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Abstract

Inspired by mutual information (MI) based fea-
ture selection in SVMs and logistic regression,
in this paper, we propose MI-based layer-wise
pruning: for each layer of a multi-layer neu-
ral network, neurons with higher values of MI
with respect to preserved neurons in the up-
per layer are preserved. Starting from the top
softmax layer, layer-wise pruning proceeds in
a top-down fashion until reaching the bottom
word embedding layer. The proposed pruning
strategy offers merits over weight-based prun-
ing techniques: (1) it avoids irregular mem-
ory access since representations and matrices
can be squeezed into their smaller but dense
counterparts, leading to greater speedup; (2) in
a manner of top-down pruning, the proposed
method operates from a more global perspec-
tive based on training signals in the top layer,
and prunes each layer by propagating the ef-
fect of global signals through layers, leading
to better performances at the same sparsity
level. Extensive experiments show that at the
same sparsity level, the proposed strategy of-
fers both greater speedup and higher perfor-
mances than weight-based pruning methods
(e.g., magnitude pruning, movement pruning).

1 Introduction

In spite of impressive results of neural networks,
the huge model size has hindered their applications
in cases where computation and memory resources
are limited.! As a result, training and using exist-
ing huge models not only requires rich hardware
resources, but also consumes high environmental
costs (Strubell et al., 2019).

Model pruning, reduces model sizes by dropping
a fraction of the model parameters, to reduce com-
putation intensity and memory footprint of large
models at the lowest cost of accuracy on end tasks

"For example, the GPT-3 model (Brown et al., 2020) has
175B parameters in total, with 96 layers and 96 attention heads
(Vaswani et al., 2017) per layer.

(Joulin et al., 2016; Ganesh et al., 2020; Gordon
et al., 2020). Among pruning techniques, weight
based pruning is a widely-used group of methods.
It focuses on removing weights according to their
importance under different specific criteria, e.g.,
the magnitude (Han et al., 2015b,a), first-order
derivative (Lee et al., 2018; Sanh et al., 2020) and
second-order derivative information (LeCun et al.,
1990; Hassibi and Stork, 1993), and it has been
successfully applied to a large variety of model
architectures (Guo et al., 2016; Gale et al., 2019;
Molchanov et al., 2019) and downstream tasks (Mc-
Carley, 2019; Gordon et al., 2020).

While weight-based methods have been success-
fully applied to a wide range of neural models for
model pruning, they come with the following short-
comings: (1) weights in matrices are pruned irregu-
larly, which lead to irregular memory access, result-
ing in runtime inefficiency; (2) weight matrices are
pruned independently, and this neglect of global
supervision from training signals at the top layer
and ignorance of information propagation between
consecutive layers may result in sub-optimality of
pruned networks.

In this paper, inspired by mutual information (MI)
based feature selection (Kuncheva, 2007) in SVMs
and logistic regression, we propose MI based layer-
wise pruning, to address the aforementioned draw-
backs of weight-based pruning methods in NLP.
For each layer of a multi-layer neural network, neu-
rons with higher values of MI with respect to the
preserved neurons in the upper layer are preserved.
Starting from the top softmax layer, layer-wise
pruning proceeds until reaching the bottom input
word embedding layer in a top-down fashion. Once
the preserved neurons in each layer are selected, the
redundant dimensions along with the correspond-
ing rows and columns of the weight matrices can
be pruned or squeezed, inducing model sparsity at
different levels.
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The proposed pruning strategy naturally addresses
the aforementioned two shortcomings of weight-
based methods: (1) it avoids irregular memory ac-
cess since it squeezes the pruned representations
and matrices into their smaller but dense counter-
parts. This enables significantly faster computa-
tions than weight-based pruning methods at the
same sparsity level; (2) rather than viewing each
weight matrix separately based on their own weight
values, the proposed method operates from a more
global perspective based on training signals at the
top layer, and prunes each layer by propagating the
effect of global training signals through consecu-
tive layers in a top-down fashion. This leads to
better performances at the same sparsity level.

We conduct extensive experiments on both genera-
tive tasks (MT) and discriminative tasks (question
answering) in NLP to examine the effectiveness
of the proposed strategy. We show that compared
to weight-based pruning methods including magni-
tude pruning (Han et al., 2015b), movement prun-
ing (Sanh et al., 2020) and Lg pruning (Louizos
et al., 2017), the proposed method yields greater
speedup along with better performances for the
same sparsity levels on generative NLP tasks of
WMT’ 14 En—Fr and WMT’ 14 En—De, and dis-
criminative NLP tasks of SQuAD vl1.1 (Rajpurkar
etal., 2016), MNLI (Williams et al., 2017) and SST-
5 (Socher et al., 2013). In addition, we also show
that the proposed method serves the feature selec-
tion purposes, where we observe significant perfor-
mance boosts when fixing preserved neurons and
relearning the pruned ones, leading to a state-of-the-
art performance of 43.9 BLEU score for En—Fr
translation in setups without back-translation or
external data.

2 Related Work

2.1 Model Pruning

Generic Model Pruning Model pruning refers
to reducing the model size by dropping a fraction
of the model parameters, which dates back to early
works of Optimal Brain Damage (PBD) (LeCun
et al., 1990) and Optimal Brain Surgeon (OBS)
(Hassibi and Stork, 1993). One major branch of
neural model pruning methods is magnitude prun-
ing (Han et al., 2015b; See et al., 2016; Narang
et al., 2017; Molchanov et al., 2019; Gale et al.,
2019; Frankle et al., 2020), which prunes model
parameters measured by their importance scores.

Han et al. (2015b) removed all parameters with
weight values below a threshold, and then retrained
the remaining sparse network. Guo et al. (2016)
proposed dynamic network surgery, allowing for
model connection recovery from incorrect prun-
ing decisions made in previous iterations. Michael
H. Zhu (2018) adopted a gradual pruning sched-
ule, in which the sparsity level increases from an
initial sparsity value to a specified final sparsity
value during training. Other methods for neural
model pruning include L regularization pruning
(Louizos et al., 2017), variational dropout prun-
ing (Kingma et al., 2015; Molchanov et al., 2017;
Gomez et al., 2019) and movement pruning (Sanh
et al., 2020), etc. Recent works have proposed a
line of techniques to prune and produce sparsity in
a structured way (Anwar et al., 2017; Zhou et al.,
2016; Hu et al., 2016; Liu et al., 2019b), which
aims at pruning full convolutional filters or whole
layers. Methods for structured pruning mainly in-
clude group Lasso (Alvarez and Salzmann, 2016;
Wen et al., 2016; He et al., 2017), sparsity regular-
ization (Li et al., 2016; Liu et al., 2017; Huang and
Wang, 2018; Gordon et al., 2018) and automatic
network searching (He et al., 2018; Yu and Huang,
2019; Dong and Yang, 2019; Ding et al., 2019).

Pruning Transformers Pruning Transformer
based models has been of growing interest (Guo
et al., 2019; Chen et al., 2020; Li et al., 2020). Fan
et al. (2019) proposed LayerDrop to reduce Trans-
former depth. Michel et al. (2019) proposed to use
head importance score to prune BERT attention
heads. Attention heads can also be pruned by using
L regularization (Voita et al., 2019) and cascade
pruning (Wang et al., 2021). Wang et al. (2020)
combined Lj regularization with matrix factoriza-
tion to prune BERT. Gordon et al. (2020) proposed
that BERT can be pruned once during pre-training
rather than separately for each task without sacri-
ficing performance.

2.2  Mutual Information Feature Selection

Feature selection is the process of selecting a
proper subset of features for better model perfor-
mances (Kira and Rendell, 1992; Guyon and Elisse-
eff, 2003; Chandrashekar and Sahin, 2014; Bolén-
Canedo et al., 2016; Cai et al., 2018). A widely
used method for feature selection is Mutual Infor-
mation Based Feature Selection (Vergara and Es-
tévez, 2014; Liu et al., 2009; Beraha et al., 2019),
which selects features that minimize the redun-
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dancy and maximize the relevance w.r.t. the target
variable. Various approaches including minimum-
Redundancy-Maximum-Relevance (mRMR) (Es-
tévez et al., 2009; Brown et al., 2012; Bennasar
et al., 2015) are proposed to accurately select fea-
tures.

3 Model

3.1 Overview for Model Pruning

Given a set of inputs M = {(X,Y")}, where each
input is a word sequence X = {1, ...,x¢, ..., TN, }
and N, denotes the length of the input, our goal is
to predict the label(s) for X, denoted by Y.

In a standard multi-layer neural network setup, the
input layer first maps each input word x; to a vec-
tor representation hY € RP*!, where D denotes
the dimensionality. On top of the input layer, the
model stacks L intermediate neural layers. Let
hl € RP>! denote the representation for token ;
at the [ layer. H! € RP*¥ is the concatenation of
representations at the ['!" layer for all tokens in the
input X. Each layer of the network involves multi-
ple operations such as fully connected operations,
RelL U, self-attentions or residual connections. The
group of all operations within layer [ is denoted by
Fj, which maps H' to H'*1:

Hl+1 :E(HZ) (1)

The output from the last layer hl is fed to the final
softmax layer for predictions. To prune a neural net-
work model, let m! € {0,1}7*! denote the mask
for representation dimensions at layer . The num-
ber of 1s in m! is a pre-defined hyper-parameter,
denoted by K, controlling the sparsity of the net-
work. M! € {0,1}P*N makes N copies of m/,
making the dimensionality of the mask the same as
that of layer representations for X. Let u' denote
the set of indexes for preserved dimensions, where
m![j for j in u'] = 1. Eq.(1) can be rewritten as:

H"' = F(H' @ MY 2)

where © is the Hadamard product. We need spe-
cial attentions for the uppermost softmax layer. No
dimension should be pruned for this layer since
each dimension corresponds to an output label.
moftmax — 1]Vl where || denotes the size of

the output label set.

3.2 Layer-wise Pruning

The key point of layer-wise pruning is to construct
correlations between dimensions in two consecu-
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Figure 1: An overview of the proposed layer-wise prun-
ing method. The top part shows pruning at the feature
level, and the bottom part shows the weight matrix level
pruning. Layer-wise pruning first selects feature dimen-
sions in each layer regarding some correlation criterion
I(-,-), and then prunes matrix rows and cols according
to the selected dimensions at consecutive layers, after
which both features and matrices can be squeezed.

tive layers [ — 1 and /. Then based on the corre-
lations, we can prune the network in a top-down
fashion: with respect to output labels in the final
softmax layer, we select the top K correlated di-
mensions in the L™ layer based on the correlation
measure, zeroing out the rest. Let I( A, B) denote
correlation between two set of dimensions:

u? = arg max I'(u, u*"™) st |ul| = K (3)
u

Next, we go to the (L — 1)™ layer, preserving di-

mensions in the (L — 1)™ layer that are most cor-

related with preserved dimensions in the L" layer

uP! = argmax I(u,u®) st [ut 7| =K 4
u
This process proceeds until the bottom input em-
bedding layer. An illustration of the proposed layer-
wise pruning method is show in Figure 1. Algo-
rithm 1 describes the pruning process.

3.3 Mutual Information between Dimensions

Here, we describe quantitative ways to compute
correlation scores I (A, B) between dimensions in
layer [ — 1 and layer [ using MI.

3.3.1 MI for Dimension Selection

Mutual information (MI) is a measure between two
random variables to quantify the amount of infor-
mation obtained about one variable through the
other variable. In our case, we wish to compute the
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Algorithm 1: Layer-wise Pruning
Input

: A trained model F' before pruning; the
correlation function between two sets of
dimensions I(-, -); a specified sparsity K;
usoflmax

Output : Sets of indexes for preserved dimensions

ul, .-+ u” in each layer
ul = argmax, I(u wOtmY St |y

// Top- down layer-wise pruning

fori < L —1to0do
| u' = argmax, I(u,u

end

L|:

>

st [uf| = K;

MI between dimensions u' at layer / and dimen-

sions u!~ ! at layer [ —1. Let v d denote the variable

for the neuron value of the df,g—th dimension at the
I™ Jayer. MI between ! and u!~! is given by:

H(ul|u=1) Q)

To tangibly compute Eq.(5), we make assumptions
that both Ut s+ Ul and Ugl1s e Uglo1 Ar€ sam-
ples from Gaussian distributions:

’Udl 1NN( l 1, El 1l)

Il ™Y = H(ub) -

Vil oy ey Ugl 3 U 1—14y .
dyr ot Pdpe? TdyT

Vgl s o3 Vgt N./\/'(n Z,Ell)
l 1 ywi—1
vdzl_1,.. 'Udl 1 N( E )
(6)
where 17[71’[ c R2K><1. ﬁlilaﬁiz c RKXI.
ZZIJ ]R2K><2K El 1 le c REXK. n and

3. can be estimated usmg maximum likelihood.
Specifically, for all (X,Y’) € M, we first compute
the neuron values for all instances for all layers.
ni , and EL , are given as follows:

1
l Z Z “tdl

M = =T8T
ZXGM INz| et

5> z "

Xe/\/lte

l T 1
(Ut,dll 1) (Ut,dll 1)

le -
“ ZXGM’

where v, g l is a vector of length K, corresponding

to a sub-vector within A% with dimension u'. nf;l,

Li—1 =1 ll—1 .
U Zlu L Y1 can be computed similarly.

It is worth noting that the proposed model relies on
the Gaussian assumption for MI computations, and
several recent efforts have been proposed to release
this strong assumption, such as training indepen-
dent neural nets to estimate MI (Belghazi et al.,
2018), using variational distributions to approxi-
mate the distribution (Cheng et al., 2020; Poole

etal., 2019). These workarounds to avoid the Gaus-
sian assumption requires learning another model
(an independent neural model in Belghazi et al.
(2018) and variational distributions in Cheng et al.
(2020)) through gradient updates, and thus cannot
be adapted to the scale in our situation, where we
have to estimate MI for all dimensions across all
layers. The adopted Gaussian model is efficient
in estimating MI values in bulk, and achieve sat-
isfying performances. We leave how to relax this
assumption to future work.

3.3.2 Greedy Selection

Selecting u! based on Eq.(5) is an NP-hard opti-
mization problem, because the set of possible com-
binations of dimensions grows exponentially since
there are Cg combinations of dimensions (D is
the dimension of vector and K is the number of
dimensions to pick). We thus turn to a greedy for-
ward step-wise selection strategy, a widely used
strategy in mutual-information based feature selec-
tion. Specifically, let ul(k) be the set of selected
dimensions at time step k < K. At each time step,
we incrementally add one dimension dﬁc to ul( k1)
by selecting the dimension that leads to the biggest
increase. We repeat this process K times:

d\ = arg max I(u!, u( Ud) (8)

el k- 1)

(k 1)

Inspired by Brown et al. (2012), further assump-
tions are made that the selected dimensions are
independent and class-conditionally independent
given unselected features, transforming Eq.(8) to
the following form:

d'. = arg max{](ul, d)—
dtuf, Ly 9)
[ (d, ufy,_y)) — BI(d, ufy,_y|ul)]}

It is straightforward to see that the first part of
Eq.(9), i.e., I(u!,d) models the relevance of se-
lected dimensions, against the redundancy com-
pared to the dimensions already selected , mani-
fested in the second and the third part. The model
degenerates to the model of Maximum Relevancy
Minimum Redundancy (mRMR) (Peng et al., 2005)
when 5 = 0.

3.3.3 Squeezing Weights and Features

For weight matrixes T and feature H' involved in
the matrix manipulation W H', we do not need to
actually compute the Hadamard product in Eq2. In-
stead, for H, we squeeze all preserved dimensions
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to the left side and truncate the rest. For W, rows
and columns that correspond to pruned dimensions
will be erased and the remaining dimensions will be
squeezed. For example, with m! = [1,1,0, 1] and
m!T! = [0, 1,1, 1], the third row and first column
of the original matrix W = [w;;] can be pruned, the
result of which is squeezed into a smaller matrix:

w12 Wiz Wia
= |w22 W23 W24

W42 W43 W44

wri w1z w13 W14
W= Wzl w22 W23 W24
wsi  wss  Wss  Wsd

1 W42 Wa3 W44
(10)

This avoids irregular memory accesses and thus
can significantly speed up matrix-vector product.
Figure 1 gives a tangible illustration.

3.4 Iterative Pruning

Instead of aggressively reducing dimensions from
D to K in only one iteration, iterative pruning (Han
et al., 2015b) gradually reduces model dimensions
in multiple steps: in each iteration, pruning is fol-
lowed by model retraining using preserved dimen-
sions. As we will show in experiments, this strategy
achieves better performances than the single-step
pruning with the same sparsity levels.

3.5 Retraining Pruned Dimensions

The proposed MI based pruning strategy can not
only be used for reducing model size, but also for
improving model performances. We can view the
MI pruning model from a feature selection perspec-
tive: given fixed size of features (where we view
each neural dimension as a feature), we wish that
all features in each neural layer be informative and
relevant. To this end, we can first remove redun-
dant or irrelevant features, add new features, retrain
the model, and repeat this process. This strategy
is akin to feature selection methods in SVMs or
logistic regression (Kuncheva, 2007).

In the neural setup, we can achieve this goal by
(1) pruning irrelevant dimensions; (2) reinitializing
pruned dimensions (adding new features); and (3)
retraining the model. Preserved dimensions and
weight matrices are fixed during model retraining,
and we only update pruned dimensions. We report
the performances of pruning and retraining 60%
dimensions. It is worth noting that the strategy of
retraining pruned dimensions does not serve as the
goal of speedup and model compressing, as pruned
dimensions are relearned, making the model of the
same size as the model before pruning. We as view

retraining pruned dimensions as a byproduct of the
pruning, with the goal of improving performances.

3.6 Discussions

For the W h matrix multiplication in neural mod-
els, we refer to W as weights, and h as features.
Weight-based methods (Han et al., 2015a,b) prune
networks based on values of W, removing features
with smaller weights, which are comparable to
L1 or L2 regularizers for feature selection (Ng,
2004; Ravikumar et al., 2010). MI-based prun-
ing method is comparable to MI based feature se-
lection, which attaches attentions to the features
by measuring feature-label correlations (Kuncheva,
2007; Yu et al., 2008).

4 Experiments

We conduct experiments on both generative and
discriminative NLP tasks. For generative tasks,
we conduct experiments on WMT14 En-Fr and
WMT14 En-DE. The WMT14 En-Fr dataset con-
sist of 36M and is split into 32000 word-piece vo-
cabulary. The WMT 2014 En-DE dataset consist-
ing of about 4.5 million sentence pairs. We use
BPE (Sennrich et al., 2016b) to maintain a source-
target vocabulary of 37,000. We use Transform-
ers (Vaswani et al., 2017) as the model backbone.
We use En-Fr to perform comprehensive analy-
sis where we use four model setups: extra-large,
large, base and tiny. The model statistics are shown
in Table 1. It is worth noting that the large and
base models are identical to models in Vaswani
et al. (2017). We train different models with 16
V100 GPUs with 32G memories. We follow pro-
tocols in Vaswani et al. (2017). Adam (Kingma
and Ba, 2014) is used for all models with 31 =
0.9, B2 =0.98 and ¢ = 107°. A dropout rate of
0.1 is applied to all layers across all models, and
the strategy of label smoothing (Szegedy et al.,
2016) is used with smoothing value set to 0.1.>
We use beam search with a beam size of 20, with
no penalty on length. We report BLEU scores
based on multi-bleu.perl of single models
(no ensemble), average floating-point operations
(FLOPs), and average practical speedup.

ZSince our goal is to test the performances of different prun-
ing techniques in the vanilla supervised setup, no advanced
MT techniques such as backtranslation (Sennrich et al., 2016a;
Edunov et al., 2018), self-learning (He et al., 2020; Sun et al.,
2020), data noising (Xie et al., 2017; Bengio et al., 2015),
nearest neighbor search (Khandelwal et al., 2020; Meng et al.,
2021; Zheng et al., 2021) are used.
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Model dmodel dir L H #Params
Extra-Large 2,048 8,192 8 16 1.1B
Large 1,024 4,09 6 16 275M
Base 512 2,048 6 8 93M
Tiny 256 1,024 6 8 35M

Table 1: Model statistics. dmogel, dif, L and H respec-
tively denote input/output dimensionality, inner-layer
dimensionality, # layers and # heads.

For discriminative tasks, we followed the current
trend of LM pretraining (Devlin et al., 2018; Liu
et al., 2019a; Jiao et al., 2019; Radford et al., 2019;
Lan et al., 2019; Brown et al., 2020; Clark et al.,
2020; Sun et al., 2021). We test different prun-
ing models on the tasks of question answering
(Rajpurkar et al., 2016, 2018), natural language
inference (Bowman et al., 2015; Williams et al.,
2017) and text classification (Socher et al., 2013;
Tang et al., 2014; Howard and Ruder, 2018; Chai
et al., 2020; Lin et al., 2021). We use BERT (De-
vlin et al., 2018) as the backbone, and fine-tune
BERT on different datasets. Adam (Kingma and
Ba, 2014) is used for all models, with batch size,
learning rate and the number of epochs treated as
hyper-parameters to be tuned on the dev set. We
compare the proposed strategy with the following
weight based pruning models:

* Magnitude Pruning (Han et al., 2015b): re-
moving weights based on their absolute
weight values.

* Movement Pruning (Sanh et al., 2020): remov-
ing weights based on the first-order derivative.

* L0 Pruning (Louizos et al., 2017): using the
L loss to regularize the number of non-zero
weights.

4.1 MT Results

MT results are shown in Tables 2 and 3. Obser-
vations can be summarized as follows: (1) When
comparing with movement and magnitude prun-
ing, at the same levels of sparsity, the proposed MI
method yields greater speedup. This is due to the
fact that using MI, the weight matrix W can be
squeezed avoiding irregular memory accesses. For
magnitude and movement pruning: though W is
sparse, pruned dimensions in W are scattered and
irregular memory accesses are inevitable.

(2) The MI model yields not only speedup but also
performance boosts: we find that the proposed
MI pruning consistently works better, both in the
low-sparsity and high-sparsity situations. This is

Model BLEU FLOPs Speedup # Params
Original Models
Extra-Large 43.3 100% 1 100%
Large 41.8 24 % x 2.7 25%
Base 379 42% X 8.6 8.5%
Tiny 324 2.3% x 13.7 3.2%
Without Retraining: Pruning Extra-Large
MI (to large) 424 22% X 2.6 25%
MI (to base) 39.6 4.4% x 8.8 8.5%
MI (to tiny) 349 21% x 13.6 3.2%
"Magnitude (to large) 417 23% X217 25%
Magnitude (to base) 37.3 4.1% x 4.5 8.5%
Magnitude (to tiny) 323 2.3% x 7.5 3.2%
"Movement (to large) 420 24% x19 25%
Movement (to base) 38.2 4.6% x 4.7 8.5%
Movement (to tiny) 33.6 2.6% X 6.1 3.2%
"LO(tolarge)y 420 25% X217 25%
LO (to base) 38.0 3.9% x 3.9 8.5%
LO (to tiny) 33.8 2.3% x 5.8 3.2%
Without Retraining: Pruning Large
MI (to base) 38.6 41% x 8.5 8.5%
MI (to tiny) 33.6 2.4% x 14.1 3.2%
Magnitude (to base) 383 5% x40 85%
Magnitude (to tiny) 32.7 2.6% % 6.5 3.2%
"Movement (to base) 381 48% X 47 85%
Movement (to tiny) 333 2.4% x 8.3 3.2%
"LO(tobase) 3827 44% X460 8.5%
LO (to tiny) 32.8 2.9% %X 6.9 3.2%
Without Retraining: Pruning Base
MI (to tiny) 33.1 2.3% x 13.5 3.2%
Magnitude (to tiny) 32.5 2.5% x 8.4 3.2%
Movement (to tiny) 32.8 2.7% x 8.7 3.2%
LO (to tiny) 327 2.4% X 6.9 3.2%

Retraining Pruned Dimensions

MI+Extra-Large 43.9 (+0.6) 100% 1 100%
MI+Large 423 (+0.5) 24% x 2.7 25%
MI+Base 38.4 (+0.5) 42% x 8.6 8.5%

Table 2: Test results for WMT14 En-Fr. “MI” stands
for the propose MI based pruning method, “Magnitude”
stands for magnitude pruning, “Movement” stands for
movement pruning and “L0” stands for LO pruning. to
X means pruning the original model to X, and X is
thus smaller than the original model. 60% dimensions
are pruned and then retrained for the retraining setup.

because the mutual information strategy provides
a more global feature (dimension) selection strat-
egy based on the output label, rather than focusing
on the local matrix weights in matrix manipula-
tions. Regarding magnitude pruning and movement
pruning, we find that movement pruning underper-
forms magnitude pruning at lower sparsity levels
but works better at higher sparsity levels.

(3) Based on MI, training a big model and then
pruning it to a smaller one outperforms directly
training a smaller model of the same size, e.g.,
pruning extra-large to large yields a BLEU score
of 42.4 for En-Fr, which is +0.6 higher than vanilla
large (41.8). This is also the case with pruning
extra-large to base and tiny, and pruning large to
base and tiny. The explanations are as follows:
a directly trained model contains redundant and
irrelevant dimensions; for the large-training-then-
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Figure 3: Performances of pretrain-prune, finetune-pruneFigure 4: Speedups of different models for pretrain-

and hybrid on SQuAD.

Model BLEU FLOPs Speedup # Params
Original Models
Large 28.4 100 % x 1 100%
Base 273 17.5% x 3.1 34%
Tiny 23.6 9.6% x 5.1 13%
Without Retraining: Pruning Large

MI (to base) 27.9 19.2% x 2.6 34%
MI (to tiny) 25.8 12.4% x 4.9 13%

" Magnitude (to base) 213 242% x 1.8 34%
Magnitude (to tiny) 24.8 14.1% x 2.8 13%

" "Movement (to base) 216 224% x 177 34%
Movement (to tiny) 25.5 13.0% x 3.5 13%

“LO(tobase) 216 219% x 15 34%
LO (to tiny) 25.8 13.6% x 2.7 13%

Retraining Pruned Dimensions

MI+Large 288 (+0.4) 172 % x 3.2 34%
MI+Base 27.9 (+0.6) 9.8% x 5.0 13%

Table 3: Test results for WMT14 En-De.

pruning strategy, the model first learns a larger set
of feature dimensions, and then prunes irrelevant
ones. This makes the model consist of fewer ir-
relevant feature dimensions than the one directly
trained, leading to better performances.

(4) Pruning and then retraining yields consistent
performance boosts over direct training: +0.6 for
extra-large (43.3 vs 43.9), +0.5 for large (41.8 vs
42.3) and +0.5 for base (37.9 vs 38.4) for En-Fr.
This is because direct training introduces redun-
dant and less relevant features; retraining pruned
dimensions can help the model replace less rele-
vant dimensions with relevant ones, obtaining a
state-of-the-art performance of 43.9 BLEU score
for En—Fr translation in setups without back-
translation or external data. Similar phenomenon
are observed for En-De with +0.4 for the large
model, and +0.6 for base models.

prune on MNLI-m, SST-5 and SQuAD.

4.2 BERT Pruning

We carry out experiments on the pretrained model
of BERT-large®>. We select different degrees of
sparsities from 0% to 90% at an interval of 10%.
Model pruning can happen either in the pretraining
stage (pretrain-prune), the fine-tune stage (finetune-
prune), and both (hybrid): For hybrid, pruning
happens at both stages, with the ultimate sparsity
level v being the product of the sparsity level of
two stages, Vpretrain a0d Yfinetune- We compare the
performance of the three strategies on the SQuAD
v1.1, MNLI and and SST-5 in Figure 2 and Figure
3. Generally, pretrain-prune works consistently
better than finetune-prune with the same level of
sparsity. This is because the training objective at
the pretraining stage is a more general one than
that at the finetuning stage, with more training data
points and categories. Pruning at the finetuning
stage is more prone to overfitting, leading to infe-
rior performances. The hybrid method outperforms
the pretrain-prune strategy if the sparsity levels
at two stages are carefully calibrated. This is be-
cause the hybrid model can progressively prune
less relevant dimensions in pretraining and then
less relevant dimensions in task-specific finetuning,
leading to better final performances.

For both pretrain-prune and finetune-prune, we
find that the proposed MI method offers greater
speedup and better performances at the same spar-
sity levels. Similar phenomenon are found for

3which contains 24 layers, 1,024 hidden units per layer, 16
heads per layer and 340M parameters in total

3085



87.5- ) )
—— Varying a with 3=0

85.0- / Varying witha =0.4
82.5-
80.0-
—
b
77.5-
75.0-
72.5-
70.0- ., . . . .
0.0 0.5 1.0 1.5 2.0

value

Figure 5: The effect of « and f.

# Iterations 1 2 3 4
Fl 85.1 86.5 86.7 86.8

Table 4: The effect of iterative pruning.

MNLI and SST-5. Figure 4 shows the speedup
gains for different models for the pretrain-prune
setup. With the same sparsity, random pruning and
the proposed MI based pruning lead to the largest
speedup, followed by magnitude pruning, move-
ment pruning and Lg pruning. This observation
validates that condensed weights serve as an effec-
tive remedy for irregular memory access.

5 Ablation Studies

In this section, we conduct ablation studies to get a
better understanding of model behaviors. We use
SQuAD for analysis, where BERT-large is used.

5.1 The Effect of o and

The value of o and 5 in Eq.(9) controls the tradeoff
between selecting relevant dimensions and remov-
ing redundant dimensions. Based on the pretrain-
prune strategy with sparsity level of 20%, we can
see from Figure 5 that the model works best when
the value of « is set to 0.4, and then deteriorates as
« increases when fixing 5 = 0. With fixed value of
o = 0.4, we find that the influence from S is less
significant. This shows that given the conditional
independency assumption, the improvement from
the class-conditionally independent assumption is
marginal. We thus suggest omitting this part if
computing resources are limited.

5.2 The Effect of Iterative Pruning

Table 4 presents results with different number of
pruning iterations, where we use linear interpola-
tion to obtain sparsity levels for different iterations.
As can be seen, though more pruning iterations lead
to better performances, the boost becomes marginal
when iteration number exceeds 2.

Yeinewne 1.0 0.8 0.6 04 02
Fi 86.5 874 863 851 840

Table 5: The effect of Ypretrain and Yfinetune-

Method Inverted Pyramid  Vanilla  Pyramid
FI 87.9 87.4 87.2

Table 6: Layers with different sparsity values

5.3 The Effect of ypretrain and Yfinetune

Fixing the overall sparsity of 0.2, we explore the
effect of “pretrain and Yfinetune- When Yinetune = 1,
it means we only perform pruning at the pretrain-
ing stage; When Yapewne = 0.2, it means we only
perform pruning at the finetuning stage. As can
be seen from Table 5, performance peaks when
Yfinetune 18 slightly lower than 1 (Vanetune = 0.8,
Ypretrain = 0.25), and then declines as we increase
Yainetune- Lhis further validates that the final perfor-
mance benefits more when most pruning happens
at the pretraining stage.

5.4 Layers with Different Sparsity Values

We explore the situation where given fixed overall
sparsity value, different layers can have different
levels of sparsity. We additionally consider two
setups, pyramid, where lower layers are denser and
thus less sparse than upper layers, and inverted
pyramid where upper layers are less sparse than
lower layers. For pyramid, with the overall sparsity
of 0.2, the lowest word embedding starts with a
sparsity level of 0.1, with the sparsity of all layers
forms an arithmetic sequence. inverted pyramid has
the same overall sparsity value of 0.2, with the low-
est word embedding starts with a sparsity level of
0.3. Results are shown in Table 6. We can observe
that inverted pyramid outperforms vanilla, which
outperforms pyramid. These results illustrate that
to obtain better performances in model pruning
with fixed overall sparsity, upper layers should be
less sparse than lower layers. This is because up-
per layers contain more high-level and dense infor-
mation about the input. Therefore, pruning upper
layers does more harm to the model. Lower layers
contain more noise, and thus hurt the model less
when get pruned.

6 Conclusion and Future Work

In this paper, we propose MI based methods for
model pruning in NLP. The proposed model avoids
the issue of irregular memory access, leading to
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higher speedup with the same level of sparsity.
Also, the proposed strategy prunes the model in
a top-down fashion based on global training sig-
nals, and thus achieves higher accuracies. In future
work, we should release the strong assumption that
neuron values come from a Gaussian distribution.
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