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Abstract

Irrespective of the success of the deep learning-
based mixed-domain transfer learning ap-
proach for solving various Natural Language
Processing tasks, it does not lend a general-
izable solution for detecting misinformation
from COVID-19 social media data. Due
to the inherent complexity of this type of
data, caused by its dynamic (context evolves
rapidly), nuanced (misinformation types are
often ambiguous), and diverse (skewed, fine-
grained, and overlapping categories) nature, it
is imperative for an effective model to capture
both the local and global context of the target
domain. By conducting a systematic investiga-
tion, we show that: (i) the deep Transformer-
based pre-trained models, utilized via the
mixed-domain transfer learning, are only good
at capturing the local context, thus exhibits
poor generalization, and (ii) a combination of
shallow network-based domain-specific mod-
els and convolutional neural networks can effi-
ciently extract local as well as global context
directly from the target data in a hierarchical
fashion, enabling it to offer a more generaliz-
able solution.

1 Introduction

Since the start of the Coronavirus or COVID-19
pandemic, online social media (e.g., Twitter) has
become a conduit for rapid propagation of misin-
formation (Johnson et al., 2020). Although misin-
formation is considered to be created without the
intention of causing harm (Lazer et al., 2018), it
can wreak havoc on society (Ciampaglia, 2018;
Neuman, 2020; Hamilton, 2020) and disrupt demo-
cratic institutions (Ciampaglia et al., 2018). Mis-
information in general, and COVID-19 misinfor-
mation in particular, has become a grave concern
for the policymakers due to its fast propagation via
online social media. A recent study shows that the
majority of the COVID-19 social media data is rife
with misinformation (Brennen et al., 2020). The
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first step towards preventing misinformation is to
detect misinformation in a timely fashion.

Building automated systems for misinformation
detection from social media data is a Natural Lan-
guage Processing (NLP) task. Various deep learn-
ing models have been successfully employed for
this type of NLP task of text classification (Kim,
2014; Conneau et al., 2017; Wang et al., 2017; Tai
etal., 2015; Zhou et al., 2016). These models learn
language representations from a domain, which are
then used as numeric features in supervised classi-
fication. Due to the prohibitive cost of acquiring
labeled data on COVID-19 misinformation, train-
ing deep learning models directly using the target
data is not a suitable approach.

Background. An alternative approach for detect-
ing COVID-19 misinformation from small labeled
data is transfer learning (Hossain et al., 2020).
The dominant paradigm of transfer learning em-
ploys a mixed-domain strategy in which repre-
sentations learned from a general domain (source
data) by using domain-agnostic models are trans-
ferred into a specific domain (target data) (Pan and
Yang, 2009). Specifically, it involves creating a
pre-trained model (PTM) that learns embedded rep-
resentations from general-purpose unlabeled data,
then adapting the model for a downstream task us-
ing the labeled target data (Minaee et al., 2021; Qiu
et al., 2020).

Two types of neural networks can be used to
create PTMs, i.e., shallow and deep. The shal-
low models such as Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) learn
word embeddings that capture semantic, syntactic,
and some global relationships (Levy and Goldberg,
2014; Srinivasan and Ribeiro, 2019) of the words
from the source text using their co-occurrence in-
formation. However, these PTMs do not capture
the context of the text (Qiu et al., 2020). On the
other hand, deep PTMs can learn contextual embed-
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dings, i.e., language models (Goldberg and Hirst,
2017).

Two main approaches for creating deep PTMs
are based on sequential and non-sequential mod-
els. The sequential Recurrent Neural Network (Liu
et al., 2016) based model such as ELMo (Embed-
dings from Language Models) (Peters et al., 2018)
is equipped with long short-term memory to cap-
ture the local context of a word in sequential order.
The non-sequential Transformer (Vaswani et al.,
2017) based models such as OpenAl GPT (Gener-
ative Pre-training) (Radford and Sutskever, 2018),
BERT (Bidirectional Encoder Representation from
Transformer) (Devlin et al., 2019), and XLNet
(Yang et al., 2019) utilize the attention mechanism
(Bahdanau et al., 2016) for learning universal lan-
guage representation from general-purpose very
large text corpora such as Wikipedia and Book-
Corpus (Devlin et al., 2019) as well as from web
crawls (Liu et al., 2019). While GPT is an autore-
gressive model that learns embeddings by predict-
ing words based on previous predictions, BERT
utilizes the autoencoding technique based on bi-
directional context modeling (Minaee et al., 2021).
XLNet leverages the strengths of autoregressive
and autoencoding PLMs (Yang et al., 2019).

Unlike the Transformer-based deep PTMs, the
shallow Word2Vec and GloVe as well as the deep
ELMo PTMs are used only as feature extractors.
These features are fed into another model for the
downstream task of classification, which needs to
be trained from scratch using the target data. The
deep PTM based mixed-domain transfer learning
has achieved state-of-the-art (SOTA) performance
in many NLP tasks including text classification
(Minaee et al., 2021).

Irrespective of the success of the mixed-domain
SOTA transfer learning approach for text classifi-
cation, there has been no study to understand how
effective this approach is for navigating through the
kaleidoscope of COVID-19 misinformation. Un-
like the curated static datasets on which this ap-
proach is tested (Minaee et al., 2021), the dynamic
landscape of the COVID-19 social media data has
not been fully explored. Some key properties of
the COVID-19 data hitherto identified are: (i) The
COVID-19 misinformation spreads faster on so-
cial media than any other form of health misinfor-
mation (Johnson et al., 2020). As a consequence,
the misinformation narrative evolves rapidly (Cui
and Lee, 2020). (ii) The COVID-19 misinforma-

tion categories are heavily-skewed (Cui and Lee,
2020; Memon and Carley, 2020) and fine-grained
(Memon and Carley, 2020). (iii) The COVID-19
social media misinformation types are often am-
biguous (e.g., fabricated, reconfigured, satire, par-
ody) (Brennen et al., 2020) and categories may not
be mutually exclusive (Memon and Carley, 2020).
These properties pose a unique challenge for the
mixed-domain SOTA transfer learning approach
for creating an effective solution to the COVID-19
misinformation detection problem.

Previously, it has been shown that the transfer
learning approach generalizes poorly when the do-
main of the source dataset is significantly differ-
ent from that of the target dataset (Peters et al.,
2019). On the other hand, domain-specific mod-
els (DSM), which learn representations from do-
mains that are similar to the target domain, provide
a generalizable solution for the downstream NLP
task (Beltagy et al., 2019; Lee et al., 2019; Gu
et al., 2021). These models are better at capturing
the context of the target domain. However, the ef-
ficacy of the DSM-based approach for addressing
the COVID-19 misinformation detection problem
has not also been investigated.

In this paper, we conduct a systematic extensive
study to understand the scope and limitations of
the mixed-domain transfer learning approach as
well as the DSM-based approach to detect COVID-
19 misinformation on social media. We use both
shallow and deep PTMs for the mixed-domain
transfer learning experimentations. The deep PTMs
include BERT, XL Net, and two variants of BERT,
i.e., ROBERTa (Liu et al., 2019) and ALBERT (Lan
et al., 2020). While these attention mechanism-
based Transformer models are good at learning con-
textual representations, their ability to learn global
relationships among the words in the source text
is limited (Lu et al., 2020).

The DSMs used in our study are based on shal-
low architectures. We argue that shallow architec-
tures can be trained efficiently using the limited
available domain data. Specifically, we pre-train
the DSMs using the small social media data on
COVID-19. The shallow DSM-based approach is
examined in two dimensions: graph-based DSM
and non-graph DSM. The graph-based Text GCN
(Yao et al., 2019) model can explicitly capture the
global relationships (from term co-occurrence) by
leveraging the graph structure of the text. It creates
a heterogeneous word document graph with words
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and documents as nodes for the whole corpus, and
turns document classification problem into a node
classification problem. We include another graph-
based model in our study, i.e., the VGCN-BERT
(Lu et al., 2020). It combines the strength of Text
GCN (to capture global relationships) and BERT
(to capture local relationships).

The non-graph DSM models such as Word2Vec
and GloVe can mainly capture local relationships
among the words of the source text, represented
in the latent space of their word embeddings. For
extracting global relationships from these embed-
dings, we utilize a Convolutional Neural Network
(CNN). Specifically, we use the word embeddings
as input features to a CNN with a one-dimensional
kernel (Kim, 2014), which then learns global rela-
tionships as high-level features. We hypothesize
that the local and global relationships should im-
prove the generalization capability of the non-graph
DSM+CNN approach.

We evaluate the generalizability of the above-
mentioned diverse array of NLP techniques via a
set of studies that explore various dimensions of
the COVID-19 data. We focus on the Twitter so-
cial media platform because of its highest number
of news-focused users (Hughes and Wojcik, 2019).
In addition to analyzing the tweet messages, we
use online news articles referred to in the tweets.
Our study spans along multiple dimensions of the
COVID-19 data that include temporal dimension
(the context in the dataset evolves), length dimen-
sion (short text such as tweets vs. lengthy text such
as news articles), size dimension (small dataset vs.
large dataset), and classification-level dimension
(binary vs. multi-class data).

Contributions. We design a novel study for ex-
amining the generalizability of a diverse set of deep
learning NLP techniques on the multi-dimensional
space of COVID-19 online misinformation land-
scape. Our main contributions are as follows.

e We identify the unique challenges for the deep
learning based NLP techniques to detect mis-
information from COVID-19 social media
data.

e We argue that an effective model for this type
of data must capture both the local and the
global context of the domain in its latent space
of embeddings.

e We show that the mixed-domain deep learning

SOTA transfer learning approach is not always
effective.

e We find that the shallow CNN classifier ini-
tialized with word embeddings learned via
the non-graph DSMs is more effective across
most of the dimensions of the COVID-19 data
space, especially when the labeled target data
is small.

e We explain why the Transformer-based
mixed-domain transfer learning approach is
not effective on COVID-19 data as well as
why the non-graph DSM+CNN may offer a
more generalizable solution.

The rest of the paper is organized as follows. In
section 2, we present the diverse NLP techniques,
analyze the multi-dimensional datasets, and de-
scribe the study design. Results obtained from the
experiments are provided in section 3 followed by
a detailed analysis. Section 4 presents the conclu-
sion. Appendix provides related work, additional
analysis of the datasets, and experiment setting.

2 Method

First, we describe how we obtained various PTMs
and created DSM embeddings for different models
as well as how we fine-tuned/trained the classifiers
for the studies. Then, we discuss the datasets and
the study design.

2.1 Mixed-Domain Transfer Learning

We use the following PTMs: BERT, RoBERTa,
ALBERT, XLNet, ELMo, Word2Vec, and GloVe.

Deep PTMs: We get the BERT base model (un-
cased) for sequence classification from the Hug-
ging Face library (Wolf et al., 2020). The em-
bedding vectors are 768-dimensional. This BERT
PTM adds a single linear layer on top of the BERT
base model. The pretrained weights of all hidden
layers of the PTM and the randomly initialized
weights of the top classification layer are adapted
during fine-tuning using a target dataset. The XL-
Net is obtained from the Hugging Face library
(Wolf et al., 2020) and fine-tuned similar to BERT.
Its embedding vectors are 768-dimensional. The
RoBERTa (obtained from (Wolf et al., 2020)) and
ALBERT (obtained from (Maiya, 2020)) are used
by first extracting embeddings from their final layer
and then adding linear layers. While the RoBERTa
embeddings are 768-dimensional, the ALBERT
embeddings are 128-dimensional.
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Shallow PTMs: We get the ELMo embeddings
from TensorFlow-Hub (Abadi et al., 2015). Each
embedding vector has a length of 1024. The
Word2Vec embeddings are obtained from Google
Code (Google Code, 2013). The embedding vec-
tors are 300-dimensional. We get the GloVe pre-
trained 300-dimensional embeddings from (Pen-
nington et al., 2014).

CNN: The ELMo, Word2Vec, and GloVe em-
beddings are used to train a CNN classifier with a
single hidden layer (Kim, 2014). The first layer is
the embedding layer. Its dimension varies based
on the dimension of pretrained embeddings. The
second layer is the one-dimensional convolution
layer that consists of 100 filters of dimension 5
x 5 with “same” padding and ReLU activation.
The third layer is a one-dimensional global max-
pooling layer, and the fourth layer is a dense layer
with 100 units along with ReL.U activation. The
last layer is the classification layer with softmax
activation. We use this setting for the CNN archi-
tecture as it was found empirically optimal in our
experiments. We use cross-entropy as loss func-
tion, Adam as the optimizer, and a batch size of
128. The embedding vectors are kept fixed during
the training (Kim, 2014).

2.2 Domain-Specific Model (DSM) based
Learning

We create the DSMs using two approaches: graph-
based and non-graph. For the graph-based ap-
proach, we use the following models: Text GCN
and VGCN-BERT. For training the Text GCN
model, we pre-process the data as follows. First,
we clean the text by removing stop words and rare
words whose frequencies are less than 5. Then,
we build training, validation, and test graphs using
the cleaned text. Finally, we train the GCN model
using training and validation graphs and test the
model using a test graph. During the training, early
stopping is used.

For training the VGCN-BERT model, first, we
clean the data that includes removing spaces, the
special symbols as well as URLs. Then, the BERT
tokenizer is used to create BERT vocabulary from
the cleaned text. The next step is to create training,
validation, and the test graphs. The last step is train-
ing the VGCN-BERT model. During the training,
the model constructs embeddings from word and
vocabulary GCN graph.

For the non-graph approach, we create em-

beddings from the target dataset by using the
Word2Vec and GloVe models. First, we pre-
process the raw text data by converting the text (i.e.,
a list of sentences) into a list of lists containing to-
kenized words. During tokenization, we convert
words to lowercase, remove words that are only
one character, and lemmatize the words. We add
bigrams that appear 10 times or more to our tok-
enized text. The bigrams allow us to create phrases
that could be helpful for the model to learn and
produce more meaningful representations. Then,
we feed our final version of the tokenized text to
the Word2Vec and the GloVe model for creating
embeddings. After we obtain the embeddings, we
use them to train the CNN classifier described in
the previous sub-section, except that the domain-
specific word embeddings are adapted during the
training.

2.3 Dataset

We use two COVID-19 datasets for the study, i.e.,
CoAID (Cui and Lee, 2020) and CMU-MisCov19
(Memon and Carley, 2020).

The CoAID dataset contains two types of data:
true information and misinformation. We use this
dataset to investigate the generalizability of the
models along three dimensions.

e Temporal dimension: Train a model using
data from an earlier time, then test its general-
izability at different times in the future.

e Size dimension: Train models by varying the
size of the training dataset.

e Length dimension: Train models by varying
the length of the samples, e.g., tweet (short-
length data) and news articles (lengthy data).

The CMU-MisCov19 dataset is used to analyze a
model’s performance in fine-grained classification.

2.3.1 CoAID: Binary Classification

The CoAID dataset (Cui and Lee, 2020) is used for
binary classification since it has only two labels:
0 for misinformation and 1 for true information.
This dataset contains two types of data: online
news articles on COVID-19 and tweets related to
those articles. Datasets of these two categories
were collected at four different months in 2020:
May, July, September, and November. Thus, the
total number of CoAID datasets is 8. The class
distribution is heavily skewed with significantly
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more true information samples than misinformation
samples. Sample distribution per class (both for the
tweets and news articles) is given in the appendix.

2.3.2 CMU-MisCov19: Fine-Grained
Classification

The CMU-MisCov19 dataset contains 4,573 an-
notated tweets (Memon and Carley, 2020). The
tweets were collected on three days in 2020: March
29, June 15, and June 24. The categories are fine-
grained comprising of 17 classes with skewed dis-
tribution. This dataset does not have any true infor-
mation category. Its sample distribution per class
is given in the appendix.

2.4 Context Evolution in the COVID-19
Social Media Data

We use the CoAID dataset to understand whether
the context of the COVID-19 text evolves. To de-
tect a change in the context over time, we inves-
tigate how the distribution of the high-frequency
terms evolve for the two categories of the data:
tweets and news articles. For each category, we
select the top 10 high-frequency words from the
4 non-overlapping datasets belonging to 4 sub-
sequent months, i.e., May, July, September, and
November in 2020. Our goal is to determine
whether there exists a temporal change in the dis-
tribution of high-frequency words.

Figure 1 shows context evolution in the tweets
category. We see that during May, the two high-
frequency words were covid and coronavirus. The
frequent words represent broader concepts such as
health, disease, spread, etc. However, over time the
context shifted towards more loaded terms. For ex-
ample, in July two new high-frequency words, such
as mask and support, emerged. Then, in September
words like contact, school, child, and travel be-
came prominent. Finally, during November, we ob-
serve a sharp change in the nature of the frequent
words. Terms with strong political connotations
(e.g., trump, fauci, campaign, and vaccine) started
emerging. The evolution in the high-frequency
words indicates a temporal shift in the context in
the tweets dataset. We observe similar context evo-
lution in the news articles dataset, reported in the
Appendix with additional analysis.

2.5 Study Design

We describe the design of the studies for comparing
the NLP approaches for misinformation detection.
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Figure 1: CoAID (Tweets): Frequency of top 10 words
in four datasets from four subsequent months.

2.5.1 Study1

Study 1 is designed to explore a model’s general-
izability in the temporal dimension of the data.
We fine-tune/train a model using CoAID data col-
lected from May 2020 and test it using data ob-
tained from 3 different months in “future”: July,
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September, and November. The following mod-
els are tested in this study: BERT (Mixed-domain
Transfer Learning), ELMo (Mixed-domain Trans-
fer Learning), Word2Vec (Mixed-domain Transfer
Learning and DSM-based), GloVe (Mixed-domain
Transfer Learning and DSM-based), Text-GCN
(DSM-based), and VGCN-BERT (DSM-based).

2.5.2 Study 2

Study 2 is designed to test the performance of a
model along the length dimension of the data. We
use both short-length data (tweets) and lengthy data
(news articles). Specifically, we train a model using
the CoAID Twitter dataset to understand a model’s
performance on the short-length data. Then, we
train a model using the CoAID news articles dataset
to study a model’s performance on the lengthy data.
The models used in this study are the same as in
Study 1.

2.5.3 Study 3

In study 3, we evaluate a model along the size
dimension of the data. We replicate studies 1
and 2 using a large target dataset, which is cre-
ated by merging the datasets from May, July, and
September. The November dataset is used as the
test set. We experiment with two models for this
study: BERT (Mixed-Domain Transfer Learning)
and Word2Vec (DSM-based).

2.54 Study 4

To further study the effectiveness of the
Transformer-based mixed-domain transfer learn-
ing approach, we experiment with two variants of
the BERT PTM, i.e., RoBERTa and ALBERT. In
addition to this, we study the performance of an au-
toregressive model XLNet that induces the strength
of BERT. For this study, we only use the news
articles dataset.

2.5.5 Study 5

Study 5 is designed to test a model’s performance
on the fined-grained CMU-MisCov19 dataset. The
models tested are the same as in Study 1.

3 Results and Analysis

We evaluate the performance of the models based
on the accuracy, precision, recall, and f1 score, with
an emphasis on the misinformation class. For each
experiment, we average the results for 10 runs. The
experiments are done using Scikit-learn (Pedregosa
et al., 2011), TensorFlow 2.0 (Abadi et al., 2015),

and PyTorch (Paszke et al., 2019) libraries. For
creating the Word2Vec embeddings, we used the
skip-gram model from the Gensim library (Rehiifek
and Sojka, 2010). Finally, the GloVe embeddings
are created using the model from (Glove-Python,
2016).

Results. Table 1 and Table 2 show the results
from studies 1 and 2.

From the results on the CoAID tweets, given in
Table 1, we see that for the July tweet test dataset
(Table 1), VGCN-BERT has the highest misinfor-
mation precision. However, misinformation recall
and f1 scores for all models are poor. For Septem-
ber, the Text-GCN has outstanding performance for
detecting misinformation, but its performance on
true information is extremely poor. Other models
perform badly on misinformation. For Novem-
ber, the GloVe-based transfer learning approach
achieves excellent performance on both true infor-
mation and misinformation, where precision, re-
call, and f1 scores are 1. Text-GCN also has decent
scores on misinformation but fails to detect true
information. The performance of BERT on both
true information and misinformation is also good.
However, we notice that no model performs well
across three different test datasets. Thus, we see
that mixed-domain transfer learning is not ro-
bust when the context of the short-length data
(tweets) changes. This is also true for the DSM-
based approach.

Table 2 shows the results of CoAID news arti-
cles (lengthy text). For the July test dataset, both
Text-GCN and Word2Vec (DSM-based) achieve
decent precision, recall, and f1 scores on misinfor-
mation. However, Text-GCN has extremely poor
performance on true information. On the Septem-
ber data, ELMo exhibits the best misinformation
precision, and f1 score, while Word2Vec (DSM-
based) gives the best misinformation recall score.
Both ELMo and Word2Vec perform well on the
true information class as well. As for the Novem-
ber data, both transfer learning and DSM-based
Word2Vec obtain optimal misinformation preci-
sion score and Word2Vec (DSM-based) obtains the
highest {1 score. Besides, VGCN-BERT achieves
the highest misinformation recall score. We notice
that the DSM-based Word2Vec exhibits compara-
tively better performance across all test datasets.
Thus, the non-graph DSM+CNN can capture
both global and local relationships from lengthy
text relatively well. The performance of the graph-
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Train: May Test: July Test: September Test: November
Model True Information ‘ Misinformation True Information Misinformation True Information ‘ Misinformation
P [R [Ft [P [R [FL [P R [FL [P [R [FL [P [R [FIL [P [R [H
Mixed-Domain Transfer Learning
BERT Accuracy = 0.978 Accuracy = 0.942 Accuracy = 0.990
0.981 ] 0.997 ] 0.989 [ 0.281 [ 0.079 ] 0.116 [ 0.946 ] 0.996 [ 0.970 [ 0.00 [ 0.00 [0.00 | 1.00 ] 0.990 [ 0.995 [ 0.500 | 1.00 [ 0.670
ELMo Accuracy = 0.979 Accuracy = 0.941 Accuracy = 0.990
0.979 [ 1.00 ]0.989 [0.00 [0.00 [0.00 |0.945]0.995]0.970 [0.00 [0.00 [0.00 [0.990 [ 1.00 [0.995]0.00 [0.00 [ 0.00
Word2Vec Accuracy = 0.979 Accuracy = 0.932 Accuracy = 0.969
0.979 [ 1.00 [0.9890.00 [0.00 [0.00 [0.949[0.980 [ 0.964 020 [0.09 [0.12 |0.99 [0.979 ] 0.984]0.00 [0.00 ] 0.00
GloVe Accuracy = 0.979 Accuracy = 0.943 Accuracy = 1.00
— 0.97910.999 [ 0.989 [ 0.31 [0.02 [0.03 [0.946 [ 0.998 [ 0.971[0.00 [0.00 [0.00 |1.00 [1.00 [1.00 [1.00 [1.00 [1.00
DSMs: Graph-based
Text GCN Accuracy = 0.979 Accuracy = 0.946 Accuracy = 0.99
0.979 [ 1.00 [0.989]0.029 [0.00 [0.00 [0.00 [0.00 [0.00 095 [1.00 [0.97 |0.00 [0.00 [0.00 [0.99 [1.00 ]0.99
VGCN-BERT Accuracy = 0.978 Accuracy = 0.946 Accuracy = 0.971
——— 0979 ]0.999 ] 0.989 [ 0.495 [ 0.019 | 0.035 [ 0.947 [ 0.999 | 0.972 | 0.287 [ 0.029 [ 0.052 | 0.994 [ 0.977 [ 0.984 [ 0.21 [ 0.389 [ 0.246
DSMs: Non-Graph + CNN
Word2Vec Accuracy = 0.977 Accuracy = 0.946 Accuracy = 0.99
0.97910.997 [ 0.988 [ 0.11 [0.02 [0.03 [0.946 [ 1.00 [0.972]0.00 [0.00 [0.00 |0.99 [1.00 ]0.995]0.00 [0.00 [ 0.00
GloVe Accuracy = 0.978 Accuracy = 0.946 Accuracy = 0.979
0.97910.999 10.989 [ 0.23 [0.02 [0.03 [0.946 [ 1.00 [0.972]0.00 [0.00 [0.00 [0.99 [0.99 [0.99 [0.00 [0.00 [0.00

Table 1: Study 1 & 2: CoAID - Tweet (Temporal & Text Length Dimension). Best results, as well as the optimal

models, are highlighted in red. None of the models generalize well on the tweet data.

Train: May Test: July Test: September Test: November
Model True Information ‘ Misinformation True Information ‘ Misinformation True Information ‘ Misinformation
P [R [FIL [P [R [FI P [R [FL [P [R [FI P [R [FL [P [R [FI
Mixed-Domain Transfer Learning
BERT Accuracy = 0.814 Accuracy = 0.646 Accuracy = 0.503
0.814 [ 1.00 [0.898 ]0.00 ][0.00 [0.00 | 0.929 [0.676 [ 0.779 [ 0.018 [ 0.135 [ 0.036 | 0.962 [ 0.511 | 0.656 | 0.009 | 0.144 [ 0.009
ELMo Accuracy = 0.559 Accuracy = 0.973 Accuracy = 0.985
— 0.777] 06420703 [ 0.11 [0.19 [0.14 [0.979[0.993]0.986[0.83 [0.64 [0.72 | 0.986[0.99 [0.992]0.88 [0.37 [0.52
Word2Vec Accuracy = 0.851 Accuracy = 0.946 Accuracy = 0.98
0.846 [ 0.999 [ 0.916 [ 0.98 [0.20 [0.33 [0.948 [0.998 [ 0.972]0.60 [0.06 [0.12 098 [1.00 [0.99 [1.00 [O.IT [0.19
GloVe Accuracy = 0.599 Accuracy = 0.953 Accuracy = 0.984
0.833]0.635]0.721 [ 022 [044 [029 [0.957[0.995]0.975]0.73 [0.23 [0.35 |0.985]0.999 [ 0.992]0.86 [0.32 [0.46
DSMs: Graph-based
Text GCN Accuracy = 0.814 Accuracy = 0.635 Accuracy = 0.978
0.00 [0.00 000 [0.81 [1.00 [0.90 [0.97 [0.633]0.766 [ 0.095]0.66 [0.165 | 0.978 [ 1.00 [ 0.989 [ 0.00 [ 0.00 | 0.00
Accuracy = 0.677 Accuracy = 0.64 Accuracy = 0.458
VGCN-BERT 0.971 ] 0.622 ] 0.758 [ 0.356 | 0.917 | 0.513 [ 0.985 [ 0.628 | 0.767 [ 0.117 | 0.839 | 0.205 | 0.989 [ 0.451 | 0.619 | 0.031 [ 0.778 | 0.06
DSMs: Non-Graph + CNN
Word2Vec Accuracy = 0.96 Accuracy = 0.643 Accuracy = 0.99
- 0.957 ] 0.98410.9750.92 [0.85 [0.89 | 0977 [0.638 [0.772 [ 0.11 [0.74 [0.19 [0.991[0.99 [0.995]0.92 [0.58 [0.71
GloVe Accuracy = 0.554 Accuracy = 0.623 Accuracy = 0.452
0.775]0.637 [ 0.699 [ 0.10 [0.19 [0.13 [0.941 [0.641 [ 0.763]0.05 [0.32 [0.09 |0.962[0.457]0.62 [0.01 [021 [0.02

Table 2: Study 1 & 2: CoAID - News Articles (Temporal & Text Length Dimension). Best results, as well as the
optimal models, are highlighted in red.

Train: May + July + September

Test: November Tweets News Articles
Model True Information Misinformation True Information Misinformation
P R [Ft [P [R [JFL |P [R JFL_ |P [R |F

Mixed-Domain Transfer Learning: BERT

Accuracy = 0.928

Accuracy = 0.992

1.00 [ 0.927 [ 0.962 ] 0.12 [ 1.00 | 0.22

0.994 1 0.998 [ 0.996 | 0.883 | 0.719 | 0.787

DSM (Non-Graph): Word2Vec + CNN

Accuracy = 0.985

Accuracy = 0.986

0.99 0.995 | 0.992 [ 0.71 | 0.63 | 0.67

0.992 [ 0.994 [ 0.993 [ 0.71 | 0.63 | 0.67

Table 3: Study 3: CoAID Large Dataset (Dataset Size Dimension). Best results are highlighted in red.

based DSM approach on lengthy text is not as good
as on short text. Also, BERT shows unreliable

tweets).

performance as it fails on the misinformation class.

crease the size of short-length training data (i.e.,

Table 3 shows the results of study 3, i.e., large-
dataset-based experiments. The performance of
DSM-based Word2 Vec is consistent with its perfor-
mance on the CoAID news articles data (Table 2).
Its F1 score on tweets misinformation increases sig-
nificantly compared to the small-data case (Table
1). Thus, the non-graph DSM+CNN can cap-
ture both global and local relationships if we in-

Table 4 shows the results obtained from study 4.
For the July test dataset misinformation detection,
RoBERTa achieves the best performance, while
XLNet shows the worst performance. However,
for September misinformation, we observe the ex-
act opposite scenario. As for November misinfor-
mation, ALBERT achieves the best performance,
while XLNet’s performance is the worst. No sin-
gle Transformer-based model performs well on
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Train: May Test: July Test: September Test: November
Model True Information ‘ Misinformation True Information Misinformation True Information ‘ Misinformation

P [R [Ft _|P [R [F1 _|P [R [FI_|P [R [FI_|P [R [FI_|P [R [F

Mixed-Domain Transfer Learning

ALBERT Accuracy = 0.611 Accuracy = 0.943 Accuracy = 0.993

0.858 ] 0.625 [ 0.723 [ 0.25 [ 0.547 [ 0.343 | 0.96 [ 0.981 [ 0.97 [0.483 [ 0.298 [ 0.368 | 0.996 [ 0.996 [ 0.996 [ 0.842 [ 0.842 | 0.842
ROBERTa Accuracy = 0.936 Accuracy = 0.630 Accuracy = 0.980

0.937 ] 0.987 ] 0.962 | 0.925 [ 0.711 | 0.804 | 0.952 [ 0.641 | 0.766 | 0.068 [ 0.447 [ 0.118 | 0.991 [ 0.989 [ 0.990 [ 0.55 [ 0.579 [ 0.564
XLNET Accuracy = 0.814 Accuracy = 0.97 Accuracy = 0.456

081 [ 1.00 [ 090 [0.00 |0.00 |0.00

097 [1.00 [098 [0.89 | 053 |0.67

097 [046 [0.62 | 001 ]026 |0.02

Table 4: Study 4: CoAID Large Dataset (Various-based Transformer Models). Best results are highlighted in red.
No single model performs well across three datasets.

[ =

Text GCN

(DSM) ELMo

Fl-score 0.056
0.068
0.072

0.313

0.182
0.172
0.287
0.447

Recall
Precision

e Accuracy

Accuracy

0.329
0.315

0.32—
0.288
0.338

0.256
0.192 0.251
0.21

0:245 0321

0518 0531 0574 0.582

Word2Vec
(Transfer
Learning)

0.329
0.315
0.396
0.582

GloVe (DSM) + GloVe (Transfer

BERT CNN Learning)

0.192
0.21
0.215
0.518

0.256
0.251
0.321
0.531

0.32
0.288
0.338
0.574

Precision Recall Fl-score

e O@m——

0721

0:687

0477
0497 0788

0:533
0:822

059

Word2Vec
VGCN-BERT (DSM) + CNN

0.477
0.492
0.533
0.596

0.721
0.687
0.788
0.822

Figure 2: Study 5: CMU-MisCov19 (Fine-grained classification).

the three datasets. These results corroborate our
previous observation on the mixed-domain transfer
learning approach, i.e., it is not robust when the
context of the data changes.

Figure 2 shows the results obtained from study 5.
We see that the mixed-domain transfer learning ap-
proach performs poorly on the fine-grained dataset.
The only model that achieves decent performance
is the non-graph DSM Word2Vec with CNN.

Analysis. Based on the results obtained from
the studies, we summarize our observations below.
First, we discuss a model’s generalizability for bi-
nary classification scenarios. Given the length of
the text and the size of the dataset, we identify 4
cases.

Case 1: Length=Short & Size=Small For case
1, we do not find a single best-performing model.
For the tweet dataset, the following models per-
form slightly better: VGCN-BERT, GloVe (transfer
learning and DSM-based), and Text GCN. There
are two possible explanations for the poor perfor-
mance of all models on the short-length tweet data.
First, the number of test misinformation samples
is significantly smaller. For example, in the 2020
July, September, and November tweet test datasets,
the true information samples are larger than the
misinformation samples by 46, 17, and 96 times,
respectively. Second, the short length of the text

and the small size of the training set might have
influenced the scope of the context learning by the
models.

Case 2: Length=Long & Size=Small For
the news articles data, the best model is DSM
Word2Vec+CNN for the July and November
datasets. It achieved the highest precision and
recall on the misinformation class. For the
September dataset, the ELMo outperforms DSM
Word2Vec+CNN.

Case 3: Length=Short & Size=Large Both
DSM Word2Vec+CNN and BERT-based transfer
learning performed well. However, BERT’s per-
formance is not consistent. On the tweet dataset
(short-length text), the precision of BERT is poor. It
indicates that even with larger training data, BERT-
based transfer learning does not provide an effec-
tive solution for short-length samples. One possible
reason is that although BERT is good at captur-
ing the local relationships (e.g., word order), it
does not do equally well on capturing the global
relationships from short-length data.

Case 4: Length=Long & Size=Large Both
DSM Word2Vec+CNN and BERT-based transfer
learning perform well in this case. BERT’s per-
formance is slightly better. This indicates that
Transformer-based models are suitable when target
data is large and texts are lengthy.
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e [

Length: Short
Size: Small

DSM: graph-based
DSM (non-graph) + CNN
Transfer Learning:

shallow neural model

Length: Long
Size: Small

\ DSM (non-graph) + CNN

Size of dataset

Social Media Data
(Binary Classification)

Length: Short
Size: Large

Length of text

DSM (non-graph) + CNN
Length: Long Transfer Learning: BERT

Size: Large

DSM (non-graph) + CNN

Figure 3: A framework for COVID-19 online misinformation detection.

The results from fine-grained classification show
that DSM Word2Vec+CNN outperforms other ap-
proaches by a large margin. Apart from the case
of binary short length and small size dataset, DSM
Word2Vec+CNN is shown to achieve the most ef-
fective solution.

One possible reason for the better generaliza-
tion capability of the non-graph DSM+CNN-based
approach is that its hierarchical feature-extraction
mechanism is conducive for learning both the lo-
cal context (the non-graph DSM, e.g., Word2Vec
captures the local relationships of words in the tar-
get text) and the global context (the CNN learns
global relationships from the word embeddings),
which validates our hypothesis.

Based on the insights garnered from the above
analysis, we draw the following conclusions, sum-
marized in the framework in Figure 3.

e The Transformer-based mixed-domain
transfer learning approach is effective in
limited cases. Also, its performance is not
consistent.

e The graph-based DSM approach does not
yield an effective solution in any of the cases.
The VGCN-BERT that combines the benefits
of Text GCN with BERT is not effective either.

e The non-graph DSM + CNN approach gen-
eralizes well across the last three cases.

Our study suffers from some limitations. The
lack of labeled data narrowed the scope of our in-
vestigation. The data scarcity affected our study
in two ways. First, due to the small size of the
test data, we obtained noisy estimates for the short
length and small size data. Second, we could
not conduct a multi-dimensional study on the fine-
grained classification problem.

4 Conclusion

When an unanticipated pandemic like COVID-19
breaks out, various types of misinformation emerge
and propagate at warp speed over online social
media. For detecting such misinformation, NLP
techniques require to capture the context of the
discourse from its evolving narrative. We argue
that irrespective of the success of the deep learning
based mixed-domain transfer learning approach for
solving various NLP tasks, it does not yield a gen-
eralizable solution. We emphasize the importance
of learning the context (both local and global) di-
rectly from the target domain via the DSM-based
approach. A feasible way to implement a DSM
is to utilize shallow neural networks that capture
the local relationships in the target data. Represen-
tations learned from this type of model can then
be used by shallow CNNs to learn global relation-
ships as high-level features. Thus, a combination
of non-graph DSM and CNN may lend a more
generalizable solution. We perform an extensive
study using Twitter-based COVID-19 social media
data that includes tweets and news articles referred
to in the tweets. Our investigation is performed
along the following dimensions of the data: tem-
poral dimension (evolving context), length dimen-
sion (varying text length), size dimension (varying
size of datasets), and classification-level dimension
(binary vs. multi-class data). We show that the
mixed-domain transfer learning approach does not
always work well. We found the combination of the
non-graph DSM (for capturing local relationships)
and CNN (for extracting global relationships) to
be a promising approach towards creating a gener-
alizable solution for detecting COVID-19 online
misinformation.

In the future, we plan to investigate the gener-
alizability of the DSM models created using deep
learning architectures such as BERT.
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Appendix

In this section, first, we discuss the related work.
Then, we present an analysis of the dataset. Fi-
nally, we report the experimental setting and train-
ing statistics.

5 Related Work

Solving Natural Language Processing (NLP) tasks
using Deep Learning (DL) based models is a chal-
lenging venture. Unlike computer vision problems
in which deep learning supervised model can learn
expressive representations directly from raw pixels
of the input data while performing a discrimina-
tion task, the deep learning based supervised NLP
systems cannot use raw text input while solving
NLP tasks. The text input data needs to be en-
coded with latent representations or embeddings.
These embeddings are learned by neural models
from general-purpose unlabeled data using the self-
supervised learning approach (Tendle and Hasan,
2021). The embeddings must capture the multi-
dimensional relationships of the text components,
which are non-contextual and contextual relation-
ships. The non-contextual relationship includes
syntactic relationships and semantic relationships.
On the other hand, the contextual relationship in-
cludes dynamic representations of words, which
requires embeddings to capture the local and global
relationships of the words.

Sequence DL models such as Recurrent Neural
Network (RNN) have been used to learn the local
context of a word in sequential order (Sutskever
et al., 2014). RNNs process text as a sequence of
words for capturing word dependencies and text
structures. However, they suffer from two limita-
tions. First, they are unable to create good rep-
resentations due to the uni-directional processing
(Peters et al., 2018). Second, these models struggle
with capturing long-term dependency (Hochreiter
and Schmidhuber, 1997). These two issues were
partially resolved by introducing the bi-directional
LSTM model (Schuster and Paliwal, 1997). This
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model was combined with two-dimensional max-
pooling in (Zhou et al., 2016) for capturing text fea-
tures. In addition to this type of chain-structured
LSTM, tree-structured LSTM such as the Tree-
LSTM model was developed for learning rich se-
mantic representations (Tai et al., 2015). Irrespec-
tive of the progress harnessed by RNN-based mod-
els, they do not perform well in capturing global
relationships (i.e., long-term dependencies) among
the words of the source text. Also, training this
type of model on large data is inefficient.

An efficient approach for some NLP tasks such
as text classification is a shallow Convolutional
Neural Network (CNN) with a one-dimensional
convolutional kernel (Kim, 2014). This model is
good at capturing local patterns such as key phrases
in the text. However, it does not work effectively
if the weights of the input layer are initialized ran-
domly (Kim, 2014). It was shown to be effective
only in transfer learning in which, first, word em-
beddings are created using a self-supervised pre-
trained model (PTM) such as Word2Vec (Mikolov
et al., 2013), then the CNN uses its single layer
of convolution on top of the word embeddings to
learn high-level representations.

The use of PTMs for mixed-domain transfer
learning ushered in a new era in NLP (Qiu et al.,
2020). The PTMs are created from general-purpose
unlabeled data by using the self-supervised learn-
ing technique. In general, the SSL technique learns
representations by predicting a hidden property of
the input from the observable properties (LeCun
and Misra, 2021). Two types of PTMs are used
in NLP: (i) PTMs that are feature extractors, i.e.,
learn word embeddings (Mikolov et al., 2013; Pen-
nington et al., 2014; Peters et al., 2018), which
are used as input to another model for solving a
downstream NLP task (Kim, 2014), and (ii) PTMs
that learn language models and the same PTM is
adapted (fine-tuned) for solving downstream NLP
tasks (Devlin et al., 2019). The feature extractor
PTMs such as Word2Vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), and ELMo (Pe-
ters et al., 2018) are based on both shallow and
deep neural network architectures. While shallow
Word2Vec and GloVe models learn non-contextual
word embeddings from unlabeled source data, the
deep ELMo model is good for creating contextual
embeddings. Features learned from these PTMs are
used as input to another neural network for solving
a downstream NLP task using labeled target data.

Both Word2Vec and GloVe learn word em-
beddings from their co-occurrence information.
While Word2Vec leverages co-occurrence within
the local context, GloVe utilizes global word-to-
word co-occurrence counts from the entire cor-
pus. Word2Vec is a shallow feed-forward neural
network-based predictive model that learns embed-
dings of the words while improving their predic-
tions within the local context. On the other hand,
GloVe is a count-based model that applies dimen-
sionality reduction on the co-occurrence count ma-
trix for learning word embeddings. These two mod-
els are good at capturing syntactic as well as se-
mantic relationships. Although they can capture
some global relationships between words in a text
(Levy and Goldberg, 2014; Srinivasan and Ribeiro,
2019), their embeddings are context-independent.
Thus, these two models are not good at language
modeling. A language model can predict the next
word in the sequence given the words that precede
it (Goldberg and Hirst, 2017), which requires it
to capture the context of the text. The deep archi-
tecture feature extractor PTM ELMo (Embeddings
from Language Models) (Peters et al., 2018) learns
contextualized word embeddings, i.e., it maps a
word to different embedding vectors depending on
their context. It uses two LSTMs in the forward
and backward directions to encode the context of
the words. The main limitation of this deep PTM
is that it is computationally complex due to its se-
quential processing of text. Thus, it is prohibitively
expensive to train using a very large text corpus.
Another limitation of this model, which also ap-
plies to feature extractor PTMs in general, is that
for solving downstream NLP tasks we need to train
the entire model, except for the input embedding
layer, from scratch.

The above two limitations of the feature extractor
PTMs are addressed by a very deep architecture-
based Transformer model (Vaswani et al., 2017).
Unlike the feature extractor sequential PTMs,
Transformer is a non-sequential model that uses
self-attention (Bahdanau et al., 2016) to compute
an attention score for capturing the influence of
every word on other words in a sentence or docu-
ment. This process is parallelized, which enables
training deep Transformer models efficiently using
very large text corpus such as Wikipedia and Book-
Corpus (Devlin et al., 2019) as well as web crawls
(Liu et al., 2019).

There are two main types of Transformer-based
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deep PTMs: autoregressive and autoencoding. The
OpenAl GPT (Generative Pre-training) (Radford
and Sutskever, 2018) is an autoregressive model
that learns embeddings by predicting words based
on previous predictions. Specifically, it is a uni-
directional model that predicts words sequentially
in a text. On the other hand, BERT (Devlin et al.,
2019) utilizes the autoencoding technique based
on bi-directional context modeling. Specifically,
for training, it uses a masked language modeling
(MLM) task. The MLLM randomly masks some to-
kens in a text sequence, then it predicts the masked
tokens by learning the encoding vectors.

Variants of BERT such as RoBERTa (Liu et al.,
2019) and ALBERT (Lan et al., 2020) were pro-
posed to improve its effectiveness as well as ef-
ficiency. RoBERTa (Robustly optimized BERT)
improves the effectiveness of BERT by using sev-
eral strategies that include the following. It trains
the model longer using more data, lengthy input,
and larger batches. It uses a dynamic masking strat-
egy and removes BERT’s Next Sentence Prediction
(NSP) task. ALBERT (A Lite BERT) improves the
efficiency of BERT by employing fewer parame-
ters, which increases its training speed.

There have been attempts such as in XLNet
(Yang et al., 2019) to integrate the strengths of
the autoregressive and autoencoding Transformer
techniques. XL Net is an autoregressive model that
uses a permutation language modeling objective.
This allows XLNet to retain the advantages of au-
toregressive models while leveraging the benefit
of the autoencoding models, i.e., to capture the
bi-directional context.

Irrespective of the state-of-the-art (SOTA) per-
formance of the deep PTM based mixed-domain
transfer learning approach on many NLP tasks (Mi-
naee et al., 2021), this approach is not suitable for
detecting misinformation from COVID-19 social
media data. It generalizes poorly when the domain
of the source dataset used to create the PTMs is
significantly different from that of the target dataset
(Peters et al., 2019). One solution to this generaliz-
ability problem is to create a PTM using data that
shares context similar to the target domain, i.e., pre-
train a domain-specific model (DSM). This type
of model encodes the context of the target domain
more effectively to provide a generalizable solution
for the downstream task (Beltagy et al., 2019; Lee
etal., 2019; Gu et al., 2021). However, pre-training
a deep architecture-based DSM (e.g., BERT) for

the COVID-19 misinformation detection task in a
timely fashion could be infeasible as it requires col-
lecting a large amount of COVID-19 social media
data, which must cover the diverse landscape of
COVID-19 misinformation. While there was an
effort to create such a deep DSM using COVID-
19 tweets in (Miiller et al., 2020), capturing the
dynamic context of the pandemic requires the col-
lection of various types of social media data at a
large scale.

Thus, to create DSMs for the COVID-19 do-
main using quickly collectible small data, shallow
architecture based PTMs such as Word2Vec and
GloVe are suitable. However, as mentioned earlier,
these PTMs are context-independent and are not
good at capturing the global relationships well. To
compensate for these shortcomings, we used the
extracted features from the Word2Vec and GloVe
DSMs for training a one-dimensional convolutional
kernel-based CNN similar to the shallow architec-
ture given in (Kim, 2014). The CNN learns global
relationships by extracting local patterns in a hi-
erarchical fashion by convolving over the word
embeddings.

Another type of DSM we used is graph-based
that leverages the linguistic-aware graph structure
of the text for learning contextual representations,
then uses those representations to solve a down-
stream NLP task. The main intuition driving the
graph-based technique is that by modeling the vo-
cabulary graph, it will be possible to encode global
relationships in the embeddings. Text GCN (Text
Graph Convolutional Network) (Yao et al., 2019)
is a graph-based model that explicitly captures the
global term-co-occurrence information by lever-
aging the graph structure of the text. It models
the global word co-occurrence by incorporating
edges between words as well as edges between a
document and a word. Word-word edges are cre-
ated by using word co-occurrence information and
word-document edges are created by using word
frequency and word-document frequency. Its input
is a one-hot vector representation of every word in
the document, which is used to create a heteroge-
neous text graph that has word nodes and document
nodes. These are fed into a two-layer GCN (Graph
Convolutional Network) (Kipf and Welling, 2017)
that turns document classification into a node clas-
sification problem.

Although Text GCN is good at convolving the
global information in the graph, it does not take
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into account local information such as word orders.
To address this issue, Text GCN was combined
with BERT, which is good at capturing local in-
formation. The resulting model is VGCN-BERT
(Lu et al., 2020). BERT captures the local con-
text by focusing on local word sequences, but it
is not good at capturing global information of a
text. It learns representations from a sentence or
a document. However, it does not take into ac-
count the knowledge of the vocabulary. Thus its
language model may be incomplete. On the other
hand, Text GCN captures the global vocabulary
information. The VGCN-BERT aims to capture
both local and global relationships by integrating
GCN with BERT. Both the graph embeddings and
word embeddings are fed into a self-attention en-
coder in BERT. When the classifier is trained, these
two types of embeddings interact with each other
through the self-attention mechanism. As a con-
sequence, the classifier creates representations by
fusing global information with local information in
a guided fashion.

6 Dataset

We describe the sample distribution of both the
CoAID (binary) and CMU datasets. Then, we ana-
lyze context evolution in the CoAID new articles
dataset.
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Figure 4: CoAID Tweets: Sample distribution (0: mis-
information, 1: true information).

CoAID Sample Distribution. Figures 4 and 5
show the distributions of tweets and news articles
per category, respectively. We see that the datasets
contain significantly more true information than
misinformation. Thus, the CoAID data is heavily
skewed. For the tweets dataset, the sizes of May
and July data are larger than that of September and
November. Also, the number of misinformation
tweets during September and November are negli-
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Figure 5: CoAID News Articles: Sample distribution
(0: misinformation, 1: true information).
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Figure 6: CMU-MisCov19 Dataset: Sample distribu-
tion.

gibly smaller, making it challenging to use these as
test datasets.

CMU Sample Distribution. The CMU-
MisCovl9 or CMU short-length text dataset
misinformation categories are fine-grained
comprising of 17 classes. It consists of 4,573
annotated tweets from 3,629 users with an average
of 1.24 tweets per user. Figure 6 shows the
heavily skewed distribution of 4,292 tweets for
all categories that were extracted after some
pre-processing. Class 7 (calling out or correction)
has the most tweets, while class 2 (true treatment)
has O tweets.
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Embedding | # Hidden | Batch Size Optimizer Learning

Dimension Layers Rate
BERT 768 12 32 AdamW 2e-5
ELMo 1024 5 128 Adam 0.001
RoBERTa 768 12 16 AdamW 2e-6
ALBERT 128 12 6 Adam 3e-5
XLNet 768 12 32 AdamW 2e-5
Text GCN 200 2 N/A Adam 0.02
VGCN N/A 18 16 Adam 2e-5
BERT
Word2Vec 300 2 128 Adam 0.001
GloVe 300 N/A N/A AdaGrad N/A

Table 5: Experimental setting.

6.0.1 CoAID News Articles: Study of Context

Evolution

Figure 7 shows context evolution in the news arti-
cles category via the evolution of the distribution of
the top ten high-frequency terms. We see, similar to
the tweet dataset, context changes over time in the
news articles datasets. For example, The May and
July datasets have only 4 common high-frequency
words: covid, coronavirus, health, data. In the July
dataset, we observe the emergence of three new
high-frequency words attack, security, and protect,
which indicates a change in context. The context
in the September dataset seems to be similar to
that of the July dataset. These two datasets have
eight high-frequency words in common: covid, ser-
vice, online, attack, security, health, information,
coronavirus. The November dataset shares seven
common words with the September dataset: covid,
service, online, attack, people, health, coronavirus.
However, we notice an increase in the frequency
in some words such as protect and attack. Also, a
new word pandemic is seen to emerge. We gather
similar observations about the context evolution
from the word clouds in Figure 8.

7 Experimental Setting & Training
Statistics

We provide the experimental setting for conducting
our studies as well as the training statistics.

Experimental Setting. Table 5 shows the exper-
imental setting for the studies. We used the default
learning rate and batch size for all experiments.

Training Statistics. Table 6 shows the training
statistics that include the number of parameters

for each model, dataset, and the average training
time. The inference time is not significant, thus
not reported. All experiments were done on a Tesla
V100 GPU, except the Text GCN and VGCN BERT
based experiments, which were conducted using
a CPU. For DSM and CNN based experiments,
the CNN was trained for 5 epochs on the CoAID
tweet data, 10 epochs on the CoAID news articles
data, and 10 epochs on the CMU fine-grained data.
The number of epochs was chosen based on the
convergence behavior of the models.
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Model #Parameters Dataset Avg. Training Time
BERT PTM 110M CoAID News Articles (large data) | 1.25 mins
BERT PTM 110M CoAID Tweets (large data) 1.66 hours
BERT PTM 110M CoAID News Articles (small data) | 30 sec
BERT PTM 110M CoAID Tweets (small data) 1.06 hours
Word2Vec: 6.7M . .
Word2Vec DSM + CNN CNN: 160301 CoAID News Articles (large data) | 3.48 mins
Word2Vec: 155.9M
Word2Vec DSM + CNN CNN: 160301 CoAID Tweets (large data) 1.17 hours
Word2Vec: 5.1M . .
Word2Vec DSM + CNN CNN: 160,301 CoAID News Atrticles (small data) | 1.3 mins
Word2Vec: 7.8M .
Word2Vec DSM + CNN CNN: 160,301 CoAID Tweets (small data) 46 mins
Word2Vec PTM + CNN | 160,301 CoAID News Articles (small data) | 2.05 mins
Word2Vec PTM + CNN | 160,301 CoAID Tweets (small data) 2.2 hours
GloVe: 4.6M . .
GloVe DSM + CNN CNN: 160301 CoAID News Articles (small data) | 1.33 mins
GloVe: 100.6M .
GloVe DSM + CNN CNN: 160,301 CoAID Tweets (small data) 45.25 mins
GloVe PTM + CNN 160,301 CoAID News Articles (small data) | 2.08 mins
GloVe PTM + CNN 160,301 CoAID Tweets (small data) 2.43 hours
ELMo PTM + CNN 160,301 CoAID News Articles (small data) | 8.23 mins
ELMo PTM + CNN 160,301 CoAID Tweets (small data) 8.63 hours
Text GCN N/A CoAID Tweets (small data) 8.8 mins
VGCN BERT N/A CoAID Tweets (small data) 33 hours
Text GCN N/A CoAID News Articles (small data) | 7.32
VGCN BERT N/A CoAID News Articles (small data) | 15.26 mins
RoBERTa 125M CoAID News Articles (small data) | 5.39 mins
ALBERT 11M CoAID News Atrticles (small data) | 6.8 hours
XLNet 110M CoAID News Articles (small data) | 35 sec
BERT PTM 110M CMU 6 mins
Word2Vec: 8.7M .
Word2Vec DSM + CNN CNN: 160301 CMU 3 mins
Word2Vec PTM + CNN | 160,301 CMU 30 sec
GloVe: 8.6M .
GloVe DSM + CNN CNN: 160,301 CMU 3.77 mins
GloVe PTM + CNN 160,301 CMU 9.17 mins
ELMo PTM + CNN 160,301 CMU 1.05 mins

Table 6: Training Statistics - DSM: Domain-Specific Model, PTM: Pre-Trained Model
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