. We also
train a large model by increasing the hidden size
d to 7616 and the batch size to 98K. In addition,
we use only 2 attention layers (k = 5) for the large
model. Table 6 reports the test perplexity and asso-
ciated training cost. Our base and large model ob-
tain a test perplexity of 25.1 and 23.5 respectively,
outperforming the Transformer model of Baevski
and Auli (2019) given similar model size. More-
over, SRU++ achieves 3-4x training cost reduction
and is trained using 8 GPUs. In comparison, the
Transformer model uses 32 or 64 V100 GPUs.
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Model Param BLEU{ Hrs|
Transformer 20.1M  35.940.1 10.5
SRU++ 204M  36.3£0.2 8.5
SRU++ (k=2) 19.6M 36.14+0.1 7.5

Table 8: Results on IWSLT 14 De—En test set. We
use a beam size of 5. BLEU scores and training time
are averaged over 4 independent runs.

Inference speed Table 7 compares the infer-
ence speed of SRU++ with other top-performing
models on WIKI-103 test set. We use a single
V100 GPU for inference. Our large model runs
at least 4.5x faster than all baseline models ex-
cept Shortformer (Press et al., 2021). In addition,
our model achieves 0.9-1.1 perplexity lower than
Shortformer and runs 50% faster when using 2 at-
tention layers (k = 5).

IWSLT Does SRU++ work well for other
tasks? We study this question by evaluating
SRU++ on the IWSLT’14 De—En translation
task. We use the open-sourced training and eval-
uation code of Lin et al. (2020). The base model
is an 8-layer Transformer model containing 20M
parameters. We train SRU++ models using 6 lay-
ers and d = 1024, resulting in similar number
of parameters. We use the original settings such
as learning rate and batch size, except that we
use RAdam optimizer for consistency and increase
the number of training epochs to 50. Both archi-
tectures achieve much higher BLEU scores given
more training epochs.® Table 8 presents the test re-
sults. Without additional hyperparameter tuning,
SRU++ achieves 0.4 BLEU score higher and less
training time compared to the Transformer model
tuned in Lin et al. (2020).

Why does SRU++ reduce training cost in our
experiments? Several factors contribute to the
computation reduction observed in our experi-
ments. First, combining attention and recurrence
gives stronger modeling capacity. As shown in
our experiments, SRU++ often achieves compara-
ble results using fewer layers and/or fewer param-
eters. The required computation are much lower
for shallower and smaller models.

We also observe higher training efficiency, re-
quiring fewer training steps and smaller training
batch compared to several Transformer models.

3Lin et al. (2020) reports a test BLEU of 35.2. We obtain
35.9 for the same Transformer model by training longer.

For example, SRU++ uses a maximum effective
batch size of 98K tokens and 800K training steps
on the BILLION WORD dataset, while the Trans-
former model in comparison (Baevski and Auli,
2019) uses 128K tokens and near 1000K steps.
The reduced batch size and gradient updates cut
down the training cost.

Finally, model implementation is an important
factor for computation saving. Our implemen-
tation is highly efficient for two reasons. First,
the fast recurrence operation of SRU is a reusable
module that is already optimized for speed (Lei
et al., 2018). Second, since recurrence encodes
positional information, we can use simple single-
head attention and remove positional encoding.

On the contrary, advanced attention and po-
sitional encoding mechanism can generate non-
trivial computation overhead. To see this, we mea-
sure the running time of SRU++ and Transformer-
XL using Pytorch Profiler. Figure 5 (a) shows
the average model forward time of a single batch.
SRU++ runs 4-5x times faster compared to the
Transformer-XL implementation. Figure 5 (b)
breaks down the computation and highlights the
most time-consuming operations in both models.
The matrix multiplications are one of the most
expensive operations for both models. Surpris-
ingly, many operations in the relative attention of
Transformer-XL. are computationally expensive.
For example, the relative attention requires shift-
ing the attention scores and adding up different at-
tention score matrices. Both require a lot of time
but they are not needed in non-relative attention.
In addition, the last column shows the running
time of tensor transpose operators needed by batch
matrix-matrix multiplications in attention. Again,
the relative attention uses an order of magnitude
more time compared to the simple single-head at-
tention used in our model implementation.*

6 Related Work

Accelerating common architectures for NLP has
become an increasingly important research topic
recently (Tay et al., 2020; Sun et al., 2020; Lan
et al., 2020). Our work is closely related to two
lines of research under this topic.

“Note that this high latency of tensor transpose might be
caused by sub-optimal implementation choices such as a poor
arrangement of tensor axes in the open-sourced model. There
is room for improvement. Nevertheless, relative attention and
positional encoding are reported to be non-trivially slower in
other works (Shaw et al., 2018; Tian et al., 2021).
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Figure 5: Profiling of SRU++ and Transformer-XL: (a) forward time (in milliseconds) of small and large models
and (b) forward time used in various types of time-consuming operations. We use a single GPU for profiling to
avoid extra overhead such as data synchronization between GPUs. We use an unroll size / context length M = 512
and 1024 respectively for small and large models. All models use a batch size B = 16 for profiling.

First, previous works have tackled the speed
problem of recurrent neural networks (RNNs)
and have proposed various fast RNN implemen-
tations (Diamos et al., 2016; Campos et al., 2018;
Zhang and Sennrich, 2019). Notably, the Quasi-
RNN (Bradbury et al., 2017) and SRU (Lei et al.,
2018) have invented highly-parallelizable recur-
rence and combined them with convolutions or
highway networks respectively. The resulting ar-
chitectures achieve equivalent parallelism as con-
volutional and attention models. This advance-
ment eliminates the need of avoiding recurrence
computation to trade model training efficiency, a
design choice made by the Transformer architec-
ture. Our model builds on top of SRU.

Second, several recent works have argued that
using attention alone is not the best architecture
in terms of model expressiveness. For example,
Dong et al. (2021) demonstrate theoretically and
empirically that using pure attention results in per-
formance degeneration. Gulati et al. (2020) have
combined convolution and attention and obtained
new state-of-the-art results for speech recogni-
tion. Moreover, RNNs have been incorporated
into Transformer architectures, resulting in im-
proved results in machine translation and language
understanding tasks (Lei et al., 2018; Huang et al.,
2020). Our work is built upon a similar hypoth-
esis that recurrence and attention are complemen-
tary at sequence modeling. We demonstrate that
jointly leveraging fast recurrence and attention not
only achieves state-of-the-art modeling results but
also obtain significant computation reduction.

Being orthogonal to our work, many recent
works improve the efficiency of Transformer mod-

els by accelerating attention computation (Zaheer
et al., 2020; Katharopoulos et al., 2020; Vyas
et al., 2020; Peng et al., 2021). Examples include
Longformer (Beltagy et al., 2020), Reformer (Ki-
taev et al., 2020), Linformer (Wang et al., 2020)
and Routing Transformer (Roy et al., 2021). In
contrast, our work optimizes computational effi-
ciency using recurrence combined with minimal
attention and our model can incorporate these at-
tention variants for additional speed improvement.

7 Conclusion

We present a highly-efficient architecture com-
bining fast recurrence and attention, and evalu-
ate its effectiveness on various language modeling
datasets. We demonstrate fast RNNs with little at-
tention not only achieve top results but also reduce
training cost significantly. Our work shares a dif-
ferent idea to accelerating attention, therefore pro-
viding an orthogonal direction to advancing state-
of-the-art model architecture. As future work, we
believe the model can be improved using stronger
attention or recurrent implementations, better nor-
malization or optimization techniques.
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A Additional results

A.1 Detailed analysis of attention

Table 10 presents a more comprehensive analysis
of attention in SRU++ models. First, we change
the number of attention layers and their locations
in the model. As shown in the top block of Ta-
ble 10, using attention in 50% of the layers leads
to no (or negligible) loss in model performance.
This is consistent with the results in Table 2 using
a smaller model. Enabling attention in higher lay-
ers performs slightly better than evenly distribut-
ing attention from the bottom to top layers.

We also experiment with using more than one
attention head in each of the attention layer, as
shown in the middle block of the table. Unlike
Transformer models however, we do not observe
a significant improvement using multiple heads.
We hypothesize that the recurrence states can al-
ready carry different features or information that
are present in different input positions, making re-
dundant heads unnecessary.

Finally, changing the ratio d : d' from 4 to 8
gives similar improvements regardless of using 2
attention layers or 10 attention layers. This sug-
gests that the amount of attention and the hid-
den size ratio can be tuned independently for best
model performance.

A.2 The effectiveness of layer normalization

In our experiments, we have always used layer
normalization to stabilize training. However, we
also found layer normalization to achieve worse
generalization for larger models that are more
prone to over-fitting. Figure 6 showcases our em-
pirical observation on the ENWIKS8 dataset. Us-
ing layer normalization achieves more rapid train-
ing progress and lower training loss, but results
in higher dev loss in the case of training a 108M
model. This generalization gap remains even if
we tune the dropout rate carefully. In addition,
although using layer normalization in the smaller
model with 41M parameters gives slightly better
dev results, we still observe a larger generalization
gap (indicated by the difference between training
loss and dev loss) compared to the run without
layer normalization. Similar over-fitting patterns
are observed on Wiki-103 dataset, and also in pre-
vious work (Xu et al., 2019).

On the other hand, turning off layer normaliza-
tion can achieve better generalization but makes
training sensitive to learning rate and parameter

initialization. For example, we have to use a
smaller learning rate of 0.00025 or lower to avoid
sudden gradient explosion during training. These
results suggest possible future work by improv-
ing the normalization method (Shen et al., 2020;
Brock et al., 2021).

A.3 Tuning weight decay and learning rate

We find that tuning the weight decay and learn-
ing rate critical to the success of training SRU++
and achieving best results. Table 9 provides a sen-
sitivity analysis by testing different learning rates
and weight decay values. Increasing the weight
decay consistently gives better results for all learn-
ing rates tested. Tuning the learning rate is also
needed to reach the best result. The non-trivial
effect of weight decay seems to be unique for
SRU++.

On the other hand, the performance of SRU++
remains robust once the appropriate weight decay
and learning rate are set. As shown in previous
results and analyses, SRU++ achieves strong and
relatively stable results to various hidden sizes,
number of attention layers and datasets. In partic-
ular, using the same weight decay value general-
ize well for all datasets (including language mod-
eling and translation tasks) and model configura-
tions tested.

| 0.10 0.01 0.00
3x107% | 1.014 - -
2x107* | 1.022 1.035 1.047

1.5 x 107% | 1.030 1.038 1.040

Table 9: Dev BPC of SRU++ given a learning rate €
{1.5,2,3} x 10~ and a weight decay € {0.1,0.01,0}.
‘-‘ means the training run diverged or got gradient ex-
plosion.

B Training details

Language modeling We use the RAdam opti-
mizer’ with the default hyperparameters 31 = 0.9
and [ = 0.999 for all our experiments. We use a
cosine learning rate schedule with only 1 cycle for
simplicity. For faster training, we also leverage the
native automatic mixed precision (AMP) training
and distributed data parallel (DDP) of Pytorch in
all experiments, except those in Table 1 and Fig-

‘https://github.com/LiyuanLucasLiu/
RAdam
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ure 1 for a fair comparison with the Transformer-
XL implementation.

Table 11 shows the detailed training configura-
tion of SRU++ models on ENWIKS8 dataset. Most
training options are kept the same for all models.
We tune the dropout probability more carefully as
we found training is more prone to over-fitting and
under-fitting for this dataset. The large model is
trained with 2x batch size. As a result, we increase
the learning rate proportionally by a factor of /2
(Hoffer et al., 2017), which results in a rounded
learning rate of 0.0004.

Table 12 presents the detailed training config-
uration on WIKI-103 dataset. Similarly we use
d = 3072 and d = 4096 for the base and large
model respectively for a hidden size ratio d : d’ =
4 : 1. Following (Baevski and Auli, 2019), we use
an adaptive word embedding layer and an adap-
tive softmax layer for our models, and we tie the
weight matrices of the two layers. We keep the
total number of parameters comparable when we
use a different hidden size ratiod : d' = 8 : 1.

Machine translation We use the open-sourced
code from Lin et al. (2020) for the IWSLT 14
De—En translation task. The Transformer model
tuned by the original work uses 8 layers for both
the encoder and decoder and a total of 20M pa-
rameters. Most of the training configuration re-
mains the same as the original work®, except for
a couple of changes. First, we use RAdam opti-
mizer and the same [ values for consistency with
the language model task. We use the same weight
decay value of 0.1 for SRU++. The Transformer
model uses a weight decay of 0 that is tuned based
on dev set performance. Second, we increase the
number of training epochs to 50 (or equivalently
64K training steps) since all models achieve better
BLEU scores by training longer. This ensures we
compare models when they reach the maximum
performance.

Our SRU++ model uses a hidden size d = 1024,
an attention size d’ = 256 and 6 layers for the en-
coder and decoder, resulting in a similar number
of parameters as the Transformer model in com-
parison. Let Xg,.. be the output representation of
the SRU++ encoder. Each SRU++ decoder layer
make uses of X, by simplying treating it as extra
attention context. That is, the query, key and value

Shttps://github.com/asappresearch/
imitkd/blob/master/configs/iwslt/
teacher.yaml

representations are computed by concatenating the
input of the current layer X;,; with X,

Q = [Qsre, Qugt]
=W [Xype, Xegt]

K=W"Q

V=W'Q

The resulting representations Q;4, K and V are
used for the rest of the attention computation. The
attention mask is set such that each target token
can only attend to all source tokens and preceding
target tokens.
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Layers that has attention Num of heads d d Model size Dev BPC

All layers 1 3072 768 108M 0.997
6,7,8,9,10 102M 0.997
2,4,6,8,10 102M 0.999
8,9,10 3136 784 103M 1.000
3,6,9 1.001
5,10 1 3072 768 98M 1.002

2 1.002
10 1 97™M 1.007

2 1.006
All layers 1 3072 768 108M 0.997
5,10 98M 1.002
All layers 4480 560 109M 0.991
5,10 104M 0.997

Table 10: Results of 10-layer SRU++ models by varying the attention setting. We report the dev BPC on the EN-
WIKS dataset. The first column indicates layers where the attention are located. Smaller index numbers represent
layers that are closer to the input of the model.

0.96 . 0.85
\\‘ w/o layernorm (train)
™ w/o layernorm (dev)
087 077 N - - w/ layernorm (train)
. X ‘\ — w/ layernorm (dev)
B
0.78 0.70 el
0.69 0.62 |
0K 100K 200K 300K 400K 0K 100K 200K 300K 400K
41M parameters 108M parameters

Figure 6: Understanding the empirical effect of layer normalization. We show the training and dev loss of SRU++
models using 41M parameters and 108M parameters on ENWIKS8 dataset. The model with layer normalization fits
the training data better, but achieves worse generalization.
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Base model Base model Large model Large model

(k=15)
Attention / unroll size - train 1024 1024 1024 1024
Attention / unroll size - test 3072 3072 3072 3072
Batch size x Num of GPUs 4x8 4x8 8x8 8x8
Dropout 0.22 0.22 0.32 0.35
Gradient clipping 1.0 1.0 1.0 1.0
Hidden size ratio d : d’ 4 4 4 8
Hidden size d 3072 3072 4096 6016
Hidden size d’ 768 768 1024 752
Learning rate 0.0003 0.0003 0.0004 0.0004
LR warmup steps 16K 16K 16K 16K
Training steps 400K 400K 400K 400K
Weight decay 0.1 0.1 0.1 0.1
Model size 98M 108M 191M 195M
Dev BPC 1.002 0.997 0.985 0.974
Test BPC 0.980 0.974 0.963 0.953

Table 11: Training details of SRU++ models on ENWIKS dataset.

Base model Large model Large model Large model

(k=15)
Attention / unroll size - train 768 1024 1024 1024
Attention / unroll size - test 2560 2560 2560 2560
Batch size x Num of GPUs 8x8 8x8 8x8 8x8
Dropout 0.15 0.2 0.2 0.2
Gradient clipping 1.0 1.0 1.0 1.0
Hidden size ratio d : d’ 4 4 8 8
Hidden size d 3072 4096 5952 5952
Hidden size d’ 768 1024 744 744
Learning rate 0.0003 0.0003 0.0003 0.0003
LR warmup steps 16K 16K 16K 16K
Training steps 400K 400K 400K 400K
Weight decay 0.1 0.1 0.1 0.1
Model size 148M 232M 225M 234M
Dev PPL 17.5 16.7 16.6 16.4
Test PPL 18.3 17.4 17.3 17.1

Table 12: Training details of SRU++ models on WIKI-103 dataset.
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