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Abstract

We present ReasonBERT, a pre-training
method that augments language models with
the ability to reason over long-range relations
and multiple, possibly hybrid, contexts. Un-
like existing pre-training methods that only
harvest learning signals from local contexts of
naturally occurring texts, we propose a gen-
eralized notion of distant supervision to auto-
matically connect multiple pieces of text and
tables to create pre-training examples that re-
quire long-range reasoning. Different types
of reasoning are simulated, including inter-
secting multiple pieces of evidence, bridging
from one piece of evidence to another, and
detecting unanswerable cases. We conduct
a comprehensive evaluation on a variety of
extractive question answering datasets rang-
ing from single-hop to multi-hop and from
text-only to table-only to hybrid that require
various reasoning capabilities and show that
ReasonBERT achieves remarkable improve-
ment over an array of strong baselines. Few-
shot experiments further demonstrate that our
pre-training method substantially improves
sample efficiency.1

1 Introduction

Recent advances in pre-trained language mod-
els (LMs) have remarkably transformed the land-
scape of natural language processing. Pre-trained
with self-supervised objectives such as autoregres-
sive language modeling (Radford and Narasimhan,
2018; Radford et al., 2019; Brown et al., 2020) and
masked language modeling (MLM) (Devlin et al.,
2019; Liu et al., 2019b; Joshi et al., 2020), LMs
encode a great deal of knowledge about language
and significantly boost model performance on a
wide range of downstream tasks (Liu et al., 2019a;
Wang et al., 2019a,b) ranging from spell checking

*Corresponding authors.
1Our code and pre-trained models are available at https:

//github.com/sunlab-osu/ReasonBERT.

(Awasthi et al., 2019) to sentiment analysis (Xu
et al., 2019) and semantic parsing (Rongali et al.,
2020), just to name a few.

Existing self-supervised objectives for LM pre-
training primarily focus on consecutive, naturally
occurring text. For example, MLM enables LMs
to correctly predict the missing word “daugh-
ters” in the sentence “Obama has two __ , Malia
and Sasha.” based on the local context and the
knowledge stored in the parameters. However,
many tasks require reasoning beyond local con-
texts: multi-hop question answering (QA) (Yang
et al., 2018; Welbl et al., 2018) and fact verification
(Jiang et al., 2020) require reasoning over multi-
ple pieces of evidence, hybrid QA (Chen et al.,
2020) requires simultaneously reasoning over un-
structured text and structured tables, and dialogue
systems require reasoning over the whole dialogue
history to accurately understand the current user
utterance (Andreas et al., 2020).

To address this limitation in existing LM pre-
training, we propose ReasonBERT, a pre-training
method to augment LMs for explicitly reasoning
over long-range relations and multiple contexts.
ReasonBERT pairs a query sentence with multiple
relevant pieces of evidence drawn from possibly
different places and defines a new LM pre-training
objective, span reasoning, to recover entity spans
that are masked out from the query sentence by
jointly reasoning over the query sentence and the
relevant evidence (Figure 1). In addition to text, we
also include tables as evidence to further empower
LMs to reason over hybrid contexts.

One major challenge in developing
ReasonBERT lies in how to create a large
set of query-evidence pairs for pre-training.
Unlike existing self-supervised pre-training
methods, examples with complex reasoning cannot
be easily harvested from naturally occurring
texts. Instead, we draw inspiration from distant
supervision (Mintz et al., 2009a), which assumes

https://github.com/sunlab-osu/ReasonBERT
https://github.com/sunlab-osu/ReasonBERT
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Figure 1: Examples of our pre-training data acquired via distant supervision, which covers a wide range of topics
with both textual and tabular evidence. For each query sentence (in black), we first select two pairs of entities
(underlined) to find two pieces of evidence (in grey) via distant supervision. We then randomly mask one entity
from each selected pair and aim to recover it by reasoning over the evidence. Note that the two selected pairs may
share a common entity; in case this entity is masked, we can mimic different types of multi-hop reasoning, e.g.,
intersection (Ex. 1) and bridging (Ex. 2). To simulate unanswerable cases, we additionally mask one entity (in
blue) that does not exist in the evidence. Figure best viewed in color.

that “any sentence containing a pair of entities
that are known to participate in a relation is
likely to express that relation,” and generalize
it to our setting of multiple pieces of evidence
from text and tables. Specifically, given a query
sentence containing an entity pair, if we mask
one of the entities, another sentence or table that
contains the same pair of entities can likely be
used as evidence to recover the masked entity.
Moreover, to encourage deeper reasoning, we
collect multiple pieces of evidence that are jointly
used to recover the masked entities in the query
sentence, allowing us to scatter the masked entities
among different pieces of evidence to mimic
different types of reasoning. Figure 1 illustrates
several examples using such distant supervision. In
Ex. 1, a model needs to check multiple constraints
(i.e., intersection reasoning type) and find “the
beach soccer competition that is established in
1998.” In Ex. 2, a model needs to find “the type of
the band that released Awaken the Guardian,” by
first inferring the name of the band “Fates Warning”
(i.e., bridging reasoning type).

We first replace the masked entities in a query
sentence with the [QUESTION] tokens. The new
pre-training objective, span reasoning, then extracts
the masked entities from the provided evidence.
We augment existing LMs like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019b) by contin-
uing to train them with the new objective, which

leads to ReasonBERT, a new LM with better rea-
soning capabilities. Then query sentence and tex-
tual evidence are encoded via the LM. When tabu-
lar evidence is present, we use the structure-aware
transformer TAPAS (Herzig et al., 2020) as the
encoder to capture the table structure.

We evaluate ReasonBERT on the extractive QA
task, which is arguably the most representative task
requiring reasoning about world knowledge. We
conduct a comprehensive evaluation using a variety
of popular datasets: MRQA (Fisch et al., 2019), a
single-hop QA benchmark including six datasets
from different domains; HotpotQA (Yang et al.,
2018), a multi-hop QA dataset; NQTables, a sub-
set of the Natural Questions dataset (Kwiatkowski
et al., 2019) where answers can be found in ta-
bles; and HybridQA (Chen et al., 2020), a hybrid
multi-hop QA dataset that requires reasoning over
both tables and text. Under the few-shot setting,
ReasonBERT substantially outperforms the base-
lines in almost all datasets, demonstrating that the
reasoning ability learned from pre-training can eas-
ily transfer to downstream QA tasks and generalize
well across domains. Under the full-data setting,
ReasonBERT obtains substantial gains in multi-
hop and hybrid QA datasets. Despite its simple
model architecture, ReasonBERT achieves similar
or better performance compared with more sophis-
ticated state-of-the-art models for each dataset.
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2 Background

Language model pre-training. Existing pre-
training objectives such as MLMs (Devlin et al.,
2019; Joshi et al., 2020) tend to implicitly memo-
rize the learned knowledge in the parameters of the
underlying neural network. In this work, we aim
to augment pre-training by encouraging a model to
reason about (instead of memorizing) world knowl-
edge over the given contexts.
Extractive question answering. To measure a
model’s reasoning ability about world knowledge,
we select extractive QA as a downstream task,
which is perhaps one of the most representative
tasks for this purpose. Given a question q and
provided evidence E, an extractive QA model
pθ(a|q, E) aims to select a contiguous span a from
E that answers the question, or output a special
token if E is not sufficient to answer the question.

Our approach, ReasonBERT, is inspired by this
formulation and extends it to language model pre-
training. The challenge in defining such a self-
supervised task is in the creation of question-
evidence pairs from unlabeled data. Moreover, we
aim for a generic approach that works for a wide
range of extractive QA settings including single-
hop and multi-hop reasoning, hybrid contexts with
both unstructured texts and structured tables, as
well as few-shot settings. We discuss how to ad-
dress the challenge and achieve this goal in the next
two sections.

3 Distant Supervision (DS) for
Pre-training

We use English Wikipedia as our data source for
pre-training. We first extract sentences and tables
from Wikipedia pages and then identify salient
spans (such as named entities) from them. We
apply the idea of distant supervision and match the
sentences and tables to form query-evidence pairs,
which are used to create pre-training examples.

3.1 Data Collection

Text. We first extract paragraphs from Wikipedia
pages and split them into sentences. We consider
named entities including both real-world entities
(e.g., person, location) and temporal and numeric
expressions (e.g., date and quantity) as potential
answer entities for pre-training. We first identify
real-world entities using existing hyperlinks. Since
Wikipedia pages generally do not contain links

to themselves, we additionally detect such self-
mentions by searching the names and aliases of the
topic entity for each page. Temporal and numeric
expressions are identified using an existing NER
tool2.
Tables. We extract tables that are labeled as <wik-
itable> from Wikipedia, and only consider tables
with no more than 500 cells. First, real-world enti-
ties are detected using existing hyperlinks. Unlike
our method employed for textual sentences, we
do not use traditional NER tools here as they are
not tailored to work well on tables. Instead, for a
cell that does not contain hyperlinks, we match the
complete cell value with sentences that are closely
related to the table, sourced either from the same
page or a page containing a hyperlink pointing to
the current page. If the matched span in the sen-
tence contains a named entity, we consider the same
entity as being linked to the cell as well. Otherwise
we consider this cell as a unique entity in the table.

Please see Appendix A.1 for details about the
tools and resources we use.

3.2 Query-Evidence Pairing via DS

As described in Section 2, a standard QA sample is
composed of a question, an answer and evidence.
The model infers the relationship between the an-
swer and other entities in the question, and extracts
it from the evidence. In this work, we try to simu-
late such samples in pre-training. Given a sentence
with entities, it can be viewed as a question by
masking some entities as answers for prediction.
The key issue is then how to find evidence that
contains not only the answer entity, but also the
relational information for inference. Here we bor-
row the idea of distant supervision (Mintz et al.,
2009b).

Given a sentence as a query, we first extract pairs
of entities in it. For each entity pair, we then find
other sentences and tables that also contain the
same pair as evidence. Since we do not have the
known relation constraint in the original assump-
tion of distant supervision, we use the following
heuristics to collect evidence that has high quality
relational knowledge about the entities and is rel-
evant to the query. First, we only consider entity
pairs that contain at least one real-world entity. For
textual evidence, the entity pair needs to contain
the topic entity of the Wikipedia page, which is
more likely to have relations to other entities. For

2https://nlp.johnsnowlabs.com/

https://nlp.johnsnowlabs.com/


6115

Setting # queries # sent. # tab. # ent. pairs

Text-only 7.6M 8.4M - 5.5M
Hybrid 3.2M 4.3M 0.9M 6.0M

Table 1: Statistics about the pre-training data.

Setting All the same One different All different

Text-only 50% 30% 20%
Hybrid 60% 8% 32%

Table 2: Analysis of pre-training data quality with 50
examples for each setting. One different is when the
relation between the selected entities is different from
the relation expressed in the query sentence for of the
two pieces of evidence.

tabular evidence, we consider only entity pairs that
are in the same row of the table, but they do not
need to contain the topic entity, as in many cases
the topic entity is not present in the tables. In both
cases, the query and evidence should come from
the same page, or the query contains a hyperlink
pointing to the evidence page. For tabular evidence,
we also allow for the case where the table contains
a hyperlink pointing to the query page.

3.3 Pre-training Data Generation
Given the query-evidence pairs, a naive way to
construct pre-training examples is to sample a sin-
gle piece of evidence for the query, and mask a
shared entity as “answer”, as in Glass et al. (2020).
However, this only simulates simple single-hop
questions. In this work, we construct complex
pre-training examples that require the model to
conduct multi-hop reasoning. Here we draw inspi-
ration from how people constructed multi-hop QA
datasets. Take HotpotQA (Yang et al., 2018) as
an example. It first collected candidate evidence
pairs that contain two paragraphs (A,B), with a
hyperlink from A to B so that the topic entity of B
is a bridging entity that connects A and B. Crowd
workers then wrote questions based on each evi-
dence pair. Inspired by this process, we combine
multiple pieces of evidence in each pre-training
example and predict multiple masked entities si-
multaneously. The detailed process is described
below. Figure 1 shows two examples. For more
examples, please check Appendix A.1.

We start by sampling up to two entity pairs
from the query sentence and one piece of evidence
(sentence or table) for each entity pair. We then
mask one entity in each pair as the “answer” to
predict. The resulting pre-training examples fall
into three categories: (1) Two disjoint entity pairs

{(a, b), (c, d)} are sampled from the query, and
one entity from each pair, e.g., {a, c}, is masked.
This is similar to a combination of two single-
hop questions. (2) The two sampled entity pairs
{(a, b), (b, c)} share a common entity b, and b is
masked. The model needs to find two sets of enti-
ties that respectively satisfy the relationship with
a and c, and take an intersection (Type II in Hot-
potQA; see Ex. 1 in Figure 1). (3) The two sampled
entity pairs {(a, b), (b, c)} share a common entity
b, and {b, c} are masked. Here b is the bridging
entity that connects a and c. The model needs to
first identify b and then recover c based on its rela-
tionship with b (Type I and Type III in HotpotQA;
see Ex. 2 in Figure 1). We also mask an entity
from the query that is not shown in the evidence to
simulate unanswerable cases. All sampling is done
randomly during pre-training.

3.4 Data Statistics and Analysis

We prepare pre-training data for two settings: (1)
one with only textual evidence (text-only) and (2)
the other including at least one piece of tabular
evidence in each sample (hybrid). Some statistics
of the collected data are summarized in Table 1.
For the text-only setting, we extract approximately
7.6M query sentences, each containing 2 entity
pairs that are matched with 3 different pieces of tex-
tual evidence on average. For the hybrid setting, we
select approximately 3.2M query sentences, each
containing 3.5 entity pairs, matched with 5.8 differ-
ent pieces of evidence on average.

We also conduct an analysis of the pre-training
data quality using 50 randomly sampled examples
from each setting. We compare the query sentence
and the evidence to see if they are expressing the
same relation between the selected entities. Results
are summarized in Table 2. We can see that in
both settings, almost 70% of the examples have
the desired characteristic that the evidence contains
useful relational knowledge for recovering missing
entities in the query sentence.

4 Pre-training

4.1 Encoder

For the text-only setting, we use the standard trans-
former encoder in BERT (Devlin et al., 2019).
For settings where the input contains tables, we
adopt the transformer variant recently introduced
in TAPAS (Herzig et al., 2020), which uses extra
token-type embeddings (indicating the row/column
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position of a token) to model the table structure.

4.2 Span Reasoning Objective
Now we describe our span reasoning objective,
which can advance the reasoning capabilities of a
pre-trained model.

Given a sample collected for pre-training as de-
scribed in Section 3.3, we replace the masked enti-
tiesA = {a1, . . . , an} (n≤3) in the query sentence
q with special [QUESTION] tokens. The task then
becomes recovering these masked entities from the
given evidence E (concatenation of the sampled ev-
idence). Specifically, we first concatenate q, E and
add special tokens to form the input sequence as
[[CLS], q,[SEP], E], and get the contextualized
representation x with the encoder. Since we have
multiple entities in q masked with [QUESTION],
for each ai, we use its associated [QUESTION]
representation as a dynamic query vector xai to
extract its start and end position s, e of ai in E (i.e.,
question-aware answer extraction).

P (s|q, E) =
exp

(
x>
s Sxai

)∑
k exp

(
x>
k Sxai

)
P (e|q, E) =

exp
(
x>
e Exai

)∑
k exp

(
x>
k Exai

) (1)

Here S,E are trainable parameters. xai is the
representation of special token [QUESTION] cor-
responding to ai; xk is the representation of the
k-th token in E. If no answer can be found in
the provided evidence, we set s, e to point to the
[CLS] token.

The span reasoning loss is then calculated as
follows:

LSR = −
∑
ai∈A

(logP (sai |q, E) + logP (eai |q, E)) (2)

We name this objective as span reasoning, as
it differs from the span prediction/selection objec-
tives in existing pre-training work such as SpanBert
(Joshi et al., 2020), Splinter (Ram et al., 2021), and
SSPT (Glass et al., 2020) in the following ways:
(1) Unlike SpanBert and Splinter that use single
contiguous paragraph as context, where the models
may focus on local cues, we encourage the model
to do long-range contextualization by including
both query and evidence as input, which can come
from different passages, and recovering the masked
entities by grounding them on the evidence E. (2)
Unlike SSPT, we improve the model’s ability to
reason across multiple pieces of evidence by in-
cluding two disjoint pieces of evidence in a single
sample and scattering the answer entities among

MRQA HotpotQA NQTables HybridQA

# train 86136.5 88881 17112 62686
# dev - 1566 1901 3466
# test 9704 7405 1118 3463
# evidence 1 10 8.7 34.7
# tokens* 374.9 89.1 289.6 156.3
has text/table 3/7 3/7 7/3 3/3

Table 3: Dataset statistics. The statistics for MRQA are
averaged over all 6 datasets. # tokens* is the average
number of tokens per evidence.

them to mimic different types of reasoning chains.
(3) We mimic the scenario where a span cannot be
inferred based on the given contexts, by masking
entities in q that do not appear in E, in which case
the model is trained to select the special [CLS]
token.

4.3 Final Objective
We also include the masked language modeling
(MLM) objective in pre-training to leverage other
tokens in the input that are not entities. In particular,
we randomly mask tokens that are not an entity
or token in the header row for tables, and use an
MLM objective to recover them. Following the
default parameters from BERT, we use a masking
probability of 15%.

The final loss is the sum of span reasoning loss
and masked language modeling loss. Following
previous work (Glass et al., 2020; Herzig et al.,
2020), we initialize with a pre-trained encoder, and
extend the pre-training with our objectives. For
the text part, we pre-train two models with BERT-
Base (denoted as ReasonBERTB) and RoBERTa-
Base (denoted as ReasonBERTR); for the table part,
we use TAPAS-Base (denoted as ReasonBERTT).
More implementation details of pre-training are
included in Appendix A.2.

5 Experiments

5.1 Datasets
We conduct experiments with a wide range of ex-
tractive QA datasets. Statistics are summarized in
Table 3.
MRQA (Fisch et al., 2019). A single-hop extrac-
tive QA benchmark that unifies various existing
QA datasets into the same format. Here we use the
in-domain subset that contains 6 datasets: SQuAD
(Rajpurkar et al., 2016), NewsQA (Trischler et al.,
2017), TriviaQA (Joshi et al., 2017), SearchQA
(Dunn et al., 2017), HotpotQA (Yang et al., 2018)
and Natural Questions (Kwiatkowski et al., 2019).
Similar to Ram et al. (2021), we adapt these
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Train. Size Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA Average

16

BERT 9.9±0.6 15.4±1.3 20.5±1.5 6.5±1.2 16.8±1.2 9.6±1.6 13.1
RoBERTa 10.3±1.1 21.0±3.1 22.5±2.1 6.7±2.0 23.4±3.5 11.2±1.0 15.9
SpanBERT 15.7±3.6 27.4±4.1 24.3±2.1 8.1±1.4 24.1±3.2 16.3±2.0 19.3
SSPT 10.8±1.2 21.2±3.8 23.7±4.1 6.5±1.9 25.8±2.6 9.1±1.5 16.2
Splinter 16.7±5.9 23.9±3.8 25.1±2.8 11.6±1.0 23.6±4.5 15.1±3.5 19.3
Splinter* 54.6 18.9 27.4 20.8 26.3 24.0 28.7
ReasonBERTB 33.2±4.0 37.2±2.6 33.1±2.7 11.8±2.3 46.1±5.2 22.4±2.8 30.6
ReasonBERTR 41.3±5.5 45.5±5.8 33.6±3.9 16.2±3.2 45.8±4.5 34.1±2.9 36.1

128

BERT 21.5±1.4 23.9±0.8 31.7±0.8 11.3±1.3 32.6±2.3 14.0±0.8 22.5
RoBERTa 48.8±4.2 36.0±2.9 36.4±2.0 22.8±2.4 41.3±2.0 35.2±1.4 36.7
SpanBERT 61.2±4.7 48.8±6.6 38.8±2.6 31.0±5.3 50.0±3.7 44.0±2.3 45.7
SSPT 41.5±5.0 30.3±3.7 35.0±2.4 14.0±3.6 42.8±3.5 23.7±3.4 31.2
Splinter 55.0±10.3 45.7±4.1 41.1±2.7 33.9±2.8 48.8±3.7 46.9±7.1 45.2
Splinter* 72.7 44.7 46.3 43.5 47.2 54.7 51.5
ReasonBERTB 58.5±2.2 56.2±0.6 46.7±2.6 27.8±0.6 60.8±1.7 45.2±2.3 49.2
ReasonBERTR 66.7±2.9 62.1±0.9 49.8±1.6 35.7±1.5 62.3±1.7 57.2±0.6 55.6

1024

BERT 64.1±0.9 41.6±2.6 50.1±0.6 43.0±0.3 53.1±1.0 46.5±1.9 49.7
RoBERTa 77.9±0.5 62.2±1.3 60.3±0.6 55.0±0.5 67.5±0.8 63.4±0.8 64.4
SpanBERT 81.1±0.7 67.0±1.0 63.2±0.9 56.4±0.4 70.0±0.8 67.6±1.1 67.5
SSPT 77.6±1.4 60.1±2.0 58.7±0.7 52.8±1.1 65.9±0.8 63.3±1.6 63.1
Splinter 79.8±3.5 67.3±1.5 63.8±0.5 54.6±1.4 68.9±0.3 68.4±1.2 67.1
Splinter* 82.8 64.8 65.5 57.3 67.3 70.3 68.0
ReasonBERTB 76.9±0.5 67.4±0.5 63.6±0.6 52.2±0.5 70.6±0.6 67.8±0.5 66.4
ReasonBERTR 79.7±0.3 70.1±0.2 65.0±0.9 54.7±0.6 72.8±0.4 69.7±0.6 68.7

All

BERT 88.8 73.6 78.7 67.5 82.0 76.2 77.8
RoBERTa 92.0 78.1 80.6 71.9 85.2 79.1 81.2
SpanBERT 92.5 79.9 80.7 71.1 84.8 80.7 81.6
SSPT 91.1 77.0 80.0 69.7 83.3 79.7 80.1
Splinter 92.4 79.7 80.3 70.8 84.0 80.6 81.3
Splinter* 92.2 76.5 81.0 71.3 83.0 80.7 80.8
ReasonBERTB 90.3 77.5 79.9 68.7 83.7 80.5 80.1
ReasonBERTR 91.4 78.9 80.8 71.4 85.3 80.6 81.4

Table 4: Results on MRQA datasets. Best and Second Best results are highlighted. We report the average F1 score
over five runs for each dataset, and the macro-average of the six datasets. Splinter* is the result reported in the
original paper, where the authors use a deeper model with additional transformation layers on top of the encoder.

datasets to the few-shot setting by randomly sam-
pling smaller subsets from the original training set
for training, and use the original development set
for testing.
HotpotQA (Yang et al., 2018). A multi-hop QA
dataset that requires reasoning over multiple pieces
of evidence. Here we follow the distractor set-
ting, where 10 paragraphs are provided to answer a
question while only two of them contain relevant
information. We split 10% of the original train-
hard split for development, and use the original
development set for testing.
NQTables (Kwiatkowski et al., 2019). A subset of
the Natural Questions dataset, where at least one
answer to the question is present in a table. We ex-
tract 19,013 examples from the original training set
(307,373 examples) and split them with a 9:1 ratio
for training and development. The test set is then
created from the original development split (7,830

examples) and contains 1,118 examples. Here we
only keep tables from the original Wikipedia article
as evidence. Similar subsets are also used in Herzig
et al. (2021) and Zayats et al. (2021).
HybridQA (Chen et al., 2020). A multi-hop QA
dataset with hybrid contexts. Each example con-
tains a table and several linked paragraphs.

We adopt the evaluation script from MRQA3,
which evaluates the predicted answer using exact
match (EM) and token-level F1 metrics.

5.2 Baselines

BERT (Devlin et al., 2019). A deep transformer
model pre-trained with masked languge model
(MLM) and next sentence prediction objectives.
RoBERTa (Liu et al., 2019b). An optimized ver-
sion of BERT that is pre-trained with a larger text

3https://github.com/mrqa/
MRQA-Shared-Task-2019

https://github.com/mrqa/MRQA-Shared-Task-2019
https://github.com/mrqa/MRQA-Shared-Task-2019
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corpus.
SpanBERT (Joshi et al., 2020). A pre-training
method designed to better represent and predict
spans of text. It extends BERT by masking contigu-
ous random spans, and training the span boundary
representation to predict the entire masked span.
SSPT (Glass et al., 2020). A pre-training method
designed to improve question answering by train-
ing on cloze-like training instances. Unlike
ReasonBERT, SSPT only masks a single span in
the query sentence and predicts it based on an evi-
dence paragraph provided by a separate retriever.
Splinter (Ram et al., 2021). A pre-training method
optimized for few-shot question answering, where
the model is pre-trained by masking and predicting
recurring spans in a passage.
TAPAS (Herzig et al., 2020). A pre-training
method designed to learn representations for ta-
bles. The model is pre-trained with MLM on tables
and surrounding texts extracted from Wikipedia.

For fair comparison, in each task, we use the
same model architecture with different pre-trained
encoders, which is similar to the one used for
span reasoning in pre-training. We append the
[QUESTION] token to a question and construct
the input sequence the same way as in pre-training.
We then score all the start, end locations and rank
all spans (s, e) (See Eqn. 3 and 4 in Appendix). We
use a pre-trained encoder and learn the answer ex-
traction layers (S,E in Eqn. 1) from scratch during
fine-tuning.

Unless otherwise stated, we use the pre-trained
base version so that all models have similar capac-
ity (110M parameters for ReasonBERTB, 125M pa-
rameters for ReasonBERTR, and 111M parameters
for ReasonBERTT).

5.3 Few-shot Single-hop Text QA

We first experiment with the easier, single-hop
MRQA benchmark under the few-shot setting to
show that our pre-training approach learns general
knowledge that can be transferred to downstream
QA tasks effectively. Results are shown in Table 4.
We can see that ReasonBERT outperforms pre-
trained language models such as BERT, RoBERTa
and SpanBERT by a large margin on all datasets,
particularly with an average absolute gain of 20.3%
and 14.5% over BERT and RoBERTa respectively.
Compared with pre-training methods such as SSPT
and Splinter, ReasonBERT also shows superior per-
formance and obtains the best results on average.

Model
Recall 1% Full

Top 2 Top 3 F1 EM F1 EM

HGNRoBERTa-Large - - - - 82.2 -
HGNBERT - - - - 74.8 -
BERT 92.4 96.9 39.8 28.6 71.9 57.9
RoBERTa 93.1 97.5 56.0 43.1 76.3 62.9
SpanBERT 93.6 97.7 56.5 44.1 76.3 62.9
SSPT 93.9 97.9 54.7 41.8 75.4 61.5
Splinter 94.1 97.9 57.0 44.2 76.5 62.5
ReasonBERTB 93.8 97.8 57.6 45.3 77.2 63.4
ReasonBERTR 94.0 98.0 63.1 50.2 78.1 64.8

Table 5: Results on HotpotQA.

Figure 2: Few-shot learning results on HotpotQA.

Under the full-data setting, ReasonBERT performs
competitively and all methods achieve similarly
high accuracy. We still demonstrate improvements
upon BERT and RoBERTa, and ReasonBERTR sec-
ond best average score.

5.4 Multi-hop Text QA

To demonstrate that our approach is useful in con-
ducting deep reasoning over multiple contexts, we
experiment with the HotpotQA dataset. Here we
design a simplified multi-hop QA model that first
selects relevant paragraphs as evidence, and then
extracts the answer from the top selected evidence.
Please see Appendix A.3 for implementation de-
tails. In addition to comparing ReasonBERT with
other pre-training methods using the same base
model, we also show results for HGN (Fang et al.,
2020), which is one of the top ranked models on
the HotpotQA leaderboard that uses a more sophis-
ticated model design.

Results are shown in Table 5. All models per-
form very well for evidence selection, with over
96% top 3 recall, but ReasonBERT still maintains a
slim lead over baselines. ReasonBERT provides a
5.3% improvement for BERT and a 1.8% improve-
ment for RoBERTa on overall F1 score, and outper-
forms all other pre-training methods. ReasonBERT
also outperforms the HGN model with BERT, but
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Model
Dev Test

F1 EM F1 EM

RoBERTa 58.9 52.8 63.6 58.1
ReasonBERTR 61.9 56.4 66.3 60.9
TAPAS 64.9 57.8 65.9 59.6
ReasonBERTT 69.2 63.5 72.5 67.3

Table 6: Results on NQTables.

is lower than the one using RoBERTa-Large, which
is probably due to simpler design and smaller size
of the model. We further experiment under the
few-shot setting. Here we focus on the QA perfor-
mance, so we reuse the evidence selector trained
with full data for each model, and train the QA
module with different fractions of training data. We
can see that the advantage of using ReasonBERT is
more obvious with limited training data. With 1%
of training data, ReasonBERTR obtains F1 score
of 63.1%, a 7.1% absolute gain over RoBERTa.
Results for training the QA model with different
fraction of training data is shown in Figure 2. We
can see that ReasonBERT obtains larger gain under
the few-shot setting.

5.5 Table QA

We demonstrate our approach also works with
structured data such as tables using the NQTables
dataset. We first use a text based RoBERTa encoder
as baseline, which linearizes a table as a text se-
quence, by concatenating tokens row by row and
separating cells with the [SEP] token. We then
experiment with the structure-aware encoder from
TAPAS and compare the pre-trained TAPAS en-
coder with the one pre-trained using ReasonBERT.
Results are shown in Table 6. First, we can see that
TAPAS outperforms RoBERTa by 2.3%, demon-
strating the importance of modeling the table struc-
ture. ReasonBERTR slightly outperforms TAPAS
on test set, but ReasonBERTT further boosts F1 to
72.5%, resulting in at least 6.6% absolute gains
over existing methods. Results for training the Ta-
ble QA model with different fractions of training
data are shown in Figure 3. ReasonBERTT con-
sistently outperforms TAPAS while ReasonBERTR

gradually matches the performance of TAPAS with
the increasing of training data.

5.6 Hybrid QA

We further evaluate our approach on HybridQA, a
multi-hop question answering dataset using both
text and tables as evidence. Chen et al. (2020) pro-
poses a baseline model HYBRIDER that divides

Figure 3: Few-shot learning results on NQTables.

Model
Cell Selection Dev Test
Top 1 Top 2 F1 EM F1 EM

HYBRIDERBERT-Base - - 50.9 43.7 50.2 42.5
HYBRIDERBERT-Large 68.5 - 50.7 44.0 50.6 43.8
TAPAS+RoBERTa 73.3 79.7 64.0 57.3 63.3 56.1
ReasonBERT 76.1 81.3 67.2 60.3 65.3 58.0

Table 7: Results on HybridQA.

the problem into four tasks: linking, ranking, hop-
ping and reading comprehension. We follow their
design but simplify the model by merging ranking
and hopping into a single cell selection task. We
use the linking results from Chen et al. (2020), and
then train a table based cell selector to select the
cell which is the answer or is linked to the passage
that contains the answer. Finally, we train a text
based QA model to extract the final answer by tak-
ing the table snippet that contains the selected cell,
and concatenating it with the hyperlinked passage
as evidence. Please see Appendix A.3 for imple-
mentation details. Results are shown in Table 7.
First, we can see that our simplified architecture
works surprisingly well, with TAPAS for cell selec-
tion and RoBERTa for QA, we already outperform
HYBRIDER. The performance is further improved
by replacing the encoders with ReasonBERTT and
ReasonBERTR, and substantially outperforms the
best model on the leaderboard (52.04 EM) at the
time of submission.

6 Ablation Study

We further conduct ablation studies on HotpotQA
to verify our design choices, summarized in Ta-
ble 8. Here we remove different components of
ReasonBERTR and test them under both the full-
data and few-shot setting (with 1024 examples).
To save computing resources, here all models are
pre-trained with 5 epochs. We can see that com-
bining multiple pieces of evidence and predicting
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Model
1024 Full

F1 EM F1 EM

ReasonBERTR 65.2 52.8 79.2 65.8
– MLM 63.7 51.3 77.7 64.0
– Unanswerable Ent. 64.4 51.8 78.4 65.0
– Multiple Evidences 60.8 48.6 77.8 64.5

Table 8: Ablation study on HotpotQA.

multiple masked spans simultaneously brings the
most gain, especially under the few-shot setting.
This is probably because the setting allows us to
simulate complex reasoning chains and encourage
the model to do deep reasoning. Masking unan-
swerable entities and utilizing MLM also help to
improve performance.

7 Related Work

Language Model Pre-training. Contextualized
word representations pre-trained on large-scale un-
labeled text corpus have been widely used in NLP
lately. Most prevalent approaches are variants of
pre-trained language models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019b).
More recently, self-supervised pre-training has also
shown promising results on modalities other than
plain text, such as tables (Herzig et al., 2020;
Deng et al., 2020; Iida et al., 2021), knowledge
bases (Zhang et al., 2019; Peters et al., 2019) and
image-text (Su et al., 2020). Meanwhile, there has
also been work that uses pre-training to accommo-
date specific needs of downstream NLP tasks, such
as open-domain retrieval (Guu et al., 2020), repre-
senting and predicting spans of text (Joshi et al.,
2020) and semantic parsing (Yu et al., 2020; Deng
et al., 2021).
Machine Reading Comprehension. Machine
reading comprehension (MRC) or extractive QA
has become an important testbed for natural lan-
guage understanding evaluation (Fisch et al., 2019).
The conventional method to train an MRC model
usually relies on large-scale supervised training
data (Chen et al., 2017; Zhang et al., 2020). Re-
cently, more and more work has focused on de-
veloping self-supervised methods that can reduce
the need for labeled data for more efficient domain
adaptation, while achieving the same or even better
performance. One direction is question genera-
tion (Pan et al., 2021), which automatically gener-
ates questions and answers from unstructured and
structured data sources using rules or neural gener-
ators. Recent work also tries to directly simulate
questions with cloze-like query sentences. Splin-

ter (Ram et al., 2021) proposes to pre-train the
model by masking and predicting recurring spans.
However, this limits the query and context to come
from the same passage. In contrast, SSPT (Glass
et al., 2020) also pre-trains with a span selection
objective, but uses a separate document retriever to
get relevant paragraphs as context.

Our work is most related to SSPT, but uses dis-
tant supervision to collect query-evidence pairs and
thus obviate the need for a retriever. Meanwhile, to
encourage the model to learn complex reasoning,
we mimic different types of reasoning chains by
masking multiple entities, including unanswerable
ones, and simultaneously inferring them from dis-
joint pieces of evidence. Our method also works
with heterogeneous sources including both text and
tables, while most existing work considers only
text-based question answering.

8 Conclusion and Future Work

We propose ReasonBERT, a novel pre-training
method to enhance the reasoning ability of lan-
guage models. The resulting model obtains sub-
stantial improvements on multi-hop and hybrid QA
tasks that require complex reasoning, and demon-
strates superior few-shot performance. In the fu-
ture, we plan to use our query-evidence pairs col-
lected by distant supervision to improve the re-
trieval performance for open-domain QA, as well
as empower ReasonBERT to handle more types of
reasoning, like comparison and numeric reasoning,
in natural language understanding.
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A Implementation Details

A.1 Pre-training Data Details

We extract paragraphs from Wikipedia XML
dump4 use JWPL5 and tables use wikitextparser6.
The paragraphs are then processed with SparkNLP7

for sentence boundary detection and named entity
recognition.

Table 9 and Table 10 show some examples of the
query-evidence pairs we collected for pre-training.
The selected entities are underlined. During pre-
training, we will mask some of the entities in the
query and recover them based on the evidence. As
the pre-training data is collected via distant supervi-
sion, it contains some noise. Here we also include
some bad examples where the evidence does not
express the same relation between the selected en-
tities as the query sentence (highlighted in red).

A.2 Pre-training Details

We set the max length of query sentences to 100
tokens and the max length of single piece of evi-
dence to 200 if there are two evidence selections or
400 if there is only one. For textual evidence, we
include the neighbouring sentences from the same
paragraph as extra context for the selected evidence
sentence and clip to the max evidence length. For
tabular evidence, we take a snippet of the original
table, and truncate the cells to 20 tokens. We al-
ways keep the first row and column in the table, as
they often contain important information such as
headers and subject entities. Based on the selected
entity pair, we sample up to 5 columns and include
as many rows as possible until reaching the budget.

We initialize our encoder with BERT-Base8 and
RoBERTa-Base9 for the text part, and TAPAS-
base10 for the table part. We train ReasonBERT
using AdamW (Loshchilov and Hutter, 2019) for
10 epochs with batches of 256 sequences of length
512; this is approximately 290k steps with text-
only data, and 120k steps with hybrid data. We
base our implementation on Huggingface Trans-
formers (Wolf et al., 2020), and train on a single

4https://dumps.wikimedia.org/
5https://dkpro.github.io/dkpro-jwpl/
6https://github.com/5j9/wikitextparser
7https://nlp.johnsnowlabs.com/
8https://huggingface.co/

bert-base-uncased/tree/main
9https://huggingface.co/roberta-base/

tree/main
10https://huggingface.co/google/

tapas-base/tree/no_reset

eight-core TPU on the Google Cloud Platform.

A.3 Fine-tuning Details
To extract the answer span from given evidence,
we score all the start, end locations and rank all
spans (s, e) by g(s, e|q, E) as follows:

fstart = x>
s Sxq, fend = x>

e Exq (3)
g(s, e|q, E) = fstart(s|q, E) (4)

+ fend(e|q, E)

− fstart([CLS]|q, E)

− fend([CLS]|q, E)

For all fine-tuning experiments, we set the batch
size to 20 and use a maximal learning rate of 5 ·
10−5, which warms up in the first 10% of the steps,
and then decays linearly. We use the development
set for model selection if it is present, otherwise
we use the last model checkpoint.
Single-hop text QA. We split the text sequence to
fit the max input length by sliding a window with a
stride of 128 tokens.

For the few-shot setting, we fine-tune the model
for either 10 epochs or 200 steps (whichever is
larger). For the fully supervised setting, we fine-
tune the model for 2 epochs.
Multi-hop text QA. We design a simplified multi-
hop QA model that first selects relevant paragraphs
as evidence, and then extracts the answer from the
selected evidence samples. Specifically, we first
generate all possible paragraphs by sliding a 200-
token window over all articles with a stride of 128
tokens. We then train an evidence selector to pick
the top 3 evidence samples. As the information for
answering a question in HotpotQA is scattered in
two articles, we list all possible combinations of
paragraphs that come from two different articles
and concatenate them together to form the final
evidence. We then use the base QA model to extract
the answer based on the question and the combined
evidence.

We fine-tune the evidence selector model for 2
epochs, and the QA model for 5 epochs with full
data. For the few-shot setting, we fine-tune the QA
model for 10 epochs with 1&, 5% and 10% of the
training data, and for 5 epochs with 25% and 50%
of the training data.
Table QA. For the text based model, We split the
text sequence to fit the max input length by sliding
a window with a stride of 128 tokens. For the table
based model, we truncate each cell to 50 tokens,

https://dumps.wikimedia.org/
https://dkpro.github.io/dkpro-jwpl/
https://github.com/5j9/wikitextparser
https://nlp.johnsnowlabs.com/
https://huggingface.co/bert-base-uncased/tree/main
https://huggingface.co/bert-base-uncased/tree/main
https://huggingface.co/roberta-base/tree/main
https://huggingface.co/roberta-base/tree/main
https://huggingface.co/google/tapas-base/tree/no_reset
https://huggingface.co/google/tapas-base/tree/no_reset
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and split the table into snippets horizontally. Same
as pre-training, we include the first row and column
in each table snippet.

We fine-tune the model for 5 epochs with full
data. For the few-shot setting, we fine-tune the QA
model for 10 epochs with 1&, 5% and 10% of the
training data, and for 5 epochs with 25% and 50%
of the training data.
Hybrid QA. Chen et al. (2020) proposes a baseline
model that divides the problem into four tasks: 1)
linking: link questions to their corresponding cells
using heuristics. 2) ranking: rank the linked cells
use a neural model. 3) hopping: based on the cell
selected in the last step, decide which neighboring
cell or itself contains the final answer. 4) reading
comprehension: extract the answer from the pre-
dicted cell or its linked paragraph. We follow their
design and simplify the model by merging ranking
and hopping into a single cell selection task. We
use the linking results from Chen et al. (2020). For
each linked cell, we take a snippet out of the origi-
nal table including the headers, the entire row of the
linked cell, and concatenate the evidence sentence
to the cell if it is linked through the hyperlinked pas-
sage. To select the cell, we train the model to select
separately on the token, row and column level, and
aggregate the final scores . More specifically, we
calculate the probability of selecting on the token
and row level as follows:

P (t|q, E) =
exp

(
x>
t Sxai

)∑
k exp

(
x>
k Sxai

)
Scell = meanxi∈cell

(
x>
i Rxa

)
P (ra = j | q, E) =

exp
(
maxcell∈rj Scell

)∑
k exp (maxcell∈rk Scell)

(5)

Here S is the weight matrix of the token selection
header, we only consider the first token in each cell,
and t is the first token of the selected cell. R is
the weight matrix of row selection header, and the
column selection probability is calculated similarly
with another column selection header. We first
score each cell by averaging over all tokens in that
cell. We then do a max pooling over all cells in
the row or column so the model can focus on the
strongest signal, for example the column header.
The final probability of selecting a cell is the sum
of token, row and column scores.

The input for the QA model then contains the
header of the table, the row of the selected cell, and
the hyperlinked passage.

We fine-tune the cell selection model for 2
epochs and the QA model for 3 epochs.
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Query Evidence

"I Thought I Lost You" was nominated
for Broadcast Film Critics Association
Award for Best Song and Golden Globe
Award for Best Original Song, but lost
both to Bruce Springsteen’s
"The Wrestler" from The Wrestler
(2008).

On January 11, 2009, Springsteen won the Golden Globe Award
for Best Song for "The Wrestler", from the Darren Aronofsky
film by the same name.
"I Thought I Lost You" was nominated for the Broadcast Film
Critics Association Award for Best Song at the 14th Broadcast
Film Critics Association Award, but lost to Bruce Springsteen’s
"The Wrestler" from The Wrestler (2008).

Film critic Roger Ebert compared it to
John Carpenter’s Halloween, noting:
"Blue Steel" is a sophisticated update
of Halloween, the movie that first made
Jamie Lee Curtis a star.

Historian Nicholas Rogers notes that film critics contend that
Carpenter’s direction and camera work made Halloween a "re-
sounding success." Roger Ebert remarks, ...
Since Jamie Lee Curtis, the main actress from the original and
the sequel Halloween II (1981), wanted to reunite the cast and
crew of the original film, she asked Carpenter to direct Hal-
loween H20: 20 Years Later.

A hybrid disc is an optical disc that
has multiple file system installed on it,
typically ISO 9660 and HFS+ (or HFS
on older discs).

Hierarchical File System ( HFS ) is a proprietary file system
developed by Apple Inc. for use in computer systems running
Mac OS.
ISO 9660 is a file system for optical disc media. Being sold by
the International Organization for Standardization (ISO) the file
system is considered an international technical standard.

After 1709 , the heads of the
House of Orleans branch of
the House of Bourbon ranked as the
prince of the Blood – this meant that
the dukes could be addressed as
Monsieur le Prince (a style they did not,
however, use).

From 1709 until the French Revolution, the Orleans dukes were
next in the order of succession to the French throne after members
of the senior branch of the House of Bourbon, descended from
Louis XIV.
Restored briefly in 1814 and definitively in 1815 after the fall of
the First French Empire, the senior line of the Bourbons was
finally overthrown in the July Revolution of 1830. A cadet
Bourbon branch, the House of Orleans, then ruled for 18 years
(1830–1848), until it too was overthrown.

The Citroen C6 is an executive car
produced by the French car maker
Citroen from 2005 to 2012.

The C6 was aimed as a stylish alternative to executive cars, like
the BMW 5 Series and the Audi A6, and it has been described
as "spaceship that rides on air", "charmingly idiosyncratic" and
"refreshingly different".
In 2012, Citroen announced plans to enter the World Touring
Car Championship. The team transformed a DS3 WRC into a
laboratory vehicle to help with early development, while ...

Leaving the Market Street subway at
Ferry Portal heading south, the T Third
Street follows The Embarcadero south
of Market Street, then veers onto King
Street in front of Oracle Park until it
reaches the Caltrain station terminal.

the 4th & King Caltrain station is 1.5 blocks from the stadium,
and the Oracle Park Ferry Terminal is outside the east edge of
the ballpark beyond the center field bleachers.
the southwestern end of the Market Street subway connects to
the much-older Twin Peaks Tunnel, and the northeastern end
connects to surface tracks along the The Embarcadero.

Table 9: Pre-training data examples, text-only setting.
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Query Evidence

Rowland Barran (7 August 1858 – 6
August 1949) was an English Liberal
Party politician and Member of
Parliament.

Rowland Barran was the youngest son of Sir John Barran, a
pioneer in clothing manufacture and Member of Parliament for
Leeds and Otley.

Year Member Party

1885 William Jackson Conservative
1902 Rowland Barran Liberal
1918 Alexander

Farquharson
Coalition Liberal

"It Ain’t Over ’til It’s Over" is a song
recorded, written, and produced by
American musician Lenny Kravitz for
his second studio album, Mama Said
(1991).

Retrieved on August 19, 2007. Kravitz’s biggest single yet,
"It Ain’t Over ’til It’s Over", went to number 2 on the Billboard
Hot 100.

Act Order Song Rock Artist

In Stereo 4 Demons Imagine Drag-
ons

Cyrus
Villanueva

5 It Ain’t Over
’til It’s Over

Lenny Kravitz

Michaela
Baranov

6 Wild Horses The Rolling
Stones

Ronnie Bremer raced the first five
races of the season with
Brooks Associates Racing, before
moving to Polestar Motor Racing.

Place Name Team

5 Ronnie Bremer Brooks Associates Racing
6 Bryan Sellers Lynx Racing
9 Jonathan

Bomarito
Transnet Racing

Donovan also appeared in the 1980
film Breaker Morant, but in a
subsidiary role, rather than as the title
character.

Title Year Role

Cop Shop (TV series) 1978-
1980

Detective Sgt. Vic

Breaker Morant 1980 Captain Simon Hunt
Smash Palace 1981 Traffic Officer

Try a Little Kindness is the sixteenth
album by American singer/guitarist
Glen Campbell, released in 1970.

At the height of his popularity, a 1970 biography by Freda
Kramer, The Glen Campbell Story, was published.

Day Album Artist Notes

1 On the Boards Taste -
26 Chicago Chicago aka Chicago II
- Try a Little

Kindness
Glen Campbell -

Table 10: Pre-training data examples, hybrid setting.


