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Abstract

Our goal is to deliver a new task and leader-
board to stimulate research on question answer-
ing and pre-trained language models (PTLMs)
to understand a significant instructional docu-
ment, e.g., an introductory college textbook or
a manual. PTLMs have shown great success in
many question-answering tasks, given signif-
icant supervised training, but much less so in
zero-shot settings. We propose a new task that
includes two college-level introductory texts
in the social sciences (American Government
2e) and humanities (U.S. History), hundreds
of true/false statements based on review ques-
tions written by the textbook authors, valida-
tion/development tests based on the first eight
chapters of the textbooks, blind tests based on
the remaining textbook chapters, and baseline
results given state-of-the-art PTLMs.

Since the questions are balanced, random per-
formance should be ~50%. T5, fine-tuned with
BoolQ achieves the same performance, sug-
gesting that the textbook’s content is not pre-
represented in the PTLM. Taking the exam
closed book, but having read the textbook (i.e.,
adding the textbook to T5’s pre-training), yields
at best minor improvement (56%), suggesting
that the PTLM may not have “understood” the
textbook (or perhaps misunderstood the ques-
tions). Performance is better (~60%) when the
exam is taken open-book (i.e., allowing the ma-
chine to automatically retrieve a paragraph and
use it to answer the question).

1 Introduction

Question answering (QA) is a yardstick for measur-
ing machine understanding performance (Hermann
et al., 2015). QA’s popularity as an evaluation tech-
nique has led to several sub-categories: tasks can
require a model to answer questions from either
its background knowledge or from a short passage
(e.g., SQuAD, Rajpurkar et al., 2016) or with infor-
mation retrieval to allow the model to search for the
answer in a large corpus (e.g., ARC, Clark et al.,

2018). Answering can take the form of true/false
classification (BoolQ, Clark et al., 2019), multiple-
choice, span selection (SQuAD, Rajpurkar et al.,
2016), or text generation (TriviaQA, Joshi et al.,
2017).

Transformer architectures optimized for specific
QA formulations have driven recent progress in
question answering. For example, some models tar-
get IR-oriented QA (Guu et al., 2020) while others
optimize their learning strategy to specific question
types (e.g., by optimizing for expected answers to
factoid questions, Roberts et al., 2020). While spe-
cialization improves performance, it limits general-
ization. UnifiedQA (Khashabi et al., 2020) takes a
step forward by generalizing the architecture and
training over multiple data sets with different QA
formulations.

Most research assumes that the information nec-
essary to answer questions is either included with
the query (e.g., BoolQ, SQuAD 1.1) or that the
information was already stored in language models
during initial pre-training or a task-specific sec-
ond pre-training.1 However, this assumption limits
language models relying on massive corpora (Gao
et al., 2020; Raffel et al., 2020) to learning oft-
repeated facts (Petroni et al., 2019). Valuable,
domain-specific information seldom is repeated of-
ten enough to be captured by language models. An
evaluation of domain-specific knowledge without
access to a relevant text is even more challenging
as simple strategies like identifying the answer by
information retrieval are ineffective. Even reason-
ing tasks such as ARC (Clark et al., 2018) only
target general scientific knowledge and offer large
text corpora to aid QA systems.

We propose Learning from Textbooks (LEFT),
a new task to classify domain-specific statements
drawn from a textbook’s review questions as true

1For example, Roberts et al. (2020) adjust T5’s masking
strategy to target named entities as they expect named entities
to be parts of answers.
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or false using three evaluation configurations. The
first configuration tests the ability to answer ques-
tions without any domain-specific material (e.g., ap-
plying a PTLM with no access to domain-specific
knowledge). This setting is equivalent to a person
taking the test before taking the class. In the second
configuration, a model has access to the textbook’s
content and may encode the information in the text-
book but may not access the textbook during the
test; we call this closed book. The second configu-
ration tests a model’s ability to learn by reading. In
the third configuration, which we call open book,
models can access the textbook during the test.
Thus, LEFT supports contrasting QA formulations
and reading methods to explore the strengths and
weaknesses of various QA approaches. The LEFT
data and leaderboard are available at https://
leftleaderboard.isi.edu.

2 Related Work

Question Answering. Most previous research
specializes QA models to target specific question
formulations. Question answering with a rele-
vant paragraph often relies on span selection (Ra-
jpurkar et al., 2016; Yang et al., 2015) or simple
reasoning (Clark et al., 2019). Previous open-book
QA methods first filter a large corpus to a small
set of relevant documents using information re-
trieval (Karpukhin et al., 2020; Robertson and
Zaragoza, 2009). The document set then provides
context for answering questions (Dhingra et al.,
2017; Dunn et al., 2017; Joshi et al., 2017; Nguyen
et al., 2016). Conversely, closed-book QA instead
requires models to answer using only their implicit
knowledge (Roberts et al., 2020). Taking a step
towards generalizing QA, UnifiedQA (Khashabi
et al., 2020) proposes a unified architecture that
answers various question types relying partly on
knowledge encoded in its language model.

Knowledge in Pre-trained Language Models.
Pre-trained language models (PTLMs) have shown
good performance in cloze-style queries (Petroni
et al., 2019), fact-checking (Thorne et al., 2018),
entity linking (Guo and Barbosa, 2018; Hoffart
et al., 2011), and open-domain QA (Joshi et al.,
2017; Kwiatkowski et al., 2019; Petroni et al.,
2021). However, in most cases, the PTLMs rely on
knowledge learned from massive corpora during
pre-training. LEFT tests domain-specific knowl-
edge acquired from a textbook, a small corpus of
only a few hundreds of thousands of words (see

AG USH

Dev Test Dev Test

Num. chapters 8 9 8 24
Text size (words) 137 620 138 668 89 765 301 860
Num. statements 186 214 274 412

Table 1: Data overview for the two textbooks: American
Government 2e (AG) and U.S. History (USH).

Table 1).

Textbook Question Answering. Researchers
have explored machine understanding of
elementary- and middle-school science textbooks
by visual question answering (Gomez-Perez
and Ortega, 2020; Kembhavi et al., 2017; Kim
et al., 2019) and information retrieval (Clark
et al., 2018). While existing textbook QA tasks
focus on general knowledge (which can be
gained by pre-training on general web corpora),
LEFT focuses on domain-specific knowledge.
Furthermore, it quantifies pre-trained language
models’ pre-existing knowledge by requiring that
models take the task before and after reading
LEFT’s two textbooks.

3 Task Description

Learning from Textbooks (LEFT) contains two
machine-readable college-level introductory text-
books and a set of true/false statements manually
derived from review questions written by the text-
book authors. The task requires that systems based
on language models classify the statements before
and after reading the given textbook material to sep-
arate what was learned from the book from what
was known before reading. “Reading” is any al-
gorithm method that learns from the domain text
without storing a copy of the text. To support com-
parisons with existing QA approaches, LEFT also
supports the open-book setting, where a system can
use a textbook paragraph when answering.

Our goal is to support testing pre-trained lan-
guage models, e.g., T5 (Raffel et al., 2020), and
also those approaches that extract and store triples
during reading (e.g., <U.S. Declaration of inde-
pendence; signed; Aug 2, 1776>). While learning
corpora appear in other question answering tasks
(e.g., ARC, 14M words, Clark et al., 2018), the
text included in LEFT is small and corresponds to
the textbook chapters relevant to each question set.
The largest text in LEFT contains only 300K words
(for details, see Table 1).

https://leftleaderboard.isi.edu
https://leftleaderboard.isi.edu
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LEFT includes two openly licensed2 college-
level introductory textbooks, American Govern-
ment 2e (Krutz, 2019) and U.S. History (Corbett,
2014), and true/false statements derived from each
book’s review questions. We manually rewrote
each textbook’s multiple-choice review questions
into a balanced set of true and false statements.3,4

We intentionally wrote the statements such that
each true and false pair has high word overlap
to deter classification strategies that rely on word
overlap with the textbook. We include five sample
statements from LEFT in Appendix A and discuss
statement correctness in Appendix C.

We measure task performance by accuracy.
Since the two textbooks are used in teaching col-
lege students, we do not release the correct labels
(see the Ethical Considerations section). We split
each textbook into a Dev set consisting of the first
eight chapters and a Test set consisting of the re-
maining chapters (see Table 1 for an overview). We
allow unlimited submissions to the Dev set, but for
any submission, we only provide the overall accu-
racy without feedback on which statements were
correctly classified. This design decision aims to
prevent divulging the correct answers (see the Ethi-
cal Considerations section).

LEFT has three evaluation configurations: (1)
Prior-knowledge; (2) Closed-book, after reading;
and (3) Open-book. Prior-knowledge tests the
ability to answer questions without any domain-
specific material. Language models must rely
solely on the knowledge learned from their large
pre-training corpora. In the second configuration,
Closed-book, after reading, models may access
the textbook’s content and may encode the infor-
mation in the textbook but may not access the text-
book during the test. For each set, models may
read the set’s corresponding textbook chapters, the
entire textbook, or both textbooks. We require that
all model submissions to this evaluation config-
uration also submit to Prior-knowledge. Predic-
tions before reading (Prior-knowledge) quantify

2Both textbooks are licensed under the Creative Commons
Attribution License v4.0 license.

3We construct one true and one false statement for each
question to obtain a balanced data set. For example, the ques-
tion When was the U.S. Declaration of Independence signed?
(A)(correct) August 2, 1776 (B) December 2, 1776, (C) August
2, 1746, (D) August 22, 1976 could become The U.S. Declara-
tion of Independence was signed on August 2, 1776 (true) and
The U.S. Declaration of Independence was signed on August
2, 1746 (false).

4For U.S. History’s Dev set, we also process questions
written by a community of instructors.

the information included in each model through
initial pre-training. The change in performance
from Prior-knowledge to Closed-book, after read-
ing illustrates each model’s reading effectiveness.
In the third configuration, Open-book, models can
access the textbook or relevant chapter during the
test. To support research on open-book question
answering, with each statement, we include the
textbook paragraph that provides the information
necessary to classify the statement. In our experi-
ments, we call this goldIR. Thus, LEFT supports
contrasting QA formulations and reading methods
to explore the strengths and weaknesses of various
QA approaches.

4 Results

We illustrate baseline performance on LEFT using
two state-of-the-art language models: T5 (Raffel
et al., 2020) and GPT-Neo (a GPT-3 architecture,
Brown et al., 2020, trained on the open Pile corpus,
Gao et al., 2020). We fine-tune the two language
models using BoolQ (Clark et al., 2019). Table 2
shows results in LEFT’s three evaluation settings:
Prior-knowledge (out-of-the-box language models
fine-tuned on BoolQ), Closed-book, after reading
(language models with continued light pre-training
on LEFT’s text content), and Open-book (where
models have access to the relevant textbook para-
graph). Since the Prior-knowledge and Closed-
book settings do not include the relevant paragraph
for each question, we adjust fine-tuning to only
use BoolQ’s questions and ignore its text snip-
pets. In the Open-book setting, we consider au-
tomatically retrieved textbook paragraphs (using
sBERT, Reimers and Gurevych, 2019) and manu-
ally identified the relevant paragraphs (gold infor-
mation retrieval, goldIR). When selecting the rele-
vant textbook content, we select one natural para-
graph (i.e., as written by each textbook’s authors).
However, due to technical limitations imposed by
T5’s memory consumption, in our experiments, we
limit the concatenated statements and paragraphs
to a maximum length of 128 word pieces (see Ap-
pendix B.1).

4.1 Baseline Results

T5 and GPT-Neo’s scores are indistinguishable
from the random baseline of 50% in the Prior-
knowledge setting, suggesting that the textbooks
query for information is either not present in the
two language models or not easily accessible. Con-

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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American Government 2e U.S. History

Dev (186) Test (214) Dev (274) Test (412)

Prior-knowledge
T5-3B -ctx 51.08 49.53 50.36 50.00
GPT-Neo 2.7B -ctx 52.69 48.13 51.09 49.27

Closed-book, after reading
T5 3B +pt -ctx 56.45 52.34 50.73 50.00
GPT-Neo 2.7B +pt -ctx 50.00 55.14 50.73 49.76

Open-book
T5-3B +ctx +sBERT 60.22 61.21 55.47 59.95
T5-3B +pt +ctx +sBERT 55.91 52.80 52.19 56.31
T5-3B +ctx +goldIR 71.51 74.30 68.61 68.69
T5-3B +pt +ctx +goldIR 58.60 63.08 57.66 66.26

Table 2: Baseline accuracy with the current state-of-the-art language models. U.S. History’s Dev set consists of
statements based on the textbook statements and on questions from a community of instructors. In the heading, each
set’s name is followed by its number of statements. The order of abbreviations reflects the order of operations. All
models are fine-tuned with BoolQ; +/- ctx – whether we included BoolQ’s context during fine-tuning; +pt – whether
we pre-trained on the relevant textbook chapters.

tinuing each model’s pre-training with the relevant
textbook parts sometimes helps, but not consis-
tently. The lack of improvement after reading is
further evidence that the models memorize, but not
in beneficial ways, i.e., they can complete sentences
but do not learn the subject matter and cannot clas-
sify the statements, even after 20 epochs. It also
suggests that the closed-book setting represents a
new challenge for PTLMs.

Accuracy in the open-book setting is far higher,
especially when using goldIR (i.e., a manually se-
lected relevant paragraph). As in the closed book
setting, we contrast models using only prior knowl-
edge with models pre-trained on the textbook. Pre-
training with the textbook never improves the sys-
tem’s accuracy, suggesting that even in this setting,
the models are not learning by reading the text-
book. The gap between goldIR- and sBERT-based
retrieval suggests that there is room for retrieval-
based improvement in the open-book setting. How-
ever, even with goldIR, T5 only achieves an accu-
racy of ~70%, suggesting that paragraph-based QA
alone is not solved with existing models.

5 Conclusions & Future Work

There are several natural directions in which we
can extend and improve LEFT. We are extending
U.S. History’s Test set as we did with the Dev set by
including statements based on questions written by
a community of instructors. We are also collecting
relevant paragraphs for the extra statements. Lastly,
we are categorizing the kind of knowledge required
to classify each statement to better understand what

kinds of knowledge pose the most difficulties.
We draw several conclusions from this work.

Foremost, Learning from Textbooks (LEFT) rep-
resents a new type of challenge task for PTLMs,
contrasted with the much-studied challenges of (1)
common sense QA based on prior knowledge, (2)
reading comprehension given a paragraph, and (3)
QA using large domain-specific corpora, e.g., sci-
ence at the elementary- or middle-school level. The
task is intended to stimulate research on the follow-
ing dimensions:

1. Zero-shot learning, much as an entering col-
lege student could do when studying a text-
book,

2. Measuring a system’s knowledge before vs.
after “reading” the textbook,

3. Capability in both closed-book and open-book
question answering,

4. The effect of IR accuracy on task accuracy
compared to the system’s language under-
standing performance.

Our baseline studies show that T5 and GPT-Neo
thus far are challenged to show improvement af-
ter reading the relevant textbook, that open-book
evaluation is easier than closed-book (as it is for
humans), and that the gating factor in LEFT is un-
derstanding the textbook and/or the question rather
than paragraph retrieval. The baseline results show
there is much room for improvement.
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Ethical Considerations

We have reflected on two ethical considerations
when creating Learning from Textbooks (LEFT):
content and environmental impact.

Content. The two textbooks in LEFT cover
topics that include history, race, and politics. Open-
Stax textbooks follow a set of Diversity and Rep-
resentation Development Guidelines, which aim
to “properly represent genders, gender identities,
races, cultures, geographies, ethnic backgrounds,
disabilities, nationalities, ages, sexual orientations,
socio-economic status, and diverse viewpoints”.5

As creators of an NLP task, we do not make any
claims, nor do we comment on the topics covered
in the two textbooks. Furthermore, we understand
that documents as large and complex as textbooks
are bound to contain inaccuracies. We invite users
with specific content accuracy concerns to consult
the official textbook errata included in each text-
book’s instructor resources.6

Releasing labels for the statements in LEFT
would indirectly reveal the correct answers for
multiple-choice questions in the two textbooks.
While both American Government 2e and U.S. His-
tory include answer keys, they are incomplete. We
believe releasing the correct answers to all multiple-
choice questions in the book would be detrimental
to the intended primary users of the two textbooks;
in other words, it might hinder students’ learning.
We only used full-time employees compensated ac-
cording to U.S. law to rewrite the multiple-choice
review questions in the two textbooks.

Environmental. We included baseline re-
sults based on large pre-trained language models.
Strubell et al. (2019) raised concerns about the
environmental impact of training deep learning
language models. Patterson et al. (2021) pointed
out that most of the energy consumption for deep
learning language models comes during the initial
pre-training. In this work, we limit ourselves to
fine-tuning and light continued pre-training of T5
and GPT-Neo. While we do not have information
about GPT-Neo’s training, T5’s training took place
in highly efficient data centers whose energy con-

5See Diversity and Representation Development Guide-
lines in the instructor materials for each textbook.

6See the Errata Release Notes at https:
//openstax.org/details/books/
american-government-2e?Instructor%
20resources for American Government 2e and
https://openstax.org/details/books/
us-history?Instructor%20resources for
U.S. History.

sumption was offset by purchasing electricity from
renewable sources (Patterson et al., 2021). For our
light pre-training and fine-tuning, we use a ma-
chine with four NVIDIA Quadro RTX 8000 fed
from California’s energy grid. The total computa-
tion time for the experiments in this paper is about
500 hours, but this is an informal estimate rather
than an accurate measurement.
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A Sample Statements

Sample statements in LEFT. The first two state-
ments are from American Government 2e, the fol-
lowing three from U.S. History:

• Public goods are available to all without pay-
ment.

• In a majoritarian voting electoral system vot-
ers select the party of their choice rather than
an individual candidate.

• Europeans did not introduce Indians to
wampum.

• Philadelphia served as the base for British
operations for most of the Revolutionary War.

• The British bombardment of Baltimore in-
spired The Star-Spangled Banner.

B Training Details

For all light pre-training and fine-tuning, we use
a machine with four NVIDIA Quadro RTX 8000
GPUs.

B.1 T5-3B

We implement the model using PyTorch Light-
ning (Falcon and The PyTorch Lightning team,
2019) and Hugging Face’s PyTorch Transform-
ers (Wolf et al., 2020). For pre-training and fine-
tuning, we use a maximum sequence length of 128.
We searched for the best learning rate for our model
out of {3e−5, 1e−4, 3e−4, 1e−3}.

Fine-tuning Pre-training

Batch size 16 16
Gradient accumulation 1 1

Learning rate 3e-4 1e-3

Num epochs 20
Optimizer AdamW

β1 0.9
β2 0.999
ε 1e-8

Weight decay 0.0
Scheduler WarmupDecayLR

Warmup max steps 400
fp16 no

Table 3: Hyperparameters for T5-3B.

B.2 GPT-Neo 2.7B
We use GPT-Neo 2.7B from the Hugging Face
Model Hub.7 GPT-Neo matches the architecture of
GPT-3 (Brown et al., 2020), but is trained on the
openly available Pile corpus (Gao et al., 2020).

Fine-tuning Pre-training

Batch size 48 2
Gradient accumulation 1 4

Num epochs 10
Optimizer AdamW

β1 0.9
β2 0.999
ε 1e-8

Weight decay 0.01
Scheduler WarmupDecayLR

Warmup max steps 200
fp16 yes

Table 4: Hyperparameters for GPT-Neo.

C Ensuring Statement Correctness

We took several steps to ensure statements’
true/false correctness and prevent data bias/tells.
For true/false correctness, we manually inspected
the statements to check that they correspond to the
correct and incorrect choices as given by each text-
book’s instructor material. We then wrote a script
to automatically count the statements for each chap-
ter to ensure that there are as many true labels as
there are false. If some labels were to change ac-
cidentally during our research, the script would
detect the change. For the manually retrieved rele-
vant passages, the humans read each statement and
identified the relevant paragraph. In the process,
they also checked each statement’s label.

To prevent data bias, we wrote statement pairs to
have as much word overlap as logically and gram-
matically possible. We used multiple annotators
to write the statements for the two textbooks (two
native speakers for U.S. History; one native, one
fluent non-native for American Government 2e).
No partition is composed of statements written ex-
clusively by a single person, ensuring no person-
specific tells. Following that, we checked all state-
ments for grammar and punctuation issues using
automated checkers and another annotator reading.
This stage deals with copy-paste tells in the data
and cases where statements for one label sound
unnatural.

7https://huggingface.co/EleutherAI/
gpt-neo-2.7B

https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/EleutherAI/gpt-neo-2.7B

