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Abstract

Conversation disentanglement aims to sepa-
rate intermingled messages into detached ses-
sions, which is a fundamental task in un-
derstanding multi-party conversations. Exist-
ing work on conversation disentanglement re-
lies heavily upon human-annotated datasets,
which are expensive to obtain in practice. In
this work, we explore to train a conversa-
tion disentanglement model without referenc-
ing any human annotations. Our method is
built upon a deep co-training algorithm, which
consists of two neural networks: a message-
pair classifier and a session classifier. The for-
mer is responsible for retrieving local relations
between two messages while the latter cate-
gorizes a message to a session by capturing
context-aware information. Both networks are
initialized respectively with pseudo data built
from an unannotated corpus. During the deep
co-training process, we use the session classi-
fier as a reinforcement learning component to
learn a session assigning policy by maximiz-
ing the local rewards given by the message-
pair classifier. For the message-pair classi-
fier, we enrich its training data by retrieving
message pairs with high confidence from the
disentangled sessions predicted by the session
classifier. Experimental results on the large
Movie Dialogue Dataset demonstrate that our
proposed approach achieves competitive per-
formance compared to the previous supervised
methods. Further experiments show that the
predicted disentangled conversations can pro-
mote the performance on the downstream task
of multi-party response selection.

1 Introduction

With the continuing growth of Internet and social
media, online group chat channels, e.g., Slack1 and
Whatsapp2, among many others, have become in-
creasingly popular and played a significant social

1https://slack.com/
2https://www.whatsapp.com/

Anyone finished the assignment?

Not yet. Working on it

When is the due date?

Hmm… tonight?

I’d like to get a new keyboard. Any suggestions?

The one I have is pretty good.
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Figure 1: An example of conversation disentanglement
with two sessions occurring at the same time.

and economic role. Along with the convenience of
instant communication brought by these applica-
tions, the inherent property that multiple topics are
often discussed in one channel hinders an efficient
access to the conversational content. In the exam-
ple shown in Figure 1, people or intelligent systems
have to selectively read the messages related to the
topics they are interested in from hundreds of mes-
sages in the chat channel.

With the goal of automatically grouping mes-
sages with the same topic into one session, conver-
sation disentanglement has proved to be a prereq-
uisite for understanding multi-party conversations
and solving the corresponding downstream tasks
such as response selection (Elsner and Charniak,
2008; Lowe et al., 2017; Jia et al., 2020; Wang et al.,
2020). Previous research on conversation disentan-
glement can be roughly divided into two categories:
(1) two-step methods, and (2) end-to-end meth-
ods. In the two-step methods (Elsner and Charniak,
2011, 2008; Jiang et al., 2018), a model first re-
trieves the “local” relations between two messages
by utilizing either feature engineering approaches
or deep learning methods, and then a clustering
algorithm is employed to divide an entire conver-
sation into separate sessions based on the message
pair relations. In contrast, end-to-end methods (Tan
et al., 2019; Yu and Joty, 2020) capture the “global”
information contained in the context of detached
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Figure 2: Illustration of our proposed co-training
framework.

sessions and calculate the matching degree between
a session and a message in an end-to-end manner.
Though end-to-end methods have been proved to be
more flexible and can achieve better performance
(Liu et al., 2020), these two types of methods are
interconnected and complementary since a global
optimal clustering solution on the local relations
will produce the optimal disentanglement scheme
(McCallum and Wellner, 2004).

Although the previous research efforts have
achieved an impressive progress on conversation
disentanglement, they all highly rely on human-
annotated corpora, which are expensive and scarce
to obtain in practice (Kummerfeld et al., 2019). The
heavy dependence on human annotations limits the
extensions of related study on conversation disen-
tanglement as well as the applications on down-
stream tasks, given a wide variety of occasions
where multi-party conversations can happen. In
this work, we explore the possibility to train an end-
to-end conversation disentanglement model with-
out referencing any human annotations and propose
a completely unsupervised disentanglement model.

Our method builds upon the co-training ap-
proach (Blum and Mitchell, 1998; Nigam and
Ghani, 2000) but extends it to a deep learning
framework. By viewing the disentanglement task
from the local perspective and the global perspec-
tive, our method consists of a message-pair classi-
fier and a session classifier. The message-pair clas-
sifier aims to retrieve the message pair relations,
which is of a similar purpose as the model used in
a two-step method that retrieves the local relations
between two messages. The session classifier is a
global context-aware model that can directly cat-
egorize a message into a session in an end-to-end
fashion. The two classifiers view the task of con-
versation disentanglement from the perspectives of
a local two-step method and an global end-to-end

model, which will be separately initialized with
pseudo data built from the unannotated corpus and
updated with each other during co-training. More
concretely, during the co-training procedure, we
adopt reinforcement learning to learn a session as-
signing policy for the session classifier by maximiz-
ing the accumulated rewards between a message
and a session which are given by the message-pair
classifier. After updating the parameters of the
session classifier, a new set of data with high confi-
dence will be retrieved from the predicted disentan-
glement results of the session classifier and used for
updating the message-pair classifier. As shown in
Figure 2, the above process is iteratively performed
by updating one classifier with the other until the
performance of session classifier stops increasing.

We conduct experiments on the large public
Movie Dialogue Dataset (Liu et al., 2020). Ex-
perimental results demonstrate that our proposed
method outperforms strong baselines based on
BERT (Devlin et al., 2019) in two-step settings, and
achieves competitive results compared to those of
the state-of-the-art supervised end-to-end methods.
Moreover, we apply the disentangled conversations
predicted by our method to the downstream task of
multi-party response selection and get significant
improvements compared to a baseline system.3 In
summary, our main contributions are three-fold:

• To the best of our knowledge, this is the first
work to investigate unsupervised conversation
disentanglement with deep neural models.

• We propose a novel approach based on co-
training which can perform unsupervised con-
versation disentanglement in an end-to-end
fashion.

• We show that our method can achieve perfor-
mance competitive with supervised methods
on the large public Movie Dialogue Dataset.
Further experiments show that our method
can be easily adapted to downstream tasks
and achieve significant improvements.

2 Related Work

Conversation Disentanglement Conversation
disentanglement has long been regarded as a fun-
damental task for understanding multi-party con-
versations (Elsner and Charniak, 2008, 2010) and

3Code will be publicly available at https:
//github.com/LayneIns/Unsupervised_
dialo_disentanglement

https://github.com/LayneIns/Unsupervised_dialo_disentanglement
https://github.com/LayneIns/Unsupervised_dialo_disentanglement
https://github.com/LayneIns/Unsupervised_dialo_disentanglement
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can be combined with downstream tasks to boost
their performance (Jia et al., 2020; Wang et al.,
2020). Previous methods on conversation disen-
tanglement are mostly performed in a supervised
fashion, which can be classified as two categories:
(1) two-step approaches and (2) end-to-end meth-
ods. The two-step methods (Elsner and Charniak,
2008, 2010, 2011; Chen et al., 2017; Jiang et al.,
2018; Kummerfeld et al., 2019) firstly retrieve the
relations between two messages, e.g., “reply-to” re-
lations (Guo et al., 2018; Zhu et al., 2020), and
then adopt a clustering algorithm to construct in-
dividual sessions. The end-to-end models (Tan
et al., 2019; Liu et al., 2020; Yu and Joty, 2020), in-
stead, perform the disentanglement operation in an
end-to-end manner, where the context information
of detached sessions will be exploited to classify
a message to a session. End-to-end models tend
to achieve better performance than two-step mod-
els, but both often need large annotated data to
get fully trained (Liu et al., 2020), which is ex-
pensive to obtain and thus encourages the demand
on unsupervised algorithms. A few preliminary
studies perform unsupervised thread detection in
email systems based on two-step methods (Wu and
Oard, 2005; Erera and Carmel, 2008; Domeniconi
et al., 2016), but these methods use handcrafted fea-
tures which cannot be extended to various datasets.
Compared with previous works, our method can
conduct end-to-end conversation disentanglement
in a completely unsupervised fashion, which can
be easily adapted to downstream tasks and used in
a wide variety of applications.

Dialogue Structure Learning One problem that
may be related to conversation disentanglement
is dialogue structure learning (Zhai and Williams,
2014; Shi et al., 2019). Both are related to un-
derstanding multi-party conversation structures but
they are different tasks. Dialogue structure learn-
ing aims to discover latent dialogue topics and con-
struct an implicit utterance dependency tree to rep-
resent a multi-party dialogue’s turn taking (Qiu
et al., 2020), while the goal of conversation disen-
tanglement is to learn an explicit dividing scheme
that separates intermingled messages into sessions.

Co-training Co-training (Blum and Mitchell,
1998; Nigam and Ghani, 2000) has been widely
used as a low-resource learning algorithm in nat-
ural language processing (Wu et al., 2018; Chen
et al., 2018), which assumes that the data has two

complementary views and utilizes two models to
iteratively provide pseudo training signals to each
other. Our method consists of a message-pair classi-
fier and a session classifier, which respectively view
the unannotated dataset from the perspective of the
local relations between two messages and that of
the context-aware relations between a session and
a message. To the best of our knowledge, this is the
first work that utilizes co-training in the research
of conversation disentanglement. We will extend
the co-training idea to the deep learning paradigm
to construct novel models for disentanglement.

3 Formulation and Notations

Given a conversation C = [m1,m2, · · · ,mN ]
where mi is a message with speaker Si, it
contains K sessions {T k}Kk=1 where T k =
[mk

1, · · · ,mk
|Tk|] and K are unknown to the model.

Our goal is to learn a dividing scheme that indi-
cates which session a message mi belongs to. We
solve this task in an end-to-end fashion where we
formulate unsupervised conversation disentangle-
ment as an unsupervised sequence labeling task.
For a given message mi, there exists a session
set T = {T 1, · · · , T z(i)} where z(i) indicates the
number of detached sessions when mi is being pro-
cessed. The model needs to decide if mi belongs
to any session in T. If mi ∈ T k, then mi will be
appended to T k; otherwise a new session T z(i)+1

will be built and initialized by mi, and the new
session will be added to T.

4 Method

In this section, we describe our co-training based
framework in detail, which contains following com-
ponents:

1. A message-pair classifier which can retrieve
the relations between two messages. The rela-
tion scores will be used as rewards for updat-
ing the session classifier during co-training.

2. A session classifier which can perform end-to-
end conversation disentanglement by retriev-
ing the relations between a message and a
session. The predicted results will be used to
build new pseudo data to train the message-
pair classifier during co-training.

3. A co-training algorithm involving the
message-pair classifier and the session
classifier. Two classifiers will help to update
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each other until the performance of the
session classifier stops growing.

We will introduce the details of the three compo-
nents in following sections.

4.1 Message-pair Classifier

The message-pair classifier is a binary classifier
which we denote as Fm in the remainder of this
paper. Due to the lack of annotated data in unsuper-
vised settings, the goal of Fm is to predict if two
messages are in the same session; i.e., whether they
talk about the same topic, which is different from
most previous work that predicts the “reply-to” re-
lation. In our experiment, we adopt a pretrained
BERT (Devlin et al., 2019) in the base version as
our message encoder.

4.1.1 Model
Given two messages mi and mj , we separately ob-
tain the sentence embeddings of the two messages:

vmi = BERT(mi) (1)

vmj = BERT(mj) (2)

The probability of mi and mj belonging to the
same session is computed with the dot product
between vmi and vmj :

pm = Sigmoid(vmi · vmj ) (3)

We abbreviate Eq. 1–3 as:

pm(mi,mj) = Fm(mi,mj) (4)

Fm is trained to minimize the cross-entropy loss.
The predicted probabilities between message pairs
will be used as rewards during the co-training pro-
cess to update the session classifier.

4.1.2 Initialization
One important step in standard co-training algo-
rithm is to initialize the classifiers with a small
amount of annotated data. Since our dataset is com-
pletely unlabeled, we create a pseudo dataset to
initialize the message-pair classifier. The assump-
tion we use in our experiments is that one speaker
mostly participates in only one session4.

4We verify this assumption in two natural multi-party
conversation datasets: Reddit dataset (Tan et al., 2019) and
Ubuntu IRC dataset (Kummerfeld et al., 2019). Statistics show
that only 6% of speakers will join multiple sessions on the
Reddit dataset and 20% on the IRC dataset.

To construct the pseudo data Dm, we use the
message pairs from the same speaker in one con-
versation as the positive cases, while randomly sam-
pling messages from different conversations as the
negative pairs. In this way we obtain a retrieved
dataset Dret

m containing 937K positive cases and
2,184K negative cases. However, we observe that
the positive cases constructed from the above pro-
cess are very noisy because: (1) there are still some
speakers who will appear in multiple sessions, and
(2) even message pairs from the same speaker in
the same session can be very semantically differ-
ent since they are not contiguous messages. These
noisy training cases will result in low confidences
for the predicted probabilities of Fm, which will be
used later in co-training. Thus we randomly select
some messages from the unlabeled dataset and use
a pretrained DialoGPT (Zhang et al., 2020) to gen-
erate direct responses in order to form new positive
cases, which we denote as Dgen

m . In this way, we
finally obtain the pseudo data Dm = Dret

m ∪D
gen
m ,

which contains 1,212K positive cases and 2,184K
negative cases, to initialize Fm.

4.1.3 Two-step Disentanglement
After being trained on the pseudo data Dm, the
message-pair classifier Fm can be exploited as for
two-step conversation disentanglement. Given an
unlabeled conversation as C = [m1,m2, · · · ,mN ],
we first use Fm to predict the probability between
each message pair in C. Then we perform the
greedy search algorithm widely used in the previ-
ous works (Elsner and Charniak, 2008) to segment
C into detached sessions.

4.2 Session Classifier

The session classifier, denoted as Ft, aims to calcu-
late the relations between a session and a message
that indicates if the message belongs to the session
or not. Given the current context of a session as
T = [m1, · · · ,m|T |] and a message m, the goal of
Ft is to decide if m can be appended to T or not.

4.2.1 Model
For each message mj ∈ T , we obtain its sentence
embedding vmj by a Bidirectional LSTM network
(Hochreiter and Schmidhuber, 1997) and a multi-
layer perceptron (MLP):

−→v mj ,
←−v mj = BiLSTM(mj) (5)

vmj = MLP([−→v mj ,
←−v mj ]) (6)
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After obtaining sentence embeddings of all the mes-
sages in T as [vm1 , · · · vm|T | ], we adopt a self at-
tention mechanism (Yang et al., 2016) to calculate
the session embedding vT by aggregating the infor-
mation from different messages. Specifically,

umj = tanh(w · vmj + b) (7)

αmj =
exp(umj )∑
j exp(umj )

(8)

vT =
∑
j

αmjvmj (9)

where w and b are trainable parameters.
For the message m, we use the same Bidirec-

tional LSTM network and MLP as in Equation 5
and 6 to obtain its sentence embedding vm. Then
the probability of m belonging to T is calculated
with the dot product between vm and vT :

pt = Sigmoid(vT · vm) (10)

We abbreviate the above process as:

pt(T,m) = Ft(vT , vm) (11)

Ft is trained to minimize the cross-entropy loss.

4.2.2 Initialization
Similar to the message-pair classifier, we build a
pseudo dataset Dt to initialize the session classifier
Ft to make it be able to decide if a message is se-
mantically consistent with a sequence of messages.
We construct Dt based on the same assumption that
one speaker is involved in just one session for most
of the time.

Given a conversation C = [m1,m2, · · · ,mN ]
from the unlabeled corpus, we retrieve the mes-
sages from a speaker S as CS = [mS1 ,mS2 , · · · ]
where CS ⊂ C. Based on the assumption, the mes-
sages in CS are in the same session, so the message
mSi ∈ CS where i 6= 1 and its preceding context
can be regarded as the positive input of Ft. Con-
sider a positive case with mS2 as the message, the
message m and session T are defined as follows:

m := mS2 (12)

T := [m1, · · · ,mS2−1] (13)

The reason is that mS1 ∈ [m1, · · · ,mS2−1], so
[m1, · · · ,mS2−1] and mS2 should be semantically
consistent according to the assumption.

For the negative instances of Dt, we randomly
sample a conversation as T from the corpus, and a
message from another conversation as m. As such
we obtain a pseudo dataset Dt consisting of 460K
positive instances and 1,158K negative cases.

Algorithm 1 An end-to-end method for conversa-
tion disentanglement with the session classifier
Input: An unlabeled conversation C, the initialized
session classifier Ft
Output: A set of sessions T

1: Let T = ∅
2: for mi ∈ C do
3: if T is empty then
4: Let T z(i)+1 = {mi}
5: T = T ∪ {T z(i)+1}
6: else
7: Let Ci = [m1, · · · ,mi−1]
8: pt(Ci,mi) = Ft(vCi , vmi)
9: if pt(Ci,mi) < 0.5 then

10: Let T z(i)+1 = {mi}
11: T = T ∪ {T z(i)+1}
12: else
13: Let Pm(i) = {}
14: for T k ∈ T do
15: pt(T

k,mi) = Ft(vTk , vmi)
16: Add pt(T k,mi) to Pm(i)
17: end for
18: T kmax = argmaxPm(i)
19: T kmax = T kmax ∪ {mi}
20: end if
21: end if
22: end for
Return T

4.2.3 End-to-end Disentanglement
Note that after initialized with the pseudo data Dt,
the session classifier Ft can be directly applied
to perform end-to-end conversation disentangle-
ment. Suppose message mi is being processed
where mi ∈ C and C = [m1,m2, · · · ,mN ],
we first calculate the probability of mi belong-
ing to its preceding context Ci = [m1, · · · ,mi−1],
which we denote as pt(Ci,mi) = Ft(vCi , vmi). If
pt(Ci,mi) < 0.5, mi will be used to initialize a
new session T z(i)+1 where z is a function indi-
cating the number of disentangled sessions in Ci;
otherwise mi will be used to calculate the match-
ing probability with each session in T, and then
be classified to the session which has the great-
est matching probability. The overall end-to-end
algorithm is shown in Algorithm 1.

4.3 Co-Training
The confidence of Fm and Ft is not high because
they are initialized with noisy pseudo data. We
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propose to adapt the idea of co-training to the dis-
entanglement task, which is leveraged to iteratively
update the two classifiers with the help of each
other. The session classifier will utilize the local
probability provided by the the message-pair classi-
fier with reinforcement learning, while more train-
ing data, built from the outcomes of the session
classifier, will be fed to the message-pair classifier.
We will introduce the details in this subsection.

4.3.1 Updating Session Classifier
Since no labeled data is provided to train Ft, we
formulate the disentanglement task as a determinis-
tic Markov Decision Process and adopt the Policy
Gradient algorithm (Sutton et al., 1999) for the op-
timization. For each co-training iteration, Ft will
be initialized with the pseudo data Dt and then
updated by reinforcement learning.

State The state si of the ith disentanglement step
consists of three components (mi,Ci,T), where
mi is the ith message of C; Ci = [m1, · · · ,mi−1]
is the preceding context of mi; T is the detached
session set which contains z(i) sessions.

Action The action space of the ith disentangle-
ment step consists of two types of actions:

1. Classifying mi to a new session, which we de-
note as anewi ∈ {0, 1}. If anewi is 0,mi will be
used to initialize a new session T z(i)+1; oth-
erwise mi will be categorized into an existing
session.

2. Categorizing mi to an existing session in T,
which we denote as ati ∈ {1, · · · , z(i)}.

Policy network We parameterize the action with
a policy network π which is in a hierarchical struc-
ture. The first layer policy πnew(anewi |si; θ1) is to
decide if a message mi belongs to Ci, and the first
layer action anewi ∈ {0, 1} will be sampled:

πnew(anewi |si; θ1) = pt(Ci,mi) (14)

anewi ∼ πnew(anewi |si; θ1) (15)

If anewi is 1, which means mi belongs to a session
in T, the second layer policy πt(ati|si; θ2) will de-
cide which of existing sessions that mi should be
categorized to:

πt(ati|si; θ2) = {pt(T k,mi)|T k ∈ T} (16)

ati ∼ πt(ati|si; θ2) (17)

where θ1 and θ2 are both parameters.

Reward The rewards are provided by the
message-pair classifier Fm. For anewi = 0, we
want mi to be different from all the messages in
Ci. Thus it is defined by the negative average of
the probabilities between mi and all the messages
in Ci. However, for anewi = 1 and ati = k, we
want mi to be similar to all the messages in T k,
and thus the reward is defined as the average of the
probabilities between mi and all the messages in
T k:

rmi =


−Avg({Fm(mi,mj)|mj ∈ Ci}),

anewi = 0

Avg({Fm(mi,mj)|mj ∈ T k}), ati = k

(18)

An issue associated with rmi is that its confi-
dence might be low because Fm is trained on noisy
pseudo data. We hence design another speaker re-
ward rSi based on our assumptions. For a message
mi initializing a new session T z(i)+1, its speaker
Si should not appear in Ci; while for a message
mi categorized to an existing session T k, it should
receive a positive reward if its speaker Si appears
in T k:

rSi =


−1, anewi = 0 and Si ∈ Ci

1, ati = k and Si ∈ T k

0, otherwise

(19)

The final reward ri for an action is calculated as:

ri = γrmi + (1− γ)rSi (20)

where γ is a parameter ranged in [0, 1] that bal-
ances rmi and rSi , which we set to 0.6 in experi-
ments. The policy network parameters θ1 and θ2
are learned by optimizing:

J(θ1, θ2) = E(πnew,πt)[
N∑
i=1

ri] (21)

4.3.2 Updating Message-pair Classifier
As mentioned in Section 4.1.2, the pseudo data
Dm for initializing the message-pair classifier Fm
is noisy. Thus we enrich Dm with new training
instances Dnew

m retrieved from the predicted disen-
tanglement results of Ft.

Given a conversation C, Ft can predict
the disentangled sessions as T = {T k}Kk=1.
Given session T k = [mk

1, · · · ,mk
|Tk|] as an

example, for a message mk
i , we retrieve its
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Method Type Method NMI 1-1 Loc3 Shen-F MSE↓

Two-step
Vanilla BERT 0.0 40.20 49.26 50.50 1.9710
BERT + Dret

m 10.59 45.62 53.4 53.47 1.4750
BERT + Dm 11.13 45.74 53.69 53.64 1.4617

BERT + Dm + CT 11.32 45.89 53.80 53.75 1.4602
*BERT 11.52 45.99 54.04 53.87 1.4636

End-to-end
Session Classifier + Dt 24.96 54.26 60.66 59.16 0.8059

Session Classifier + Dt + CT 29.71 56.38 62.46 60.44 0.6871
*Liu et al. (2020) 35.30 57.31 63.27 64.37 0.5299

Table 1: The results of conversation disentanglement. * means the method is performed in a supervised manner.
“CT” represents co-training. “Vanilla BERT” represents BERT without finetuning. Note that Dret

m ∪Dgen
m = Dm,

where Dret
m is the pairs retrieved from the unannotated corpus and Dgen

m is generated by DialoGPT. ↓ means the
lower the better.

preceding M messages in T k and form M pairs
{(mk

i−M ,m
k
i ), (m

k
i−(M−1),m

k
i ), · · · , (mk

i−1,m
k
i )}

as the new positive pseudo message pairs. In order
to raise the confidence of the newly added data,
we filter out those pairs where the two messages
have less than 2 overlapped tokens after removing
stopwords. For each co-training iteration, Fm is
retrained on the data Dm ∪Dnew

m .

5 Experiments

5.1 Experimental Setup
5.1.1 Dataset
A large corpus is often required for end-to-end
conversation disentanglement. In this work, we
conduct experiments on the publicly available
Movie Dialogue Dataset (Liu et al., 2020) which
is built from online movie scripts. It contains
29,669/2,036/2,010 instances for train/dev/test split
with a total of 827,193 messages, where the ses-
sion number in one instance can be 2, 3 or 4. Since
we make explorations in unsupervised settings, no
labels are used in our training.

5.1.2 Implementation Details
We adopt BERT (Devlin et al., 2019) (the uncased
base version) as the message-pair classifier. For the
session classifier, we set the hidden dimension to
be 300, and the word embeddings are initialized
with 300-d GloVe vectors (Pennington et al., 2014).
For training, we use Adam (Kingma and Ba, 2015)
for optimization; the learning rate is set to be 1e-5
for the message-pair classifier, 1e-4 for initializing
the session classifier, and 1e-5 for updating the
session classifier with reinforcement learning. We

iterate for 3 turns for co-training when the best
performance is achieved on the development set.

5.1.3 Evaluation Metrics
Four clustering metrics widely used in the previ-
ous work (Elsner and Charniak, 2008; Kummerfeld
et al., 2019; Tan et al., 2019) are adopted: Nor-
malized mutual information (NMI), One-to-One
Overlap (1-1), Loc3 and Shen F score (Shen-F).
More explanations about the metrics can be found
in Appendix A.1.

We also report the mean squared error (MSE) be-
tween the predicted session numbers and the golden
session numbers as previous work (Liu et al., 2020).
This metric can measure whether the model can dis-
entangle a given dialogue to the correct number of
sessions.

5.2 Results

5.2.1 Disentanglement Performance
Table 1 shows the results of unsupervised conver-
sation disentanglement of different methods. We
can observe that: (1) for two-step methods, BERT
has a very poor performance without finetuning,
while after finetuned on our pseudo dataset, its
performance gets improved with a relatively large
margin. (2) Utilizing the pseudo pairs generated
by a pretrained DialoGPT can further improve the
performance of BERT based on Dret

m . We consider
this is because the messages from one speaker are
usually not contiguous in a conversation, while
DialoGPT can directly produce a response to a
message, which is beneficial to BERT on captur-
ing the differences of two messages. (3) During
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Iteration NMI 1-1 Loc3 Shen-F F1
Base 24.96 54.26 60.66 59.16 68.26

1 29.80 56.24 62.39 60.38 68.44
2 29.87 56.33 62.40 60.41 68.47
3 29.71 56.38 62.46 60.44 68.48

Table 2: The performance of the session classifier and
the message-pair classifier in each co-training iteration.
Columns NMI, 1-1, Loc3 and Shen-F are for session
classifier and Column F1 is for the message-pair classi-
fier. “Base” represents session classifier trained on Dt

and message-pair classifier finetuned on Dm.

the co-training process, the pseudo pairs retrieved
from the predictions of the session classifier can
help BERT to achieve a performance close to that
of a supervised BERT, which demonstrates the ef-
fectiveness of our proposed co-training framework.
(4) BERT finetuned with golden message pairs just
has a marginal performance advantage compared
to the pseudo data Dm. This is caused by the weak-
ness of two-step methods in which the clustering
algorithm is a performance bottleneck (Liu et al.,
2020).

In general, end-to-end methods perform much
better than two-steps methods as shown in the ta-
ble, which is in accordance with the conclusions
in previous works under supervised settings (Yu
and Joty, 2020). The session classifier trained on
the pseudo data Dt can achieve a Shen F score of
59.61, which is +5.29 improvement compared to
the supervised BERT in two-step settings. This
proves that the model structure and the approach
to building Dt are effective for the task of unsuper-
vised conversation disentanglement. Meanwhile,
our proposed co-training framework can further
improve the performance of the session classifier
and achieve competitive results with the current
state-of-the-art supervised method. With further
updating during the co-training process, the ses-
sion classifier raises the NMI score from 24.96 to
29.72 and 1-1 from 54.26 to 56.38. Such a perfor-
mance gain proves that our co-training framework
is an important component in handling unsuper-
vised conversation disentanglement.

Moreover, as we can see in the table, two-step
methods have a high MSE on the predicted ses-
sion numbers, but with the pseudo data Dm, BERT
can achieve performance which is much better than
that without finetuning and even comparable with
that finetuned on the golden pairs. End-to-end ses-

Type Hits@1 Hits@2 Hits@5 MRR
None 12.98 23.0 52.81 31.87
Ours 14.50 24.58 54.81 33.29
Gold 17.91 29.97 59.62 37.01

Table 3: The performance on multi-party response se-
lection with disentangled conversations. The first col-
umn respective stands for no disentanglement, the dis-
entangled conversations predicted by our method and
the golden disentangled conversations.

sion classifier achieves a significant improvement
on the MSE by reducing it from 1.4602 to 0.8059,
while our proposed co-training framework further
improves it to 0.6871, which is close to the perfor-
mance of the supervised model. It demonstrates
that the co-training method can help the session
classifier to better understand the semantics in the
conversation and thus to more accurately disentan-
gle the conversation into sessions.

5.2.2 Analysis of Co-training
In this section we analyze the iteration process
of co-training. Table 2 shows the performance of
session classifier in different iterations. We also in-
clude in the last column of Table 2 the performance
of the message-pair classifier on the task of pair
relation prediction.

As we can see, the model performance is im-
proved iteratively as the iteration increases. For the
first iteration, the reward rmi is received from the
base message-pair classifier, of which the F1 score
on relation prediction is 68.26. After the first iter-
ation, new pseudo pairs will be retrieved from the
disentanglement results and used to improve the
performance of the message-pair classifier to 68.44.
Thus better reward rmi will be provided to update
the session classifier. As shown in the table, with
such a co-training procedure, performance of both
the session classifier and the message-pair classifier
are significantly enhanced.

5.2.3 Performance on Response Selection
Conversation disentanglement is a prerequisite for
understanding multi-party conversations. In this
section we apply our predicted sessions to the
downstream task: multi-party response selection.

We create a response selection dataset based
on the Movie Dialogue Dataset. We adopt a
LSTM-based network to encode the conversa-
tions/sessions, and use attention mechanism to ag-
gregate the information from different sessions as
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in Jia et al. (2020). More details of the model and
implementation can be found in Appendix A.2.

The results are shown in Table 3. Note that the
three experiments are performed on the model with
the same number of parameters. We can see that
with the disentangled conversations predicted by
our method, there is a significant performance gain
comparing with the baseline model. Though golden
disentanglement can bring the best performance,
the annotations are usually expensive to acquire.
With our method, a disentanglement scheme can
be obtained for better understanding multi-party
conversations with no annotation cost.

6 Conclusion

This is the first work to investigate unsupervised
conversation disentanglement with deep neural
models. We propose a novel approach based on co-
training which consists of a message-pair classifier
and a session classifier. By iteratively updating the
two classifiers with the help of each other, the pro-
posed model attains a performance comparable to
that of the state-of-the-art supervised disentangle-
ment methods. Experiments on downstream tasks
proves that our method can help better understand
multi-party conversations. Our method can be eas-
ily adapted to a different assumption, and also it
can be extended to other low-resourced scenarios
like semi-supervised settings, which we will leave
as our future work.
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A Appendix

A.1 Metric Explanation

We use four metrics in our experiments: Normal-
ized mutual information (NMI), One-to-One Over-
lap (1-1), Loc3 and Shen F score (Shen-F). NMI is
a normalization of the Mutual Information, which
is a method for evaluation of two clusters in the
presence of class labels. 1-1 describes how well
we can extract whole conversations intact. Loc3
counts agreements and disagreements within a con-
text window size 3. Shen calculates the F-score for
each gold-system conversation pair, finds the max
for each gold conversation, and averages weighted
by the size of the gold conversation.

A.2 Multi-party Response Selection

Given a conversation C = [m1, · · · ,mN ] and a
candidate message m, the goal of response selec-
tion is to decide if message m is correct response
to the conversation C.

We obtain the disentanglement scheme of C as
T = {T 1, T 2, · · · , TK}, where session T k =
[m1. · · · ,m|Tk|]. For each session T k, we en-
code each message mk

i within it by a Bidirectional
LSTM network and a multilayer perceptron (MLP):

−→v mk
i
,←−v mk

i
= BiLSTM(mk

i ) (22)

vmk
i
= MLP([−→v mk

i
,←−v mk

i
]) (23)

After obtaining sentence embeddings of all the mes-
sages in T k as [vmk

1
, · · · vmk

|Tk|
], we adopt a self

attention mechanism (Yang et al., 2016) to calcu-
late the session embedding vTk by aggregating the
information from different messages. Specifically,

umk
i
= tanh(w · vmk

i
+ b) (24)

αmk
i
=

exp(umk
i
)∑

i exp(umk
i
)

(25)

vTk =
∑
j

αmk
i
vmk

i
(26)

where w and b are trainable parameters. In this way
we can acquire all the session representation as
{vT 1 , vT 2 , · · · , vTK}. Meanwhile, we obtain the
candidate message representation as vm with the
same LSTM and MLP in Equation 22-23.

We follow Jia et al. (2020) to aggregate the infor-
mation from different sessions with the attention
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Figure 3: The model structure that incorporating disen-
tangled sessions for the task of response selection.

mechanism:

sk = vTk · vm (27)

wk =
exp(sk)∑
k exp(s

k)
(28)

vC =
∑
k

wkvTk (29)

The final matching score between the conversa-
tion and the message is given by:

S = vC · vm (30)

The overall of structure of the method incorporating
the disentangled sessions is shown in Figure 3.

For the vanilla model using conversation C with-
out any disentanglement, we use the LSTM, MLP
and self attention as in Equation 22-26 to obtain its
vector representation v′C. And then the matching
score is calculated by the dot product between v′C
and vm.

The whole model is trained to minimize the
cross-entropy loss of both positive instances and
negative instances.


