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Abstract

For many new application domains for data-
to-text generation, the main obstacle in train-
ing neural models consists of a lack of training
data. While usually large numbers of instances
are available on the data side, often only very
few text samples are available. To address
this problem, we here propose a novel few-
shot approach for this setting. Our approach
automatically augments the data available for
training by (i) generating new text samples
based on replacing specific values by alterna-
tive ones from the same category, (ii) generat-
ing new text samples based on GPT-2, and (iii)
proposing an automatic method for pairing the
new text samples with data samples. As the
text augmentation can introduce noise to the
training data, we use cycle consistency as an
objective, in order to make sure that a given
data sample can be correctly reconstructed af-
ter having been formulated as text (and that
text samples can be reconstructed from data).

On both the E2E and WebNLG benchmarks,
we show that this weakly supervised training
paradigm is able to outperform fully super-
vised seq2seq models with less than 10% an-
notations. By utilizing all annotated data, our
model can boost the performance of a standard
seq2seq model by over 5 BLEU points, estab-
lishing a new state-of-the-art on both datasets.

1 Introduction

Neural data-to-text generation has been the subject
of much recent research. The task aims at trans-
forming source-side structured data into target-side
natural language text (Reiter and Dale, 2000; Barzi-
lay and Lapata, 2005). While neural end-to-end
systems afford the advantage of easy adaptabil-
ity (Lebret et al., 2016; Wiseman et al., 2017), huge
amounts of data-text pairs are still necessary to
perform on par with their rule-based counterparts
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Figure 1: Few-shot scenario: The model is expected to
learn data-to-text generation with few labeled instances (i.e.
table-text pairs). The example is taken from the E2E dataset.

(van der Lee et al., 2018). This makes using neural
systems less appealing: oftentimes, in-domain text
samples are not readily available, and there is a
high cost to collecting in-domain texts which fit
the data samples, and annotating these texts with
the data labels – the cost for collecting this data
might hence even outweigh the efforts of designing
a rule-based system (Gkatzia, 2016). The goal of
this work is to improve the performance of neural
data-to-text models in scenarios where only very
few text samples exist (we assume that these text
samples are paired with corresponding data sam-
ples). We aim to answer how we can make the
most of the scarce annotations, together with large
amounts of unlabelled data, in order to push the
limit of the neural data-to-text models. Figure 1
illustrates the scenario.

To address the limited-data challenge, we pro-
pose a simple yet effective way of augmenting the
text side with the pretrained language model (LM)
GPT-2 (Radford et al., 2019). Unlike other text
augmentation work employed in data-to-text gener-
ation systems (Freitag and Roy, 2018; Agarwal
et al., 2018), our proposal assumes little to no
domain-dependent heuristics. It consists of two
steps: (1) information augmentation by slot-value
replacement and (2) LM augmentation by GPT-2
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generation.
Once we have augmented the set of text samples,

we are essentially in a similar setting as previously
proposed semi-supervised approaches to data-to-
text generation Schmitt and Schütze (2019); Qader
et al. (2019); Su et al. (2020), which assume the
presence of vast amounts of unpaired data and text
instances. These approaches exploit a cycle con-
sistency objective in order to learn a pairing for
the data samples. The cycle consistency objective
tries to make sure that data samples can be recon-
structed correctly from their textual formulations,
and similarly that texts can be reconstructed after
having been parsed into a data representation.

As the automatically generated text samples
from GPT-2 might be very noisy and not pair well
with data samples, we align each augmented text
sample with its most similar unlabeled data sample,
as defined in their encoded vector space. This idea
is inspired by recent work on representation match-
ing in MT (Artetxe and Schwenk, 2019; Ruiter
et al., 2019). To ensure good quality of the training
data, only pairs above a certain similarity threshold
ε are retained as pseudo pairs for training. The
quality of the pseudo pairs will gradually improve
as the encoder improves in the training process. In
return, the learning of the encoder will also be fa-
cilitated with the improved quality of pseudo pairs
as a virtuous cycle.

On two data-to-text benchmarks E2E (Novikova
et al., 2017) and WebNLG (Gardent et al., 2017),
we show that our LM-augmented weakly super-
vised model succeeds on outperforming fully su-
pervised seq2seq model, though utilizing less than
10% of the data annotations. It even outperforms
previous work which additionally has access to all
unpaired text samples. When trained with full data
annotations, it is able to boost the model perfor-
mance by up to 5 BLEU points, establishing a new
state-of-the-art on both datasets.

In summary, this work makes the following con-
tributions:

1. We study the few-shot data-to-text scenario
where, unlike previous works, no further
target-side text is available.

2. We present an effective way of automatically
augmenting target text by resorting to the pre-
trained LM GPT-2.

3. We propose utilizing the augmented text by
a combination of cycle consistency and rep-

resentation matching. The resulting model
outperforms standard seq2seq model with less
than 10% data annotations.

4. The proposed model is shown to be com-
plementary with current seq2seq pretraining
techniques, and can offer orthogonal improve-
ments when combining both.

2 Related Work

Building neural data-to-text systems with few
paired samples (but a large set of unpaired sam-
ples) has been a hot research topic recently. Most
works adopt the idea of cycle consistency (Zhu
et al., 2017), which has been used in many text gen-
eration tasks like machine translation (Artetxe et al.,
2017; Lample et al., 2017) and style transfer (Prab-
humoye et al., 2018; Subramanian et al., 2018).
Schmitt and Schütze (2019); Qader et al. (2019);
Su et al. (2020); Chang et al. (2020, 2021a,b) ap-
plied this idea to the task of data-to-text generation
and reported promising results. Ma et al. (2019)
separate the generation process into few-shot con-
tent selection and surface realization components
and learn them separately. Nonetheless, all of these
approaches assume the existence of huge quantity
of unpaired text samples, which, as we mentioned,
is an unrealistic assumption for the task of data-to-
text generation. Freitag and Roy (2018) proposes
to reconstruct usable sequences re-written from
data with rules for unsupervised data-to-text gener-
ation. Unfortunately, designing these rules require
efforts similar to building a template-based system.
(Budzianowski and Vulić, 2019; Chen et al., 2020;
Peng et al., 2020) tackle the few-shot challenge
by finetuning a pretrained LM to incorporate prior
knowledge from general-domain text or data-text
pairs. We show that our technique is complemen-
tary with them and can offer orthogonal improve-
ments when combining both.

3 Problem Formulation

We represent the data samples as D and the text
samples as T. In our work, we do not restrict the
format of the data. Each d ∈ D can be a set of
key-value pairs, as in Figure 1, or in form of RDF
triples as in Gardent et al. (2017). Each text t ∈
T consists of a sequence of words. In few-shot
settings, we are assumed to have (1) k labeled pairs
(DL, TL) and (2) large quantities of unlabeled data
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DU where |DU | � k > 01. This, we believe,
is a more realistic setting as unlabeled data are
usually abundant and also can be easily fabricated
from predefined schemata. Notably, we assume no
access to outside resources containing in-domain
text. The k annotations are all we know about the
text side.

4 Approach

In this section, we first explain our proposed new
method for text sample augmentation, and then dis-
cuss methods to remove noise and automatically
align the data by elaborating on the ideas of cycle
consistency and representation matching. Finally,
we summarize the approach and present the de-
tailed algorithm.

4.1 Text Augmentation
To mitigate the paucity of the set of text samples
T , we propose a pipeline approach to augment the
text samples by (1) information augmentation and
(2) LM augmentation.

4.1.1 Information Augmentation
We generate additional text samples by performing
slot-value replacements. As many data values are
exactly copied to the text samples, these copied
information can be easily detected and replaced
with other values (for the same slot type) to enrich
the information space of the text samples. This can
be considered as a simplified version of traditional
methods of template mining where key words are
extracted to construct templates (Kondadadi et al.,
2013; Oya et al., 2014). An example is shown
in Figure 2. Each text sample is augmented with
10 more distinct text samples or with all possible
values being replaced.

The slot-value replacement is efficient to imple-
ment. However, it can only detect identical values
and augment text with the same combinatorial pat-
terns as the few-shot annotations. To enrich the
linguistic realizations of text sentences and enable
new combinations of information, we further pro-
pose a LM augmentation approach using GPT-2.

4.1.2 LM Augmentation
GPT-2 (Radford et al., 2019) is a language model
pretrained on the collected WebText. It has demon-
strated remarkable zero-shot multitask adaptabil-
ity by simply feeding the input of each task into

1We force k > 0 as we believe a reasonable generation
system needs a least a few demonstrations of the annotation.

the LM and continuing to generate words. People
have also also shown that GPT-2 is able to improve
classification tasks via in-domain text augmenta-
tion (Papanikolaou and Pierleoni, 2020; Sun et al.,
2020). We use a similar technique by first fine-
tuning GPT-2 in the few-shot annotations (Wolf
et al., 2019), and then applying it to produce syn-
thetic text through an iterative conditional genera-
tion process: With initial seeds being samples of
TL plus new samples from information augmenta-
tion, the LM iteratively conditions on the previous
output sentence to generate in-domain text2. Each
synthetic sentence is pruned if it (1) is shorter than
5 words or (2) contains only special tokens. The
iterative generation is terminated when all tokens
in the initial seeds are covered or if the maximum
of 100 runs is reached. All the unpruned synthetic
text samples are added into the space of T to bene-
fit the learning direction of t→ d′ → t and t̃→ t.
Figure 2 depicts the generation process of GPT-2.

In practice, obtaining clean in-domain text re-
quires extreme efforts of designing heuristic rules.
Nonetheless, the synthetic text from GPT-2 makes
decent sense and can already provide useful signals
to drive the learning process.

4.2 Cycle Consistency

The core idea of encouraging cycle consistency
is that starting from one sample in a domain, the
model first maps it into the other domain, then
maps it back (He et al., 2016). The resulting sample
should be identical to the original sample. Specifi-
cally, let pθ(t|d) be the probability distribution to
map a data sample d to its corresponding text t, and
pφ(d|t) be the probability distribution to map text
back to data. Starting from a data sample d ∈ D,
its objective is:

max
φ

Ed∼p(D) log pφ(d|t′); t′ ∼ pθ(t|d) (1)

which basically ensures the consistency in the direc-
tion of d → t′ → d. Note that only pφ is updated
in this direction and pθ serves only as as an auxil-
iary function to provide pseudo samples t′ from d.
Though it is also possible to update θ at the same
time through tricks like Gumbel-softmax (Jang
et al., 2016) or REINFORCE (Williams, 1992),
we find it did not lead to better performance, yet
complicated the training. Similar observations have

2We adopt the Top-k random sampling setting with k = 2
to encourage diversity and reduce repetition (Radford et al.,
2019)
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Figure 2: Depiction of text augmentation and representation matching. Each text sample first goes through information
augmentation by slot-value replacement, then passed to GPT-2 with iterative conditional generation. The augmented text samples
are paired with the most similar data from the corpus with a threshold cutoff.
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Figure 3: Four directions of cycle consistency. Gradients are
backpropagated only through solid lines.

been made in Lample et al. (2018); He et al. (2020);
Garcia et al. (2020).

Similarly, starting from a text t ∈ T , the objec-
tive is to ensure the consistency in the direction of
t→ d′ → t:3

max
θ

Et∼p(T ) log pθ(t|d′); d′ ∼ pφ(d|t) (2)

Finally, we further add two denoising autoencoding
objectives on both the data and text sides:

max
θ,φ

Ed∼p(D),t∼p(T ) log pφ(d|d̃)pθ(t|t̃) (3)

where d̃ and t̃ are the corrupted versions of d and
t. We use the same noise function as in Lample
et al. (2018) which randomly permutes and pads
a portion of the input. This can encourage the
encoder to learn meaningful latent representations
by reconstructing the input itself (Currey et al.,
2017; Lample et al., 2018).

Figure 3 illustrates all the four directions of the
cycle consistency objective.

3In the MT community, the equivalent step is usually called
back translation (Sennrich et al., 2016; Lample et al., 2018).

We use one shared encoderEnc for both the data
and text sides. Each data sample is flattened into
a sequence by making a list of slot value pairs and
fed into the same encoder. Using the same encoder
for both types of input gives the model an inductive
bias to project similar data/text into surrounding
latent space.

We will show later that encoder sharing is es-
sential for a good performance under the few-shot
scenario. From the shared encoded space, two sep-
arate decoders Decd and Dect are used to decode
d and t respectively4.

4.3 Representation Matching

Apart from training under the cycle consistency, we
further consider matching each synthetic text with
its most similar data sample and treating them as
supplementary training pairs. Compared with the
pseudo d′ obtained from back translation (Eq. 2),
the matched data samples are extracted from the ex-
isting corpus DU and thereby are guaranteed to be
clean. This can provide a much more stable train-
ing signal especially at the initial training stage5.
Previous work has used representation matching
to automatically extract pseudo training pairs for
machine translation (Artetxe and Schwenk, 2019;
Ruiter et al., 2019). Baziotis et al. (2019); Chu and

4The shared encoding has also been shown effective in
other tasks like machine translation (Lample et al., 2018) and
image transition (Zhu et al., 2017). We further tried sharing the
decoder as in Johnson et al. (2017) but find no improvement
(see Table 2).

5In theory, as we can fabricate arbitrary possible data sam-
ples from the predefined schema and add to the corpus, we
can always find one matched data for a text samples.
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Liu (2019) also demonstrate that the representation
similarity between input-output pairs can serve as a
useful regularization for unsupervised text summa-
rization. We adopt a similar idea to create pseudo
pairs based on their cosine similarity in the rep-
resentation space. To summarize, the process of
representation matching can be described as:

max
θ,φ

Et∼p(T ′)1cos(d∗,t)>ε( log pθ(t|d∗)

+ log pφ(d
∗|t));

d∗ = argmax
d∈D

cos(d, t)

(4)

where T ′ is augmented text from the LM and 1

is the indicator function. We also perform mean
pooling over the encoded representations before
matching them. ε is a threshold. Pseudo pairs with
a cosine similarity less than ε will be discarded.
Ideally, as the encoder improves, the pseudo pairs
created by representation matching will make more
sense, which can in turn benefit the training of the
encoder.

4.4 Summary
Apart from the above unsupervised objective, on
the few annotated data-text pairs, we can impose
the supervised objective:

max
θ,φ

Ed,t∼p(DL,TL) log pθ(t|d) + log pφ(d|t) (5)

where (DL, TL) contains the k data annotations.
Putting all together, we summarize it in Algorithm
1. In the training stage, we optimize the objec-
tives of cycle consistency, representation matching
and supervised learning sequentially to maintain a
constant ratio of signals from all sides.

5 Experiment Setting

Data We conduct experiments on the
E2E (Novikova et al., 2017) and WebNLG (Colin
et al., 2016) datasets. E2E is a crowd-sourced
dataset containing 50k instances in the restaurant
domain. The inputs are dialogue acts consisting of
three to eight slot-value pairs. WebNLG contains
25k instances describing entities belonging to
fifteen distinct DBpedia categories. The inputs
are up to seven RDF triples of the form (subject,
relation, object).

Configuration The model is implemented based
on fairseq (Ott et al., 2019). We use 600-
dimensional token embedding and Adam optimizer

Algorithm 1 Few-shot Data-to-text Framework

1: Input: DU , (DL, TL)
2: Create (Da, Ta) by information augmentation

;
3: (DL, TL)← (DL, TL) ∪ (Da, Ta);
4: Create T ′ by LM augmentation ;
5: T ← TL ∪ T ′;
6: repeat
7: Sample batch data from (DL, T ) ;
8: Cycle consistency:
9: Optimize by Eq. 1 + Eq. 2 + Eq. 3;

10: Representation Matching:
11: Optimize by Eq. 4;
12: Supervised Training:
13: Optimize by Eq. 5;
14: until convergence

with initial learning rate at 0.0002. Batch size
is kept at 48 with a dropout rate at 0.3. We em-
ploy beam search with size 3 for decoding and
select models based on BLEU-4 scores on the de-
velopment set. The score is averaged over 10 ran-
dom initialization runs. In this work, the seq2seq
models are built upon the long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997).
For LSTM cells, both the encoder and decoder
have 3 layers, amounting to 18M parameters for
the seq2seq model (600-dimension and 1024 hid-
den units). Maximum sequence length is set as 100
for E2E and 200 for WebNLG (SPM-based). All
encoder parameters are shared between data and
text samples. All models were trained on 1 Nvidia
V100 GPUs (32GB and CUDA Version 10.2) for 4k
steps. The total batch size is around 48K tokens per
GPU and we use the Adam optimizer (ε = 1e−6,
β2 = 0.98) along with linear learning rate decay
scheduling. The total number of updates is set to
8000 for all training and models are selected based
on optimal validation BLEU4. At decoding time,
sentences are generated using greedy decoding.

6 Results and Analysis

In this section, we present experiment results and
analysis. We first compare our model with other
baselines on both datasets, then perform a set of
ablation studies on the E2E dataset to see the effects
of each component. Finally, we analyze how text
augmentation helps improves the model, include
example outputs and show the human evaluation
results in the end.
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Model E2E - 10% E2E - 100%

BLEU NIST METEOR ROUGE-L BLEU NIST METEOR ROUGE-L

SLUG - - - - 66.19 8.61 44.54 67.72
Seq2seq 53.38 6.10 38.10 60.53 63.32 6.81 41.25 62.91
Qader et al. (2019) 58.10 6.24 41.32 62.84 64.20 7.14 44.68 65.31
Chen et al. (2020) 59.10 7.49 40.25 63.23 63.72 7.76 40.25 66.23
Proposed (LSTM) 64.24 7.71 43.53 66.81 68.88 8.89 48.53 72.12

WebNLG - 10% WebNLG - 100%

Model BLEU NIST METEOR ROUGE-L BLEU NIST METEOR ROUGE-L

Melbourne - - - - 44.93 8.98 36.58 60.40
Seq2seq 36.54 7.3 35 54.61 44.60 8.49 38.23 59.67
Qader et al. (2019) 38.66 7.81 34.1 56.95 47.19 8.71 37.90 58.61
Chen et al. (2020) 39.40 7.84 37.25 56.23 46.15 8.52 39.1 58.5
Proposed (LSTM) 43.75 8.29 33.58 58.49 50.26 8.86 40.71 61.29

Table 1: Performance on E2E and WebNLG with 10% and 100% data. Qader et al. (2019) utilizes all ground-truth unpaired text
samples while our proposed model only gets access to the few-shot data annotations.

Comparison with Other Models In Table 1, we
compare our model with (1) seq2seq baseline, (2)
cycle consistency model as in Qader et al. (2019)6

and (3) finetuned GPT-2 model as in Chen et al.
(2020)7. For all models, we try running with 10%
and 100% annotations to see how they perform un-
der different data sizes. Our model is implemented
both with LSTM encoder-decoders, same as the
seq2seq baseline for a fair comparison. Note that
Qader et al. (2019) further utilized all the ground-
truth unpaired text samples, while the other models
run only on the few-shot annotations. We also in-
clude the results of SLUG (Juraska et al., 2018)
and MELBOURNE (Gardent et al., 2017), the
overall winner on automatic metrics in the E2E
and WebNLG challenge respectively(both seq2seq-
based). SLUG uses a heuristic slot aligner based on
a set of handcrafted rules and combines a complex
pipeline of data augmentation, selection, model
ensemble and reranker.

The results show that our proposed model sig-
nificantly improves over the baseline on both the
few-shot and fully supervised setting. The improve-
ment is more evident when only 10% annotations
are available, with a leap of 11 and 7 BLEU scores
on E2E and WebNLG respectively. It also outper-
forms systems relying on task-dependent heuristics.
In comparison, Qader et al. (2019), though with
access to all text samples at all percentages, still un-
derperforms our model with tangible margin. On
the fully supervised setting, it brings little to no

6The author did not open-source their code. We reproduced
their model based on our implementation. The results on 10k
annotations matches their reports in the paper.

7https://github.com/czyssrs/Few-Shot-NLG

Model/Share None Enc Dec Both
Supervised 53.20 - - -
+ t→ d′ → t 53.19 53.28 53.17 53.29
+ d→ t′ → d 53.15 56.12 53.49 56.07
+ t→ t 53.74 56.39 55.29 55.73
+ d→ d 53.37 56.44 56.09 56.11
+ Noise 54.13 57.37 56.59 57.04

Table 2: Ablation study for cycle consistency (10% annota-
tions). BLEU-4 score is reported. Each line adds one condi-
tion on top of the previous one. Supervised is a supervised
seq2seq baseline.

difference compared with the seq2seq baseline as
no more extra data is incorporated in the training
process. As such, we also observe that the text
augmentation from finetuned GPT-2 model helps
the proposed model on the few-shot setting, but its
advantage also vanishes when all data annotations
are available.

In Figure 4, we draw the model performance
with varying number of data annotations. All mod-
els are trained from scratch with 10 different ran-
dom initializations and the standard deviation of the
BLEU-4 score is visualized. We can see our model
(LSTM-based), though with a relatively larger stan-
dard deviation due to the uncertainty of text aug-
mentation sampling, still consistently outperforms
other baselines significantly and even surpasses the
fully supervised seq2seq model with less than 10%
of data annotations.

Ablation Study on Cycle Consistency In Ta-
ble 2, we study how the four directions, input noise
and parameter sharing affect the performance of
cycle-consistency. The experiments are conducted
with 10% annotations and no further unpaired text
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Figure 4: Model performance with varying number of data annotations. Our model with 10% annotations outperforms the
seq2seq model trained on 100% pairs (dotted line) on both datasets. Shades are the sample standard deviation based on 10 runs
of different model initializations.

samples are available.
As can be observed, adding the training direction

t→ d′ → t (i.e. back translation) has little effects
on top of the supervised seq2seq baseline. This
is expected since back translation is naturally de-
signed to incorporate additional unpaired text sam-
ples. When run only on the few-shot annotations,
its power is very limited. The backward direction
d → t′ → d is surprisingly useful when the en-
coder is shared between the data and text. Though
this direction will not affect the text decoder at all,
the improvement suggests the model can benefit
a lot by simply structuring its encoded space and
mapping aligned data-text pairs to similar vector
space. The autoencoding directions brings a little
improvement. When combined with input noise,
the performance further increases. This is simi-
lar to previous findings that denoising autoencod-
ing is more helpful in inducing meaningful latent
space (Lample et al., 2018) in comparison to simply
learning to copy the original input.

The results also suggest encoder sharing is im-
portant for the cycle consistency objective to work
in our few-shot setting. Decoder sharing, in con-
trast, makes little or even negative influence. This is
kinda similar as in multilingual machine translation
where sharing the decoder among languages might
negatively interfere with the performance (Johnson
et al., 2017).

Ablation Study on Text Augmentation On top
of the four-direction cycle consistency training, we
study the effects of text augmentation in Table 3.
We compare our proposed info + LM augmenta-
tion with (1) random augmentation, where a ran-

Text Augmentation 1% 5% 10% 20%
None 44.18 50.22 57.37 63.28
Random 41.30 49.62 57.71 62.79
UDA 44.24 50.09 57.66 61.30
Info 45.63 52.22 58.80 63.22
+ LM 48.67 53.53 59.04 64.78
Reference 55.33 54.92 59.11 64.26
Random (+RM) 42.32 50.10 58.53 63.29
UDA (+RM) 44.32 52.22 58.80 61.27
Info (+RM) 48.63 56.66 60.80 63.52
+ LM (+RM) 53.18 59.12 64.24 65.38
Reference (+RM) 62.74 63.28 64.93 65.27

Table 3: Ablation study for text augmentation with varying
number of annotations. Experiments are performed on the E2E
dataset. LM augmentation outperforms Random by a large
margin, and even outperforming augmentation with ground-
truth references on some occasions. Representation matching
(RM) boosts the overall performance further.

Model
E2E WebNLG

Fluency Miss Wrong Fluency Miss Wrong
Seq2Seq 3.68 49 63 3.95 57 48
Cycle-only 4.08 46 66 4.23 48 44
Finetune GPT-2 4.21 43 57 4.10 39 45
Proposed (LSTM) 4.33 39 44 4.27 31 39

Table 4: Human Evaluation on the sampled outputs (100
instances) for models with 10% annotated data. Cycle-only
indicates the approach in Qader et al. (2019); and Finetuned
GPT-2 is refers to Chen et al. (2020).

dom text from Wikipedia is sampled to the aug-
mented text space, (2) unsupervised data augmen-
tation (Xie et al., 2019) where text samples are
augmented with paraphrases of current annotations
and (3) ground-truth augmentation with reference
obtained from the left training corpus, which can
serve as an upper bound of text augmentation tech-
niques. We test the performance with 1%, 5%, 10%
and 20% annotations to see the effects with varying
number of supervisions.

As can be seen, the random augmentation even
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Data:
[name] Blue Spice [eat type] restaurant [food] Chinese [area] city centre [family friendly] no [near] Rainbow
Vegetarian Café
Reference: at the [city centre], there is a [restaurant] called the [Blue Spice].
seq2seq/info-aug: Blue Spice restaurant near Rainbow Vegetarian Café has a 5 star rating. prices start at £30.
+LM-aug: located near Rainbow Vegetarian Café is a Chinese theme eatery and restaurant called Blue Spice. It is
in the city centre area.

Figure 5: Generation examples with different text augmentation techniques. Trained on 5 data annotations (see the above toy
training set). The attribute combination of input data is unseen in the 5 annotations. Hallucinated contents are italitized.
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Figure 6: Additional number of decoded unique tokens (non-copied) and unique combinations of information on the testset
with varying number of annotations.

harms the model performance, suggesting reason-
able in-domain text augmentation are necessary
for the model improvement. UDA augmentation
also makes rather little difference as it simply para-
phrases the current available annotations but can-
not bring any new information. The information
augmentation by slot-value replacement helps im-
prove a bit. When combined with LM, the perfor-
mance can be further boosted, especially for lower-
resource scenarios. The representation matching
always helps lift the performance, with gains of
up to 10 BLEU points. As expected, the benefit
from text augmentation gradually vanishes as more
annotations are collected, especially for datasets
with relatively simple patterns as E2E.

How text augmentation helps Intuitively the
GPT-2 augmentation is expected to impose new
tokens and combination patterns to the few-shot
annotations. To investigate whether this is the case,
for the decoded text in the test phase, we count
the number of unique tokens (excluding copied
data values) and unique information combination
patterns (attribute combinations in E2E). The re-
sults in Fig. 6 show that LM-augmentation indeed
greatly enriches the vocabulary space, even dou-
bling the generated unique tokens in low-resource
scenarios. The same happens for new combina-
tion patterns. In contrast, info-aug cannot insert

new tokens or combinations at all since all it does
is replacing data values based on the same text
annotation. UDA can impose new tokens by para-
phrasing the annotations, but it hardly helps the
model generalize to new combinations of informa-
tion. Moreover, when trained on a toy dataset, we
observe from the generation outputs that Seq2seq
and info-aug produce the wrong outputs and overfit
to the information in the 5 training instances. With
LM augmentation, it adapts to the new combina-
tion and connects information correctly. Figure 5
shows a generation example with different text aug-
mentation techniques. We train the systems in a
toy setting with only 5 data annotations (Trainset
in the Appendix). We pick an input data with an
unseen attribute combination to test if models can
generalize correctly. Seq2seq and info-aug produce
the wrong generation overfit to the information in
the 5 training instances. With LM augmentation, it
adapts to the new combination and connects infor-
mation correctly.

Human Evaluation We further run a human
evaluation on the model outputs to closely check
the generation quality. We compared four types of
models: the seq2seq baseline, seq2seq plus cycle-
consistency as in Qader et al. (2019), finetuned
GPT-2 as in Chen et al. (2020) and our proposed
model. All models are LSTM-based apart from
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the finetuned GPT-2 one. We sample 100 data in-
stances from the test set and apply all the models
to generate corresponding text. The data and gen-
erated text are evaluated by 50 crowdworkers on
Prolific8. For each data-text pair, the annotator is
instructed to evaluate (1) if the text is fluent (score
0-5 with 5 being fully fluent), (2) if it misses in-
formation contained in the source data and (3) if
it includes wrong information. The average flu-
ency scores, count of information miss and wrong
information are presented in Table 4. The scores
are generally consistent with the automatic evalua-
tion results, our proposed model outperforms other
ones by a large margin, even though cycle-only
can access all unpaired text and finetuned GPT-2 is
significantly larger than our LSTM-based seq2seq.
The generated text are more fluent, yet maintaining
the information completeness and correctness to a
large extent.

7 Conclusion

We study few-shot data-to-text generation with only
limited annotated data. We propose text augmenta-
tion with slot-value replacement followed by GPT-
2 generation. The augmented text, when combined
with cycle consistency and representation match-
ing, is shown to help the model to generalize to
unseen new tokens and patterns of token combina-
tions. With less than 10% annotations, it outper-
forms supervised seq2seq model trained on 100%
annotations and is extensible enough to be com-
bined with pretraining techniques.
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