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Abstract

We consider the problem of multi-label clas-
sification, where the labels lie in a hierarchy.
However, unlike most existing works in hier-
archical multi-label classification, we do not
assume that the label-hierarchy is known. En-
couraged by the recent success of hyperbolic
embeddings in capturing hierarchical relations,
we propose to jointly learn the classifier param-
eters as well as the label embeddings. Such
a joint learning is expected to provide a two-
fold advantage: i) the classifier generalises bet-
ter as it leverages the prior knowledge of ex-
istence of a hierarchy over the labels, and ii)
in addition to the label co-occurrence infor-
mation, the label-embedding may benefit from
the manifold structure of the input datapoints,
leading to embeddings that are more faithful
to the label hierarchy. We propose a novel for-
mulation for the joint learning and empirically
evaluate its efficacy. The results show that the
joint learning improves over the baseline that
employs label co-occurrence based pre-trained
hyperbolic embeddings. Moreover, the pro-
posed classifiers achieve state-of-the-art gen-
eralization on standard benchmarks. We also
present evaluation of the hyperbolic embed-
dings obtained by joint learning and show that
they represent the hierarchy more accurately
than the other alternatives. The source code
of the paper is available here.

1 Introduction

The problem of multi-label text classification
is well known and extensively studied in litera-
ture (McCallum, 1999; Yang et al., 2009; Liu et al.,
2017). The fundamental assumption is that a doc-
ument is associated with multiple labels from a
fixed vocabulary of labels. Often, these labels are
organised in a hierarchical structure. For ex. con-
sider a sample headline from the NYT (NewYork

∗Equal contribution

Times) corpus “Voice Recognition Is Improving,
but Don’t Stop the Elocution Lessons” for which
labels are “Top/News/Technology”. Here, labels
are arranged in a hierarchy, hereafter referred as
label hierarchy. We undertake the task of labelling
documents with classes that are hierarchically or-
ganised; this problem is popularly known as hi-
erarchical multi-label text classification (HMC).
HMC methods have found several applications in
online advertising systems (Agrawal et al., 2013),
bio-informatics (Peng et al., 2016; Triguero and
Vens, 2016), text classification (Rousu et al., 2006;
Mao et al., 2019).

The main challenge in HMC is in modelling clas-
sification of the document into a large, imbalanced
and structured output space. In HMC, the label
taxonomy is a partially ordered set (L,≺) where L
is a finite set of all class labels. Relation≺ refers to
is-a relationship between labels, which is asymmet-
ric, anti-reflexive and transitive (Silla and Freitas,
2011).

Hierarchical structures can provide important
insights for learning and classification tasks. How-
ever, explicit knowledge of hierarchy is not avail-
able in several domains, for instance, extreme clas-
sification datasets (Bhatia et al., 2016). In this
paper, we consider the problem of structured pre-
diction from unstructured text, in which label hier-
archy is not known apriori. We infer hierarchies
from classification judgements on the outputs that
are readily available. We focus on discovering rela-
tionships between the labels in a hyperbolic space,
which has natural capacity to encode hierarchical
structures.

In our approach, HIDDEN (HyperbolIc label
embeDDings for hiErarchical multi-label classi-
ficatioN), the labels are represented in a hyperbolic
space to help respect their latent hierarchical or-
ganisation. We use this intuition to learn label
embeddings for HMC without explicit supervision

https://github.com/soumyac1999/hyperbolic-label-emb-for-hmc
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on the label hierarchy.
Apart from employing hyperbolic embeddings,

another key aspect of our methodology is that the
parameters of the classifier as well as of the la-
bel embedding are learnt jointly. We next explain
the advantage in doing so. In the absence of any
partial information regarding the hierarchy, label
embeddings are typically learnt using the weak su-
pervision available in label co-occurrences (Nickel
and Kiela, 2017, 2018). This weak form of supervi-
sion can be complemented if the label embedding
learning is also aware of the manifold structure of
the input (documents). For e.g., similar documents
may have similar labels, etc. Such a strengthen-
ing is possible only if learning happens in a joint
fashion. Moreover, the generalization of the clas-
sifier also improves because of the improved em-
beddings (and vice-versa). Our contributions can
be summarised as follows:
1. We present an approach HIDDEN, that models

the implicit hierarchical organisation of labels
for improved classification. It leverages prop-
erties of hyperbolic geometry to help learn em-
beddings for the hierarchically organised labels.

2. We present a novel formulation for jointly learn-
ing the parameters of the classifier as well as the
label embedding, which can be trained solely
using the supervision from the training data, and
without using any explicit information regarding
the label hierarchy.

3. We evaluate HIDDEN on real-world as well as
synthetic datasets and show:
(a) significant improvement over classical

multi-label classification methods as well
as baselines that employ hyperbolic label
embeddings learnt in isolation solely based
on label co-occurrence information

(b) HIDDEN sometimes generalizes even better
than state-of-the-art hierarchical multi-label
classifiers that have complete access to the
true label hierarchy

(c) label embeddings learnt using the joint opti-
misation approach correlate better with the
ground truth than other alternatives.

2 Related Work

Several conventional classification methods are ca-
pable of handling classification in multi-label set-
tings. However, relatively fewer of these are de-
signed to incorporate the possibly hierarchical or-
ganisation of the class labels. These include both

traditional methods (Gopal and Yang, 2013; Lewis
et al., 2004) as well as deep learning methods (John-
son and Zhang, 2015; Peng et al., 2018) across var-
ied domains such as news articles, web content, etc.
Some approaches (Bairi et al., 2015, 2016) have
also attempted to identify a subset of class labels
from the classification hierarchy that effectively
represents most instances from the training dataset.

Traditional or flat classification approaches typ-
ically perform prediction assuming that all the
classes are independent of each other, ignoring the
class hierarchy. Whereas ‘local’ classification ap-
proaches (Koller and Sahami, 1997; Cesa-Bianchi
et al., 2006) train a set of classifiers at each level
of the hierarchy. However, it has also been ar-
gued (Cerri et al., 2011) that it is impractical to
train separate classifiers at each level. On the other
hand, ‘global’ approaches (Silla Jr and Freitas,
2009; Wang et al., 2001) train a single classifier
that factors in the complete class hierarchy, while
often also explicitly factoring in the label-label cor-
relation (Kulkarni et al., 2018). Unlike the local
approach, ‘global’ approaches do not suffer from
the error propagation problem, although they are
prone to under-fit by not considering local informa-
tion in the hierarchy.

Some recent papers have proposed a mix of lo-
cal and global approaches for HMC. Wehrmann
et al. (2018) propose an objective that leverages
both local and global information while introduc-
ing global hierarchical violation penalty. Mao et al.
(2019) employ a reinforcement learning framework
to learn a label assignment policy. They model
HMC as a markov decision process, wherein, the
agent takes an action of label assignment on the tree
hierarchy and receives scalar rewards as feedback
for the actions. Chen et al. (2019) embed both doc-
ument and label hierarchy in the same hyperbolic
space and use interactions between these embed-
dings for HMC. Our approach differs from these in
two important ways: (i) we embed only labels into
the hyperbolic space and (ii) label hierarchy is not
known apriori - all we assume is that there is some
hidden hierarchy.

Recently, the use of hyperbolic geometry has
been found to be promising in machine learning
and network sciences to model data with latent
hierarchies. Krioukov et al. (2010) showed that
properties of complex networks, namely hetero-
geneous degree distribution and strong clustering,
naturally manifest in hyperbolic geometry. They
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showed that if a network has some heterogeneous
degree distribution and metric structure, the net-
work can be mapped effectively to the hyperbolic
space (since euclidean distance has limitations in
approximating the distance between nodes in a
tree). Gromov (1987) have shown that any finite
tree structure can be embedded into a finite hyper-
bolic space while preserving the distance between
nodes. Nickel and Kiela (2017) learnt hierarchi-
cal representations of symbolic data by embedding
them into an n-dimensional Poincaré ball by lever-
aging the distance property of hyperbolic spaces.
Instead of relying on the true hierarchy to learn
embeddings, Nickel and Kiela (2018) inferred hier-
archies from real-valued similarity scores using the
Lorentz model of hyperbolic geometry. We used a
similar formulation in our model HIDDEN to build
our HMC model by leveraging the co-occurrence
count of labels for each document, but additionally
(and more importantly), in a joint manner, learn the
parameters of the classifier.

3 Hyperbolic Geometry & the Poincaré
Model

In this section, we give an overview of hyperbolic
geometry and the Poincaré model for embedding
in hyperbolic spaces (Nickel and Kiela, 2017). A
hyperbolic space is a non-Euclidean Riemannian
manifold of constant negative curvature. Though
there are several fundamental differences between
the Euclidean and the hyperbolic geometry, the
most interesting characteristic of hyperbolic spaces
is their ability to naturally represent hierarchical
relations (Krioukov et al., 2010). In the Poincaré
ball model, which is one of the standard models for
hyperbolic geometry, the Euclidean distances be-
tween equidistant points, according to the inherent
manifold metric d, fall exponentially as one moves
from origin towards the surface of the ball. This
interesting property is the key for enabling learn-
ing of continuous embeddings of hierarchies. For
example, one can imagine root node of hierarchy at
origin and leaf nodes near the ball’s surface. Then,
this model can easily accommodate exponentially
growing number of equidistant siblings at deeper
levels of the hierarchy. Whereas, such an accom-
modation is not possible using Euclidean geometry.
Below we provide some details of this model.

Let Bn = {x ∈ Rn| ‖x‖ < 1} be the
open n-dimensional unit ball, where ‖.‖ is the
Euclidean 2 norm. The Poincaré ball model is

a Riemannian Manifold (Bn, gx), the open unit
ball equipped with the Riemannian metric tensor

gx =

(
2

1−‖x‖2

)2

gE , where x ∈ Bd and gE is

the Euclidean metric tensor. The geodesic distance
between two points u, v ∈ Bd is given as

d(u, v) = arcosh

(
1 + 2

‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)
(1)

Given any x ∈ Rn, one can show that x

1+
√

1+‖x‖22
always lies in the Poincare ball (refer Appendix for
detailed explanation).

4 Problem Formulation and Approach

In this section, we present present details of our
model, training, as well as inference.

4.1 Problem Formulation

Here we consider an interesting special case of
multi-label classification. The training data is of the
form: D = {(D1, y1) , (D2, y2) , . . . , (Dm, ym)},
where Di ∈ Rn is the input representation of the
ith document, yi ∈ {0, 1}L represents the set of
active/annotated labels for it (yli = 1 ⇐⇒ Di is
labelled with l), and L is the total number of labels.
Importantly, the labels are assumed to be nodes of
an unknown, yet fixed, hierarchy. Using this prior
knowledge and the training data, the goal is to learn
a classifier that generalises well for labelling new
documents.

Classical text classification methods ignore the
informative prior knowledge that the set of labels
form a hierarchy. Most of the hierarchical multi-
class classification models assume that the hierar-
chy over the labels is completely known, which
might not be a pragmatic assumption, since con-
structing hierarchies is an expensive process, es-
pecially when the number of labels is large (Bha-
tia et al., 2016). In contrast, here we assume no
explicit information regarding the hierarchy other
than it’s existence, and the implicit information
encoded in the training data. Also, in our set-up,
we do not restrict the labels to be the leaves nodes
in the hierarchy. As motivated earlier, here we
propose to learn a classifier that jointly learns the
classifier parameters as well as the label embed-
dings.



2832

4.2 Our Model: HIDDEN
Our proposed model HIDDEN has two key compo-
nents: one for representing the documents that may
lead to well-generalizing classifiers and the other
for embedding the labels in a hyperbolic space. Re-
call that hyperbolic spaces have shown to be well-
suited for data satisfying hierarchical relations.

Document Model Fw accepts as input a docu-
ment, D, and outputs a n-dimensional represen-
tation of it, Fw(D) ∈ Rn. Here, w is the set
of parameters to be learnt. In this work, we use
TextCNN (Kim, 2014) as the document model. But
our approach remains valid irrespective of the cho-
sen document model.

Label Embedding Model GΘ accepts as input
a label l and outputs a finite dimensional repre-
sentation, GΘ(l). Here, Θ is the set of parameters
to be learnt. In this work, following Nickel and
Kiela (2018), we employ the simple look-up based
model defined by GΘ(l) ≡ Θ ∗ yl = Θl, where
Θ ∈ Rn×L and Θl is the lth column of Θ. These
Euclidean embeddings Θl are then projected onto
the Poincare manifold using the transformation
Π(x) = x

1+
√

1+‖x‖22
. In summary, the hyperbolic

embedding of label, l, is given by Π(Θl).
We next assume that there exists some optimal

set of parameters w∗,Θ∗ such that the labels anno-
tated/active for a document, D, are exactly those
whose label representations are highly aligned with
that of D’s representation. Here, alignment be-
tween the representations is intended to model the
natural intuition of appropriateness between label
and document. Following the principle of large-
margin separation, in this paper we employ the
alignment model defined below:

ŷlD (w,Θ) ≡ σ
(
Fw (D)>Θl

)
(2)

where ŷlD (w,Θ) denotes the alignment between
the document, D, and the lth label as per the model
with parameters (w,Θ), and σ is the Sigmoid acti-
vation function.

Inference: Given the learnt parameters (ŵ, Θ̂),
the labels with ŷlD(ŵ, Θ̂) > 0.5 are predicted to be
the active ones for D. We next detail the proposed
joint objective for learning the parameters.

4.3 Joint Objective
The proposed objective consists of two terms: the
first is an empirical multi-label loss term over the
training data, and the second is a loss for ensur-
ing that the hyperbolic label embeddings respect

the pairwise label co-occurrence or any other such
(pairwise) partial information regarding the under-
lying label hierarchy.

First Term is simply a binary cross entropy loss
to promote high alignment scores for each anno-
tated label and vice-versa:

L1 (w,Θ) =

m∑
i=1

L∑
l=1

[
yli log

(
ŷli (w,Θ)

)
+ (1− yli) log

(
1− ŷli (w,Θ)

)]
(3)

where ŷli is a short-hand for ŷlDi
.

Second Term induces lesser geodesic distance
in the hyperbolic space between the label em-
beddings that have higher co-occurrences than
those between label pairs that have less co-
occurrence (Nickel and Kiela, 2018):

L2(Θ) =
∑
l,l′∈L,
l′ 6=l

log

 e−d(Π(Θl),Π(Θl′ ))∑
z∈N (l,l′)

e−d(Π(Θl),Π(Θl′ ))


(4)

where d is the metric in the hyperbolic space given
by Eq.1, Π(Θl) is hyperbolic embedding of lth

label, and N (l, l′) is the set of all labels that less
frequently co-occur with l than l′ co-occurs with l.

The overall objective function is a weighted sum
of the two components described above

L (w,Θ) = L1 (w,Θ) + λL2 (Θ) (5)

We refer to the model corresponding to the pa-
rameters (wjnt,Θjnt) that minimizes this joint ob-
jective in Eq.5 as HIDDENjnt:

(wjnt,Θjnt) ∈ arg min
w,Θ
L(w,Θ) (6)

Both components of our loss interact with each
other to minimize the distance between document
and label embeddings in the hyperbolic space. The
advantage of the joint learning is well illustrated
when HIDDENjnt is compared with the following
baseline, henceforth referred to as HIDDENcas:
(1) L2 is minimized to obtain label embeddings

Θ̂cas ∈ arg minΘ L2 (Θ).
(2) These are then used in L1 to obtain document

parameters: ŵcas ∈ arg minw L1(w, Θ̂cas).
We also empirically compare with the follow-

ing multi-class classification baseline, henceforth
referred to as HIDDENflt:
(1) Θflat is fixed to the identity matrix.
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(2) These are then used in L1 to obtain document
parameters: ŵflat ∈ arg minw L1(w, Θ̂flat).

To evaluate the benefit of using hyperbolic
spaces for embedding labels, we also compare
with a variant of HIDDENjnt called HIDDENeuc
for which L2 is modified to be

L2Euc(Θ) =
∑
l,l′∈L,
l′ 6=l

log

 e−‖Θl−Θl′‖2∑
z∈N (l,l′)

e−‖Θl−Θl′‖2


(7)

to obtain the parameters (weuc,Θeuc) as
(weuc,Θeuc) ∈ arg min

w,Θ
L1(w,Θ) + λL2Euc(Θ)

Note that none of the variants of HIDDEN as-
sume any explicit information regarding the under-
lying hierarchy. However, the former three exploit
the prior knowledge that there exists a label hier-
archy; whereas the latter, which is the classical
multi-label classification network, completely ig-
nores this useful information. Moreover, since the
proposed model HIDDENjnt performs joint learn-
ing, it is expected that HIDDENjnt not only achieves
better generalization, but also leads to better label
embeddings, when compared to HIDDENcas. The
simulation results in section 5 confirm the same.

4.4 Training Details

In all our experiments, the initial word embed-
ding layer of TextCNN in the document model
is initialized using 300 dimensional GloVe embed-
dings (Pennington et al., 2014). Following Nickel
and Kiela (2017), we randomly initialize Θ from
the uniform distribution U(−0.001, 0.001). Both
the document and label representations are are of
length n = 300. We randomly choose 10% of
training set as the validation set and report test set
results on the best validation epoch. During train-
ing, dropout is applied to the outputs of document
model as well the label model with probabilities 0.1
and 0.6 respectively. We found λ = 0.1 to yield
the best validation performance. The number of
training epochs are set to 30 for all experiments.
Both models are optimized using stochastic gradi-
ent descent using Adam optimizer (Kingma and Ba,
2014) with learning rate as 0.001 for TextCNN.

We run all our experiments on Nvidia RTX 2080
Ti GPUs 12 GB RAM over Intel Xeon Gold 5120
CPU having 56 cores and 256 GB RAM. It takes
around 1, 2 and 5 hours to train the model on RCV1,
NYT and Yelp datasets respectively.

5 Experiments

In this section, we compare our approach against
the baseline models and other state-of-the-art HMC
approaches. First we describe the evaluation met-
rics and illustrating results in a synthetic setting.

5.1 Evaluation Measures

Classifier Evaluation Measures: We use standard
measures for evaluating any HMC, viz., Macro-F1
and Micro-F1. Let TP , TN , FN , FP denote the
true positive, true negative, false negative and false
positive labels respectively. Precision is TP

TP+FP

and recall is TP
TP+FN . F1-score is the harmonic

mean of precision and recall. Macro-F1 assigns
equal weightage to each class and is computed as
the averaged F1 score over all classes. Micro-F1
is the F1-score computed over all instances.
Label Embedding Evaluation Measures: For a
given application, let us sayH∗ is provided to us as
the ground truth hierarchy of labels/nodes, which
was assumed to be unknown in our problem for-
mulation in Section 4.1. Recall that none of the
variants of HIDDEN has access to H∗. How con-
sistent with respect toH∗ are the label embeddings
learnt by these models? We attempt to assess this
consistency by adopting standard measures such
as Spearman’s rank correlation coefficient (Zar,
2005) and Normalized Discounted cumulative gain
(NDCG) (Järvelin and Kekäläinen, 2002).

Recall from Section 4.3, that the hyperbolic em-
bedding for label l is Π (Θl) and likewise for l′,
it is Π (Θl′). The model parameters Θ might be
learnt using any variant of HIDDEN. Given a query
label, l, the geodesic distance d(Π (Θl) ,Π (Θl′))
is used to rank all other labels l′ 6= l; smaller the
distance, larger the rank. Any two labels l′ 6= l′′

that are at the same geodesic distance from l, will
be assigned the same rank r = r′′. Next, we define
a graded relevance score for labels with respect to
the ground truth hierarchy,H∗. For any given query
label l ∈ H∗, we also assign a graded relevance
rel′ ∈ N to every other label l′ 6= l based on the
distance (number of hops hops(l, l′)) of l′ from l in
the hierarchyHD; smaller the distance, larger the
graded relevance (we considered rel′ ∝ 1

hops(l,l′) ,
for example).

Discounted Cumulative Gain (DCG) (Järvelin
and Kekäläinen, 2002) is a standard measure of the
quality of ranking of an approach with respect to
the graded relevance provided in the ground truth.
DCG@k measures items (eg: labels l′) k hops away
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Figure 1: Gaussian used for the synthetic experiment

from the query l. The gain is accumulated from
the top of the ranked list upto some pre-specified
position k in the list, with the gain of each result dis-
counted at lower ranks: DCGk =

∑k
i=1

reli
log2(i+1) .

Here, reli is the graded relevance at position i.
This result is itself averaged over all query labels
l ∈ H∗.

Spearman’s rank correlation coefficient denoted
by r is a non-parametric metric to measure statisti-
cal dependence between ranking of two variables.
For each query label (l), we first measure rank cor-
relation between the predicted rank rp of a label l′

and its own rank rh as per ground truth hierarchy
h. The correlation coefficient between rlp and rlh
is computed as rl =

cov(rp,rh)
σrp σrh

. Here, cov is the
covariance and σ, the standard deviation. The final
score, r is the averaged score across all labels l′ in
the set.

5.2 Validation via Synthetic Experiments

To observe the behaviour of the proposed approach
HIDDEN with respect to the evaluation measures in
a controlled environment, we present one such syn-
thetic setup. The goal in this section is to illustrate
the advantage of joint learning of parameters over
isolated learning. Consider 2D data generated from
16 neatly separated Gaussians laid out on a grid as
illustrated in Figure 1. Each of the 16 gaussians cor-
responds to a single label l1, l2...l16. We consider a
second layer of 4 labels l17...l20, obtained by group-
ing the gaussians into 4; each quadrant in the larger
square would correspond to a single label. Finally,
we have a third layer consisting of a single label l21

- viz., the entire large square. This simple hierarchy
is hidden from our variants of HIDDEN as well as
from the flat model. The synthesized data is split
randomly into train-test in the ratio 60:40. For each
of the jointly optimised model HIDDENjnt, the cas-

Prob
0.00 0.20 0.40

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1
HIDDENflt 96.8 89.1 93.2 87.8 90.4 87.7
HIDDENcas 98.0 93.4 94.4 88.9 91.9 91.0
HIDDENjnt 98.1 94.0 94.8 91.6 92.3 91.7

Table 1: Comparison of methods on the Synthetic
SETTING 1 with respect to increasing probability with
which a label is randomly dropped. Synthetic data used
here has 12000 training and 8000 test samples.

caded model HIDDENcas as well as the flat model,
we observe (i) the performance of the classification
models Fw(D) measured in terms of Micro-F1
and Macro-F1 as well as (ii) the consistency of the
label embedding models GΘ(l) with respect to the
hidden 3-level hierarchy over the 21 labels. We
record observations in two settings:

SETTING 1 in which for each training instance,
one of the annotated labels are dropped, uniformly
at random: In Table 1 we note the performances
of the different approaches with increasing rate at
which labels are dropped. The jointly optimised
model HIDDENjnt accounts for the classification
task through loss component L1 as also the some-
what redundant label co-occurrence through the
loss component L2.

As expected, we observe that the performance
of HIDDENjnt is more robust to this form of label
noise than the HIDDENcas and HIDDENfltmodels.
This is because HIDDENflt entirely relies on the
training data and ignores the prior knowledge of ex-
istence of a label hierarchy. HIDDENcas is also less
robust as it over-relies on the label co-occurrence
by minimising L2 (which, in isolation will be sen-
sitive to label noise), before venturing into the clas-
sification task by minimising L1.

SETTING 2 in which the size of the training set
is decreased without corrupting labels: We observe
the performances of the different approaches with
decreasing size of the training set and note that
the performance of the jointly optimised model
HIDDENjnt falls back on the label correlation sig-
nals through the loss componentL2 and is therefore
more robust to decreasing size of the data set than
the flat classifier. We observed similar results for
other synthetic settings. Owing to space constraints,
the plots and other ranking results are provided in
the supplementary material.

5.3 Real-world Text Datasets

We used three datasets, namely, RCV1, Yelp and
NYT in our experiments:
(1) RCV1 (Lewis et al., 2004) - RCV1 is a
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newswire dataset of the articles collected be-
tween 1996-1997 from Reuters

(2) NYT (Sandhaus, 2008) - This corpus contains
articles from New York Times published be-
tween January 1st, 1987 and June 19th, 2007

(3) Yelp 1 - Yelp is a review dataset of restaurants
and each review is labelled with hierarchical
categories of restaurants. Following the exper-
imental design in Mao et al. (2019), we use
the set of reviews for a business to predict the
categories to which the business belongs.

Some statistics pertaining to these datasets are
presented in Table 2.

Dataset Hierarchy |L| Avg(|L|) Max(|L|) Train Val Test
RCV1 Tree 104 3.24 17 20833 2314 781265
NYT Tree 120 6.58 24 86461 9606 9903
Yelp DAG 539 4.07 32 98460 10939 46884

Table 2: Statistics of the datasets used in the experi-
ments. |L| denotes the number of labels, Avg(|L|) is
the average number of labels per instance and Max(|L|)
is the maximum number of labels for an instance.

5.4 Comparison of models that do not use the
true hierarchy

We compare performance of the different models
that do not use the true hierarchy. These include
our flat baseline HIDDENflt, the cascaded model
HIDDENcas as well as our joint model HIDDENjnt.
We compare them against the baseline TextCNN-
flat model reported in Mao et al. (2019). The results
are presented in Table 3 for λ = 0.1.

Overall, our baseline (HIDDENflt) performs bet-
ter than the previous baseline with the exception of
Macro-F1 on NYT. We observe improvement of the
joint model HIDDENjnt over the flat (HIDDENflt)
and cascaded (HIDDENcas) models on RCV1 and
NYT (for each of which, the labels form a tree) in
Table 3. However, on the Yelp dataset, the cascaded
model (HIDDENcas) performs somewhat worse (-2
Micro-F1 and -3.3 Macro-F1) than our baseline
model (HIDDENflt), hinting at the possibility that
label co-occurrence information might not be help-
ful toward the classification task. This could be
partly also because the labels in Yelp are structured
in the form of a DAG. Constant curvature property
of hyperbolic spaces makes them unsuitable for
learning DAG structures (Li et al., 2018). However,
the Macro-F1 performance of HIDDENjnt is far bet-
ter than that of the cascaded model HIDDENcas.

1https://www.yelp.com/dataset/
challenge

This illustrates that our joint model is able to bet-
ter recover from less reliable (or less useful) label
co-occurrence information, just as was illustrated
in the Table 1 for the synthetic setting.

Dataset Method Micro-F1 Macro-F1

TextCNN-Flat∗ 76.6 43.0
HIDDENflt 77.9 44.5

RCV1 HIDDENcas 78.0 45.5
HIDDENjnt 79.3 47.3
TextCNN-Flat∗ 69.5 39.5
HIDDENflt 76.4 37.1

NYTimes HIDDENcas 74.6 33.2
HIDDENjnt 77.0 43.6
TextCNN-Flat∗ 62.8 27.3
HIDDENflt 62.5 37.9

Yelp HIDDENcas 60.5 33.9
HIDDENjnt 60.8 35.6

Table 3: Performance comparison on all three datasets
with TextCNN as the base classification model. Re-
call that HIDDENflt is our own multi-class classification
baseline. We observe that the numbers reported by Mao
et al. (2019) (indicated by ∗) for the TextCNN based
flat baseline model are consistently outperformed by
the proposed HIDDEN models.

5.5 Comparison of Hyperbolic space and
Euclidean space

To assess the utility of the hyperbolic space
for embedding hierarchical labels, we compare
HIDDENjnt and HIDDENeuc. Table 4 presents this
comparison on the three datasets. HIDDENeuc per-
forms worse than HIDDENjnt which uses the hyper-
bolic space for embedding labels (except Micro-F1
for Yelp due to reasons stated before). This is ex-
pected since embedding trees is much more effec-
tive in the hyperbolic space compared to Euclidean
space since in the hyperbolic space, volume grows
exponentially with distance from the origin while
in Euclidean space, this growth is polynomial. The
number of nodes in a tree also increases exponen-
tially with distance from the root, making Hyper-
bolic spaces useful for embedding hierarchies.

5.6 Comparison with model that explicitly
uses the true hierarchy

We compare performance of our joint approach
HIDDENjnt against a state-of-the-art hierarchical
multi-label classifier, HiLAP (Mao et al., 2019).
However, unlike our proposed models (variants of
HIDDEN), HiLAP has access to the true hierarchy

https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
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Dataset Method Micro-F1 Macro-F1

HIDDENeuc 78.4 47.6
RCV1 HIDDENjnt 79.3 47.3

HIDDENeuc 76.4 40.4
NYTimes HIDDENjnt 77.0 43.6

HIDDENeuc 61.1 34.2
Yelp HIDDENjnt 60.8 35.6

Table 4: Performance comparison for HIDDENjnt with
HIDDENeuc. HIDDENjnt consistently has better Macro-
F1 better than HIDDENeuc and generally better Micro-
F1 too. This illustrates the utility of Hyperbolic spaces
for embeddding label hierarchies.

both training and inference. Thus, HiLAP serves
as some form of skyline for the HIDDEN suite of
approaches proposed in this paper. HiLAP learns
label assignment policy using the reinforcement
learning framework.

In Table 5, we compare the performance of
HIDDENjnt against HiLAP model as reported in
Mao et al. (2019). Interestingly, on RCV1, we
obtain better Micro-F1 score (+0.7) for the joint
model HIDDENjnt over the HiLAP method. On
NYT, our Micro-F1 score is far better (+7.1) than
HiLAP; our Macro-F1 score is also marginally bet-
ter (+0.4) than their Macro-F1 scores. These re-
sults are interesting because HIDDENjnt seems to
obtain better generalisation through joint learning
of the document classifier and label embeddings
in a hyperbolic space, even without access to the
true hierarchy. However, on Yelp, HiLAP seems to
benefit over HIDDENjnt by explicitly using the true
hierarchy.

Dataset HIDDENjnt HiLAP
Micro Macro Micro Macro

RCV1 79.3 47.3 78.6 50.5
NYTimes 77.0 43.6 69.9 43.2

Yelp 60.8 35.6 65.5 37.3

Table 5: Performance comparison of HIDDENjnt with
HiLAP with respect to Macro-F1 and Micro-F1. It it
interesting to note here that though HIDDENjnt does not
know the true hierarchy, it performs better than HiLAP
(which uses the true hierarchy) in some cases. (HiLAP
numbers are those reported by Mao et al. (2019))

5.7 Evaluating performance of embeddings
We compare embeddings learned using different
approaches with the ground truth hierarchy to eval-

uate the effectiveness of the embeddings. Figure
2 shows the plot of NDCG scores for different
values of k on the RCV1 and NYTimes dataset
across HIDDENcas and HIDDENjnt (for two differ-
ent values of λ). In Table 6, we compare the Spear-
man rank correlation. The superior performance of
HIDDENjntstrongly suggests that the embeddings
learnt using the joint model are more representative
of the true hierarchical organisation of the labels
than those obtained using the flat and cascaded vari-
ants. This also goes to show that even the first term
in our objective has positive contribution towards
the learning of hyperbolic embeddings and indeed
joint learning is beneficial.

Figure 2: Plot of NDCG versus k for assessing the qual-
ity of the learnt label embeddings with respect to the ac-
tual hierarchy on RCV1 and NYT datasets. The better
performance of HIDDENjnt indicates the label embed-
dings Θjnt are most representative of the true hierarchy.

6 Conclusion

We propose a novel approach to hierarchical multi-
label classification based on joint learning of doc-
ument classifier and label embeddings in hyper-
bolic space. The proposed framework HIDDEN
allows us to discover label hierarchical relationship
by leveraging properties of hyperbolic geometry.
Even though label-hierarchy is assumed to be un-
available, our method achieves comparable results
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HIDDENflt HIDDENjnt HIDDENcas

RCV1 21.2 53.9 44.1
NYTimes 11.4 39.5 36.1

Yelp 16.3 31.9 28.8

Table 6: Spearman rank correlation test for the gener-
ated embeddings for all the datasets. Each method is
compared against the ground truth hierarchy. Highest
values for HIDDENjnt indicates the label embeddings
Θjnt are most representative of the true hierarchy.

with state-of-the-art hierarchy aware methods. We
performed extensive experiments on three datasets
and demonstrate effectiveness of the learned em-
beddings.
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Appendix

1 Explanation for Π(x)

The Lorentz model is defined as the Riemannian
Manifold, Ln = (Hn, gl), where Hn = {x ∈
Rn+1 : 〈x,x〉L = −1,x0 > 0}, and gl =
diag([−1 1 . . . 1]). Here, 〈x,y〉L, known as the
Minkowski inner-product, is given by

〈x,y〉L = −x0y0 + x1y1 + . . .+ xnyn

The Poincaré model and the Lorentz model are
equivalent in isometry. Therefore points in Lorentz
manifold can be mapped into Poincaré ball as, p :
Hn → Pn

p(x0, x1, . . . , xn) =
(x1, . . . , xn)

x0 + 1

A point x in the Euclidean space Rn can be
projected onto the Lorentz manifoldHn using the
transformation Ω(x) =

[√
1 + ‖x‖2,x

]
. This

transformation ensures that the Minkowski inner-
product, 〈Ω(x),Ω(x)〉L , is equal to −1, and that
the first component, Ω(x)0 ≡

√
1 + ‖x‖2 is pos-

itive, as required for membership in the Lorentz
manifold.

Now using the isometry between Poincaré and
Lorentz models (Nickel and Kiela, 2018), we have
Π : Rn → Pn as

Π(x) = p (Ω(x)) =
x

1 +
√

1 + ‖x‖2

2 Dataset Details

We describe the details of the datasets used in our
experiments.

For RCV1 dataset (Lewis et al., 2004), we use
the original training/test split and use 10% of the
training set as the validation set. We introduce
an extra Root label in addition to the 103 labels
present in the dataset. Each document in the dataset
is labelled with this label.

The details for the other datasets used are same
as in Mao et al. (2019) and we refer the readers to
the same.

3 Remarks on Synthetic Experiments

In SETTING 1, with increasing probability of a
label being randomly dropped, we observe in Fig-
ure 3 that the performance of all the models de-
creases which is expected. However, it is inter-
esting to note that HIDDENjnt is more robust to

the noisy labels and always performs better than
HIDDENflt since it has an additional source of in-
formation about the labels via label co-occurrences.
This information is also implicitly available to
HIDDENflt but from our experiments, we observe
that providing this information explicitly improves
performance. We also observe that performance
of HIDDENcas fluctuates quite a bit which is prob-
ably due to the fact that it overly relies on label
co-occurrence and commits to a set of label em-
bedding before trying to solve the classification
task.

In SETTING 2, with increasing number of points
in the training set, we observed in Figure 4 that with
very small datasets, HIDDENcas performs slightly
better than HIDDENjnt but with increasing dataset
sizes, HIDDENjnt performs better. Since there is no
label noise in this setting, the label co-occurances
are expected to be quite meaningful and with small
dataset sizes, jointly learning both the document
embedding model Fw and the label embeddings
Θ jointly (HIDDENjnt) is more difficult compared
learning Θ first and then Fw (HIDDENcas).

HIDDENjnt and HIDDENcas perform better than
HIDDENflt since the former can fall back of the
label correlation signal via L2 which is avail-
able in a much more easily usable format than to
HIDDENflt. As discussed above, having the label
co-occurrences available explicitly to the models
help achieve better performance.

We observe similar results in other synthetic set-
tings.

4 Hierarchy of the Synthetic data

As described in the paper, the synthetic data is
generated from 16 Bivariate Gaussian distributions
with their means placed evenly in a 4 × 4 grid.
These Gaussians are then grouped at various lev-
els to get an hierarchy with 3 level as shown in
Figure 5.

5 Contrasting label hierarchies across
datasets

Recall, how in Table 3 of the paper, we observe im-
provement of the joint model HIDDENjnt over the
flat (HIDDENflt) and cascaded (HIDDENcas) mod-
els on RCV1 and NYTimes datasets. Note that
the labels of RCV1 as well as of NYTimes form
trees. However, on the Yelp dataset, the cascaded
model (HIDDENcas) performs somewhat worse (-
2 on micro and -3.3 on macro) than our baseline
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Figure 3: Micro and Macro F1 scores with increasing probability of randomly dropping one label for all three
model. Scores are averaged over 10 runs

Figure 4: F1 scores with increasing dataset sizes (number of points in train set) for all three model

model (HIDDENflt), hinting at the possibility that
label co-occurrence information might not be help-
ful toward the classification task. This could be
partly also because the labels in Yelp are structured
in the form of a DAG with 12 labels in the labels
set having more than one parent.

5.1 δ-hyperbolicity

To further investigate why our method fails to per-
form well on Yelp dataset, we compute hyperbolic-
ity (Gromov, 1987) for each of the label hierarchies.
The hyperbolicity δ of a graph G is a measure of
how tree-like the graph is. Lower the δ, the more
tree-like is the graph. Hyperbolicity δ is 0 for trees.

As shown in Table 7, RCV1 has 0 hyperbolic-

Dataset RCV1 NYT Yelp
Hyperbolicity 0 1 1

Table 7: Hyperbolicity (Gromov, 1987) of the label hi-
erarchies for the datasets used

ity as expected, since the label hierarchy is a tree.
We would have expected NYT to also have a hy-
perbolicity of 0 but the label Others appears at
different levels of the hierarchy making it a DAG.
However, this is the only deviation from being a
tree and thus our method is able to perform well
on NYT. For Yelp, the hyperbolicity is 1 and there
are multiple labels with more than one parent and
thus it is less tree-like than the NYT hierarchy. It
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Figure 5: Hidden Hierarchy in the Synthetic experiments

is due to this DAG-ness that our method does not
perform as well on Yelp as the other datasets. Note
that this a limitation of hyperbolic spaces and us-
ing other geometric spaces which are conducive to
embeddings DAGs, our method is expected to per-
form well even when the implicity label hierarchy
is a DAG. In summary, hyperbolic spaces are good
for embedding low δ-hyperbolicity graphs and thus
our methods performance better with graphs having
low hyperbolicity.


