Attacks against Ranking Algorithms with Text Embeddings:
A Case Study on Recruitment Algorithms

Anahita Samadi and Debapriya Banerjee and Shirin Nilizadeh
The University of Texas at Arlington
{anahita.samadi, debapriya.banerjee2}@mavs.uta.edu,
and shirin.nilizadeh@uta.edu

Abstract

Recently, some studies have shown that text
classification tasks are vulnerable to poisoning
and evasion attacks. However, little work has
investigated attacks against decision-making al-
gorithms that use text embeddings, and their
output is a ranking. In this paper, we focus
on ranking algorithms for the recruitment pro-
cess that employ text embeddings for ranking
applicants’ resumes when compared to a job de-
scription. We demonstrate both white-box and
black-box attacks that identify text items that,
based on their location in embedding space,
have a significant contribution in increasing
the similarity score between a resume and a
job description. The adversary then uses these
text items to improve the ranking of their re-
sume among others. We tested recruitment al-
gorithms that use the similarity scores obtained
from Universal Sentence Encoder (USE) and
Term Frequency—Inverse Document Frequency
(TF-IDF) vectors. Our results show that in both
adversarial settings, on average the attacker is
successful. We also found that attacks against
TF-IDF are more successful compared to USE.

1 Introduction

Recently some studies have shown that text classi-
fication tasks are vulnerable to poisoning and eva-
sion attacks (Liang et al., 2018; Li et al., 2018;
Gao et al., 2018; Grosse et al., 2017). For ex-
ample, some works have shown that an adversary
can fool toxic content detection (Li et al., 2018),
spam detection (Gao et al., 2018) and malware de-
tection (Grosse et al., 2017) by modifying some
text items in the adversarial examples. A recent
work (Schuster et al., 2020) showed that applica-
tions that rely on word embeddings are vulnerable
to poisoning attacks, where an attacker can mod-
ify the corpus that the embedding is trained on,
i.e., Wikipedia and Twitter posts, and modify the
meaning of new or existing words by changing
their locations in the embedding space. In this

work, however, we investigate a new type of attack,
i.e., rank attack, when the text application utilizes
text embedding approaches. In this attack, the ad-
versary does not poison the training corpora but
tries to learn about the embedding space, and how
adding some keywords to a document can change
the representation vector of it, and based on that
tries to improve the ranking of the adversarial text
document among a collection of documents.

As a case study, we focus on ranking algorithms
in a recruitment process scenario. Recruitment
process is a key to finding a suitable candidate for
a job application. Nowadays, companies use ML-
based approaches to rank resumes from a pool of
candidates (Sumathi and Manivannan, 2020; Roy
et al., 2020). One naive approach for boosting
the ranking of a resume can be adding the most
words and phrases to his/her resume from the job
description. However, this is not the best approach
all the time, because: First, the attacker must add
a specific meaningful word to their resume. For
example, they cannot claim they are proficient in
some skills while they are not. Second, adding
any random keyword from the job description to
the resume does not always increase the similarity
between the resume and job description. Instead,
we demonstrate that the adversary can learn about
the influential words and phrases that can increase
the similarity score and use this knowledge and
decide about the keywords or phrases to be added
to their resume.

Therefore, in this work, we investigate: (1) How
can an adversary utilize the text embedding space
to extract words and phrases that have a higher
impact on the ranking of a specific document (here
resume)? and, (2) How can an adversary, with no
knowledge about the ranking algorithm, modify a
text document (here resume) to improve its ranking
among a set of documents?

While we focus on the recruitment applica-
tion, the same approaches can be employed on

457

Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 457-467
Online, November 11, 2021. ©2021 Association for Computational Linguistics

Recruitment Algorithm

Vectorizing all resumes and job
description using Text

embeddings
Resumes l
Computing cosine similarity

between each resume and job
description
Job I
description

Sorting resumes based on their
cosine similarity scores

Figure 1: Ranking algorithm for recruitment

other ranking algorithms that use text embeddings
for measuring the similarity between text docu-
ments and ranking them. For example, such rank-
ing algorithms are applied as part of summariza-
tion (Rossiello et al., 2017; Ng and Abrecht, 2015)
and question and answering systems (Bordes et al.,
2014; Zhou et al., 2015; Esposito et al., 2020).

We consider both white-box and black-box set-
tings, depending on the knowledge of the adver-
sary about the specific text embeddings approach
that is used for the resume ranking. In white-box
settings, we propose a novel approach which uti-
lizes the text embedding space to extract words
and phrases that influence the rankings signifi-
cantly. We consider both Universal Sentence En-
coder (USE) (Cer et al., 2018) and TF-IDF as the
approaches for obtaining the word vectors. USE
computes embeddings based on Transformer ar-
chitecture (Wang et al., 2019a), and it captures
contextual information while on the other hand
TF-IDF does not capture the contextual informa-
tion. In the black-box setting, we propose a neural
network based model that can identify the most
influential words/phrases without knowing the ex-
act text embedding approach that is used by the
ranking algorithm.

2 System and Threat Model

The recruitment process helps to find a suitable can-
didate for a job application. Based on Glassdoor
statistics, the average job opening attracts approxi-
mately 250 resumes (Team), and a recent survey
found that the average cost per hire is just over
$4,000 (Bika).

To Limit work in progress many companies use
Machine Learning to have more efficiency in rank-
ing resumes.A successful approach to rank resumes
is calculating similarity among resume and job de-
scription leveraging NLP techniques (Excellarate).

In this study, the recruitment algorithm is based
on a ranking algorithm. This algorithm takes input
from the resume and the job description and finds
similarities based on their matching score. We use
universal sentence encoder (USE) as the text em-
bedding approach to vectorize each resume and the
job descriptions. As it is shown in Figure 1, our
algorithm includes three steps: (1) all resumes and
the job description are vectorized using USE text
embedding approach; (2) the similarity between
each job description and an individual resume is
computed. Cosine similarity is used as a metric to
compute the similarity score; and (3) the resumes
are sorted based on their similarity scores computed
in the second step in such a way that the resume
with highest similarity score appears at the top of
the list and on the other hand the resume with least
similarity score appears at bottom.

Threat Model. Adversaries have a huge moti-
vation to change the rankings provided by some al-
gorithms, when they are used for decision-making,
e.g., for recruitment purposes. Adjusting a resume
based on the job description is a well-known ap-
proach for boosting the chance of being selected
for the next rounds of recruitment (Team, 2021).
In this work, we show how an adversary can au-
tomatically generate adversarial examples specific
to a recruitment algorithm and text embeddings.
We define this attack as a rank attack, where the
adversary adds some words or phrases to its docu-
ment to improve its ranking among a collection of
documents. We consider white-box and black-box
settings. In a white-box setting, we assume the
attacker has complete knowledge about the ranking
algorithm. In a black-box setting, however, the at-
tacker has no knowledge of the recruitment process
but has limited access to the recruitment algorithm
and can test some resumes against the algorithm.

3 Background

USE Text Embedding. This embedding has been
used to solve tasks, such as semantic search, text
classification, question answering (Rossiello et al.,
2017; Ng and Abrecht, 2015; Bordes et al., 2014;
Zhou et al., 2015; Esposito et al., 2020). USE uses
an encoder to convert given text to a fixed-length
512-dimensional vector. It has been shown that
after embedding sentences, sentences that have
closer meaning carry out higher cosine similar-
ity (an, 2018). We used USE pretrained model,
which is trained on the STS (Semantic Textual Sim-

458

ilarity) benchmark (Agirre).

TF-IDF. TF-IDF or term frequency-inverse doc-
ument frequency is a widely used approach in in-
formation retrieval and text mining. TF-IDF is
computed as a multiplication of TF, the frequency
of a word in a document, and /DF, the inverse of
the document frequency.

4 Data Collection

We collected 100 real public applicant resumes
from LinkedIn public job seeker resumes, GitHub,
and personal websites. To have an equal chance for
applicants and make our experiences closer to real
world recruitment procedures, we only considered
resumes related to computer science. Resumes
are chosen to be in different levels of education
(bachelor, master and Ph.D. with equal distribu-
tion), skills, experiments (entry level, mid level,
senior level), and gender (around fifty percent men
and fifty percent women). We also developed a web
scraper in python to extract computer science jobs
from the Indeed website.! Our dataset includes
over 10,000 job descriptions, extracted randomly
from cities in the USA. We randomly chose 50 job
descriptions and used them in our experiments.

For black-box settings, our neural network archi-
tecture needs a huge amount of data to be trained
on. To have enough training sets we augmented our
data for our models. For a simple setting model,
we created 5,000 records by concatenating 100 re-
sumes to 50 selected job descriptions to augment
our data for recruitment algorithms. Note that the
adversary only needs to obtain or create a set of
resumes and they do not need to use the job descrip-
tions. For a more complex setting, we split resumes
into half, then joined the upper part of each resume
to other resumes’ lower parts. With this approach,
we could maintain the structure of each resume and
each resume could have common resume informa-
tion, such as skills, education, work experince, etc.
We did this procedure for all possible combinations
and created a database with 10,000 resumes.

S White-Box Setting and a Recruitment
Algorithm that Employs USE

In white-box settings, we assume the adversary has
knowledge about the recruitment process and the
use of universal sentence encoder (USE) or term
frequency—inverse document frequency (TF-IDF)
for obtaining the embedding vectors. We propose a

"https://www.indeed.com/

White-box Setting

Phase 1: Finding the best job
description keywords

|

Phase 2: Sorting keywords based
on the resume

|

Phase 3: Adding N keywords to
the adversarial resume

Figure 2: White-box setting

novel approach which utilizes the knowledge about
the text embedding space, here USE, to identify
keywords in the job description that can be added
to the adversarial resume and increase its similarity
score with the job description. Our approach as
it is shown in Figure 2 consists of three phases:
in Phase 1, the adversary tries to identify the im-
portant words in job description; in Phase 2, the
adversary tries to rank the effectiveness of those
words based on its own resume, i.e., identifying
those words that can increase the similarity be-
tween his/her resume and the job description. Af-
ter identifying the most effective words, then in
Phase 3, the adversary modifies its resume based
on his/her expertise and skill set and decides to add
N of those identified words and phrases. Note that
in this attack scenario the adversary does not need
to have any knowledge about the other candidates’
resumes. The details of phase 1 and 2 in this at-
tack are depicted in Algorithm 1 and Algorithm 2,
respectively, and we explain them in the following.

Algorithm 1 Job Description Keywords Extraction

Input: Job Description document

Output: An list of keywords in ascending order
based on their similarity score

. procedure PHASE1(OrginalJob)

: OrginalJob < Filter StopWords(Orginal Job)
: Tokens < Tokenize(OrginalJob)

USE jop < USE(OrginalJobd)

Token_Sim <+ {}

for Token,; € Tokens do
newJob < DeleteT oken(JobDescription, Token;)
USEnewjob — USE(newdJob)

10: Token_Sim — Token_Sim +
{Token;, CosSim(USE job, USE newob)}

11: endfor

12:

13: return AscendingSort ByV alue(Token_Sim)

1
2
3
4:
5:
6.
7
8
9

459

5.1 Phase one: Identifying the Influential
Keywords in the Job Description

In this phase, the adversary focuses on identifica-
tion of the most important keywords from job de-
scription. Based on the use of cosine similarity be-
tween the vectors of resumes and job descriptions
in the recruitment algorithm (depicted in Figure 1),
the highest similarity can be achieved if the resume
is the same as the job description. We propose to
remove words/phrases from the job description and
then examine its impact on the similarity score. A
substantial decrease in the similarity score when a
specific word/phrase is removed demonstrates the
importance of the keyword in the word embedding
space corresponding to this job description. In the
white-box setting, the adversary is aware of the
details of algorithms. Therefore, they employ USE
text embedding to obtain the vector and use cosine
similarity to calculate the similarity scores.

In addition, to examine the importance of
phrases instead of individual words, the adversary
can try to remove phrases with one word (uni-
gram), two words (bigram), three words (trigram),
etc., and then compute the similarity score. Algo-
rithm 1 shows the details of phase I which consists
of the following steps: (1) Text pre-processing: the
keywords of the job description are obtained as a
bag of words, and the stop words are removed to
lower the dimensional space. (2) USE embedding:
The embedding vector is obtained for the original
job description using universal sentence encoder
(USE). (3) Token removal: measures the impor-
tance of each word in the job description. A single
token is deleted from the job description, and the
new job description is created. Next, the embed-
ding vector for New.Job is obtained by passing to
USE. (4) Scoring keywords: Cosine similarity is
calculated to measure the similarity between two
vectors USEep 00 and USE o, ginaijob- In this
regard, lower cosine similarity expresses the fact
that the deleted token has caused an impressive
change in the job description content, therefore it
might be an important keyword. (5) Repetition:
Steps three and four are repeated for all tokens in
the job description. This procedure provides a dic-
tionary, where the keys are tokens, and the values
are their corresponding cosine similarity scores. (6)
Sorting keywords: Finally, extracted keywords are
sorted based on the similarity score in ascending
order.

N-gram phrases: Moreover, we extended the

code in Algorithm 1 so that it can also identify the
influential phrases, i.e., bigrams and trigrams. In
that case, in each repetition, instead of one indi-
vidual word, repeatedly 2 or 3 neighbor words are
removed from the job description and the similarity
score is computed.

5.2 Phase two: Re-sorting the Influential
Keywords based on a Specific Resume

The previous phase helps identify the words and
phrases in the job description that in USE embed-
ding space have a higher impact on providing a
larger similarity score. However, each resume is
unique and adding the most influential words ob-
tained from the job description might not have the
same impact on all the resumes. In Phase 2, we
try to identify the best words and phrases that can
boost the similarity score between a specific re-
sume and job description. Algorithm 2 shows the
details of phase 2 which consists of the following
steps:

(1) Adding Keywords: A keyword from the list
of fifty keywords obtained from phase I is added
to the adversarial resume. (2) Obtaining the Em-
bedding Vector: The embedding vector for the ad-
versarial resume is obtained using USE. (3) Cal-
culating the Similarity: The cosine similarity be-
tween adversarial and job description is computed.
Higher cosine similarity expresses the fact that the
deleted token caused an impressive change in the
Jjob description contents, therefore, it might be an
important keyword. (4) Repetition: These steps
are repeated for all fifty keywords. This procedure
provides a dictionary, where the keys are the fifty
keywords, and the values are their corresponding
cosine similarity scores. The list of keywords are
sorted based on their cosine similarity scores.

N-gram phrases: Algorithm 2 is also extended
to get the sorted list of bigrams or trigrams, and
added to the adversarial resume.

5.3 Experimental Setup

We implemented the rank attack in a white-box
setting and tested all combinations of 100 resumes
and 50 job descriptions. The attack is shown in Al-
gorithm 3. Then in each experiment, we assumed
that a resume is adversarial and therefore the best
keywords for that specific resume are added to it.
To investigate the impact of the number of key-
words on the ranking of the resume, we tested with
n € (1,2,5,10,20,50) of keywords. We also re-
peated these experiments for bigram and trigram

460

Algorithm 2 Resorting the extracted job descrip-
tion keywords based on a resume

Input: Job description document, Resume
document, A list of tokens

Output: An ordered list of keywords

1: procedure PHASE2(JobDescription,
OrderedT okens)
USE jobDescription < USE(JobDescription)
Keyword_Sim <+ {}

Resume,

for keyword; € OrderedT okens do

USE dvResume < USE(adversarial Resume)
Keyword_Sim < Keyword_Sim +
{Keywor(i“ CO€S7"’(USEaduResume7 USEjobpescr Lpfzon)]

end for

—oY RRNEWY

return Sort ByV alue(Keyword_Sim)

phrases. Note that in practice, the adversary does
not need to, and cannot obtain the ranking of its
resume among all other resumes. However, in our
experiments we show how using this attack they
can improve their position.

Algorithm 3 White Box Adversarial Attack

Input: Job Description documents, Resume
documents

Output: Ranking

1: procedure WHITEBOX(.J obs, Resumes)

2: for job; € Jobs do

3: Tokens < Phasel(job;)

4: for resume; € Resumes do

5: Rank < GetRanking(job,, resume;, Resumes)

6: words —
Phase2(JobDescription, Resume, Tokens)

7: forn € (1,2,5,10,20,50) do

8: AdvResume —
AddW ords(resumej,n, words)

9: Resumes2 < Resumes — resume;

10: Resumes2 <+ Resumes2 + AdvResume

11: Rankpew < Ranking(job;, Resumes2)

12: RankChangegObiYmsu,,,,ej‘n — Rankpew —
Rank

13: end for

14: end for

15: end for
16:

17: return RankRankChange

5.4 Experimental Results

Figure 3a shows the histogram of average rank im-
provements for 100 resumes and 50 random job
descriptions. All resumes had rank improvement,
and in most of them the rank improvement is sig-
nificant. For example, on average an adversarial
resume moved up 16 positions in rank improve-
ment, about 6 resumes had an average of moving
up 28 ranking positions, and more than 65 resumes
moved up more than 10 ranking positions.

Figure 3b shows the average rank improvement

461

adversarial Resume < AddToken(Resume, keyword;)

based on the number of words or phrases (bigrams
and trigrams) added to the adversarial resume. We
see a similar trend when adding unigrams, bigrams,
and trigrams, i.e., adding more words and phrases
increases the average rank improvement. For exam-
ple, while adding 2 bigrams improves the ranking
of the adversarial resume on average by 6, adding
20 bigrams improves the ranking of the adversarial
resume by 30, among 100 resumes. However, inter-
estingly we see that adding too many words/phrases
might not have the same effect, e.g., adding 50 bi-
grams shows a rank improvement by only about 28.
This shows there might be an optimal number of
words/phrases that can help ranking of a document.

Comparing the addition of unigrams, bigrams,
and trigrams, we see that trigrams provide better
rank improvement. For example, adding 10 uni-
grams, bigrams, and trigrams, we see a rank im-
provement of 12, 21 and 25, respectively. This find-
ing can be explained by USE being a context-aware
embedding approach, which takes into account the
order of words in addition to their meaning.

6 White-box Setting and a Recruitment
Algorithm that Employs TF-IDF

We also investigate the effectiveness of the attacks
in white-box setting, when the recruitment algo-
rithm uses TF-IDF vectors to compute the simi-
larity between resumes and job descriptions. The
attack is the same. The only difference is in the
recruitment algorithm. Since the adversary has the
knowledge that the recruitment algorithm uses TF-
IDF vectors, then they compute TF-IDF vectors
instead of USE vectors.

6.1 Experimental Setup

For these experiments, we implemented the recruit-
ment algorithm that ranks resumes based on the
similarity scores that are calculated between the
TF-IDF vectors of resumes and the job descrip-
tion. We implemented the rank attack and tested
on all combinations of the 100 resumes and 50 job
descriptions. For each job description, we first ob-
tained the ranking of the original resumes, and then
in each experiment, we assumed that a resume is
adversarial and therefore the best keywords for that
specific resume are added to it. To investigate the
impact of the number of keywords on the ranking of
the resume, we tested with n € (1,2, 5, 10, 20, 50)
of keywords. We also repeated these experiments
for bigram and trigram phrases.

Number of Resumes

Average Rank Improvement

LA B s e s s
123456789 11 13 15 17 19 21 23 25 27 29
Average Rank Improvement

(a) Histogram of average rank improvement

31

T T T T T T
33 35 37 39 gl 1 2 5 10 20 50
Number of Keywords

(b) Average rank improvement

Figure 3: Average rank improvement for 100 resumes and 50 job descriptions, in white-box setting when recruitment

algorithm employs USE embeddings

6.2 Experimental Results

Figure 4a shows the histogram of average rank im-
provements for 100 resumes and 50 random job
descriptions. Most resumes had rank improvement
and in most of them rank improvement was sig-
nificant. For example, on average, an adversarial
resume moved up about 25 ranking positions, and
more than 85 resumes moved up more than 10.

In Figure 4b, we investigated the effect of adding
bigram and trigram bags of words on average rank
improvement. Interestingly, in contrast to our re-
sults for recruitment algorithms that employ USE
embedding, in these experiments we achieved bet-
ter results for unigrams compared to bigrams and
trigrams. Note that TF-IDF approach is only based
on word similarity and does not consider the con-
text. This might explain the results. No matter
what n-gram is used, by increasing the number of
keywords, the ranks also improve. Comparing re-
sults in Figure 3b and Figure 4b also shows that it
is easier for the adversary to attack a recruitment al-
gorithm that employs TF-IDF compared to USE, as
the rank improvement is larger for attacks against
the the recruitment algorithm that employs TF-IDF,
specially in the case of unigrams. For example,
by adding 20 keywords to attack the recruitment
algorithm that employs USE, we observe an aver-
age rank improvement of 18, 29, and 33 for uni-
gram, bigram and trigram, respectively. However,
by adding 10 keywords to attack the recruitment al-
gorithm that employs TF-IDF, they are 48, 32, and
37 for unigram, bigram and trigram, respectively.

7 Black-Box Setting

In the back-box setting, an adversary does not have
access to the model specification but has access
to the recruitment algorithm as an oracle machine,
which receives an input, e.g., here a resume, and
then generates a response, e.g., here accept/ reject,
or the ranking among all the resumes in its pool.
Therefore, the adversary is able to send some re-
sumes to the recruitment algorithm and obtain the
output for them, which then can be used to train a
neural network model. This model then identifies
the features (i.e., keywords) that help resumes to be
accepted or obtain better ranking. The adversary
then can boost its chance of acceptance by adding
some or all of the identified keywords.

The input vector of our neural network model is
the resumes, and the output is a vector that demon-
strates the best keywords. In our experiments,
we examine attacks against two recruitment algo-
rithms: a binary classifier, which label a resume as
accept or reject, and a ranking algorithm that pro-
vides a ranking based on similarity scores between
the job description and the resumes, where they
are vectorized by USE embeddings. The attacks
against both algorithms have two phases: phase 1:
pre-processing which prepares the data for the neu-
ral network, and phase 2: a neural network model.

Phase 1: Pre-processing. To provide an ac-
ceptable format for the neural network input, we
applied one-hot encoding (Harris and Harris, 2012)
following these steps: (1) Tokenization: The job
description and resumes are tokenized and a dic-
tionary of words is created, where key is the to-
ken/word, and value is the frequency of the words
in these documents. (2) Vectorization of Resumes:

462

@
3

(N
] °\/ \\o W / \\ a °/\°/\ \/"\/

o-0 o o L
T

Number of Resumes

w IS
S S
L L

Average Rank Improvement
N
S
|

,_.
1)
L

o
T T T T

123456789 11
Average Rank Improvement

(a) Histogram of average rank improvement

T T T T T T T T T T
T T T T T T
13 15 17 19 21 23 25 27 29 3 3 3 37 39 4 43 45 1 2 5 10 20 50

Number of Keywords

(b) Average rank improvement

Figure 4: Average rank improvement in white-box setting when recruitment algorithm employs TF-IDF vectors

Tokens/words are encoded as a one-hot numeric
array, where for each word a binary column is cre-
ated. As a result, a sparse matrix is returned, which
represents the resumes in rows and the words in
columns. If a resume includes some word, the entry
for that row and column is 1, otherwise it is 0.

Neural Network Architecture. Neural net-
works have been applied in many real-world prob-
lems (Nielsen, 2015; Salakhutdinov, 2014; Has-
sanzadeh et al., 2020; Ghazvinian et al., 2021;
Krizhevsky et al., 2012). We propose a deep neu-
ral network architecture which consists of an input
layer, three dense layers as hidden layers, and an
output layer representing the labels. In the output
vector, ones indicate an index of words in the dic-
tionary that adding them to a resume will increase
the rank of the resume. For the first two hidden
layers we used rectified linear unit (ReLU) (Nair
and Hinton, 2010) as the activation function. Due
to their unique formulations, ReLUs provide faster
training and better convergence relative to other ac-
tivation functions (Nair and Hinton, 2010). For the
output layer we used sigmoid activation function to
map the output to lie in the range [0,1], i.e., actual
probability values (Han and Moraga, 1995). As
our problem was a multilabel problem, we applied
binary cross-entropy loss. In contrast to softmax
cross entropy loss, binary cross-entropy is indepen-
dent in terms of class, i.e., the loss measured for
every class is not affected by other classes.

For the optimization of loss function (train-
ing the neural network), we used a stochas-
tic gradient descent-based optimization algorithm
(Adam; (Kingma and Ba, 2015)). For the regular-
ization technique, to avoid over-fitting (Salakhutdi-
nov, 2014), we tested dropout with different rates
[0 to 0.5]. Dropout was applied for all hidden lay-

ers, and our assessment showed that the dropout
rate (0.1) yielded better results.

7.1 Experiments for the Binary Classifier

This is a simpler model, where the recruitment pro-
cess is defined as a binary classification algorithm,
and a resume is accepted based on some rules. In
our experiments, we defined simple rules, e.g., if
python as a skill is in the resume. After tokeniza-
tion of the resume and the job description, instead
of generating the one-hot encoding for all the words
obtained, we chose 20 of the most frequent words
of all resumes and job descriptions. Also, our pro-
posed neural network will predict a maximum num-
ber of 20 keywords that will enhance resume rank.
This is to test with a low dimension vector. We
then concatenated the vectors of the resume and
job description.

Creating the groundtruth dataset. We em-
ployed two steps: (1) Xtrain: 5000 records of 40-
dimension vectors, each vector is a resume and
coded by one-hot format. In Section 4 we ex-
plained the method for generating these resumes.
(2) Ytrain: 5000 records of 20-dimension vectors.
If the value of a word index is set to one then adding
this word to resume makes the resume be accepted.

The attack can be more successful if the adver-
sary obtains a larger training dataset. This might be
seen as a bottle-neck for this type of attack, since
the adversary needs to create/ obtain many resumes
and submit them for evaluation without being sus-
picious. However, this scenario can be practical.
First of all, it is easy to obtain resumes online and
the attacker can obtain relevant resumes and use
them. Also, the adversary does not need to send
all the resumes for the target position, but they can
divide and send them to multiple positions in the

463

same company assuming that the company uses the
same algorithm or set of rules for their recruitment
for all their positions.

Model Training. To train our neural network
model, we split our data into train and test (70%
train set, 30% test set); to evaluate our training re-
sults, we used validation set approach (we allocated
30% of training set for validation) and trained on
2,450 samples, validate on 1,050 samples. We also
set batch size equal to 50 and number of epochs
equal to 100. Our results show that the model is
trained well through epochs. After 50 epochs, the
recall, precision and F1-score of this model over
the validation set reached their maximum, which
are 0.6, 0.7 and 0.82, respectively.

We examined the performance of the trained
neural network model on test data. We added pre-
dicted words in the neural network to each related
resume and submitted each resume to the recruit-
ment algorithm and obtained the response from the
recruitment oracle in the form of a binary value.
Figure 6 shows that the success rate of getting ac-
cepted significantly increases by using suggested
keywords. While without adding the keywords,
the acceptance rate was 20%, after the attack the
acceptance rate increased to about 100%.

[NEWrank
1400 [OLDrank

1200
1000
800
600
400
200 “
0 acceptance reject
statistics

Figure 5: Attack success in black-box simple setting

7.2 Experiments for the Ranking Algorithm

This model is more complicated where the recruit-
ment process is defined as a ranking algorithm. The
goal is similar to the previous setup, i.e., identify-
ing the best 50 words that can improve the ranking
of a resume. For this setting, we considered higher
dimension input vectors with 10,000 words.
Creating the groundtruth dataset. We em-
ployed these steps: (1) Xtrain: 10,000 records
of 9054-dimension vectors, each vector is a re-
sume that is coded by one-hot format. The 9054-
dimension vector represents all the words (after

cleaning and removing stop words) in all the re-
sumes. (2) Ytrain: 10,000 records of 50-dimension
vectors. For creating the output vectors, we se-
lected a random job description, and employed the
same technique proposed in white-box approach
(Section 5.1) and identified the 50 most influen-
tial words in the job description. We assumed the
recruitment algorithm uses the USE embedding,
however the attacker can try this approach with
other text embedding algorithms, or even choose
the most frequent words. Therefore, in practice, the
adversary does not need to know about the recruit-
ment algorithm. We used 50 words to be consistent
with our white-box attack and have enough choices
of words. However, this is a parameter that can be
defined during the time of attack. After identifying
the influential words for the target job description,
the adversary adds each of the words to each of
the resumes in the training set, and then queries
the black-box algorithm asking if the position of
resume is improved. If it is improved then the value
for that word and that resume in Ytrain would be
1, otherwise it would be 0. Therefore, the output
label is an encoded vector by one-hot format.

Model Training. To train our neural network
model, we split our data into 70% train set and
30% test set. To evaluate our training results, we
allocated 30% of training set for validation and
trained on 4,900 samples, and validated on 2,100
samples. Our results showed that the model is
trained well through epochs. After 10 epochs, the
recall, precision and F1-score of this model over
the validation set reached their maximum values,
i.e., 0.62, 0.68 and 0.75, respectively.

To test the performance of our trained neural
network model, we ran it on our testing set and
obtained the 50-dimention vector for each resume
in it. This vector shows which words among the
50 influential words help the resume for this job
description. Then, we added the identified words to
the resumes, submitted each resume to the recruit-
ment algorithm, and obtained the response in the
form of a ranking score. Note that the adversary
does not need to obtain these rankings for conduct-
ing the attack. Figure 6 shows that most of the
resumes have a significant rank improvement. For
example, more than 200 resumes out of 3000 re-
sumes in the testing set had a rank improvement
of more than 400, while more than 400 resumes
had a rank improvement between 150 and 200 after
adding the suggested keywords.

464

w
8
3

Number of resumes
M
3
g

100

5 A9 60 O 6O 00 O L0 O O ¢
D 0 B 20 5O 2O P o D o
o™ o™ @ o™ o™ o™ o
597 402 6% 05 0 0t 02 0 o

LR SR R

Rank improvement

Figure 6: Rank improvement (complex setting)

8 Related Work

Attacks against text retrieval systems. Most of
studies attack the deep neural networks for text clas-
sification tasks, such as sentiment analysis (Li et al.,
2018), toxic content detection (Li et al., 2018),
spam detection (Gao et al., 2018) and malware de-
tection (Grosse et al., 2017). These works proposed
methods for identifying text items that have a sig-
nificant contribution in text classification task, then
generate adversarial text by modifying those text
items, e.g., modifying a word’s characters (Liang
et al., 2018; Ebrahimi et al., 2018b,a), adding or
removing words (Liang et al., 2018), replacing
words arbitrarily (Papernot et al., 2016; Sun et al.,
2018), or substituting words with synonyms (Alzan-
totet al., 2018; Ren et al., 2019; Wang et al., 2019b;
Blohm et al., 2018; Gong et al., 2018).

Adversarial examples for non-classification
tasks. There are a couple of articles on crafting
adversarial text for non-classification tasks. Jia
and Liang (Jia and Liang, 2017) attacked machine
comprehension and showed that the Stanford ques-
tion answering dataset (Rajpurkar et al., 2016) is
susceptible to black-box attacks, where adversarial
questions are generated by appending distracting
sentences at the end of the paragraph. A recent
work (Cheng et al., 2020) attacked a text summa-
rization, that is based on seq2seq models. In our
paper, however, we propose crafting an adversarial
text for ranking algorithms.

Attacks against resume search. A recent
work (Schuster et al., 2020) showed that applica-
tions that rely on word embeddings are vulnerable
to poisoning attacks, where an attacker can modify
the corpus that the embedding is trained on and

modify the meaning of new or existing words by
changing their locations in the embedding space.
However, our attack is not about poisoning the cor-
pus, but instead it learns the words and phrases,
based on some text embedding algorithm. In ad-
dition, we focus on the recruitment process that
employs cosine similarity for ranking applicants’
resumes compared to a job description.

9 Limitations and Future Work

This study examines the recruitment algorithms
that use text embeddings and a similarity function
to rank the resumes. However, examining more
complex ranking algorithms is left for future work.
In addition, the analysis can be expanded to other
types of text embeddings. In the black-box setting,
we did not investigate the trade-off between the
number of queries that the adversary needs to send
to the recruitment algorithm to create the training
set, and the performance of the attack. It might be
possible that the adversary can obtain good results
using even a smaller training set. We will explore
this in the future. We also have not studied the
types of words that make it easy to game the sys-
tem. In the future, we will examine the identified
words in experiments in terms of their frequency,
semantics, and other linguistic properties. More-
over, investigating the graybox attack remains for
future work, when the attacker has this knowledge
that the recruitment algorithm uses some kind of
text embedding but does not know its type. This at-
tack setting can help us to investigate the use of one
text embedding approach for attacking a ranking al-
gorithm that uses another text embedding approach.
In other words, we can examine the transferability
of one approach for another approach.

10 Conclusion

In this project we found that an automatic recruit-
ment algorithm, as an example of ranking algo-
rithms, is vulnerable against adversarial examples.
We proposed a successful adversarial attack in two
settings: white-box and black-box. We proposed
a new approach for keyword extraction based on
USE. We observed the majority of resumes have
significant rank improvements by adding more in-
fluential keywords. Finally, in a black-box setting,
we proposed multilabel neural network architecture
to predict the proper keyword for each resume and
job description.

465

References

Eneko Agirre. STSbenchmark. https:
//ixa2.si.ehu.eus/stswiki/index.php/
STSbenchmark.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890-2896, Brussels, Belgium. Association
for Computational Linguistics.

Melanie Tosik an. 2018. Debunking fake news one
feature at a time. ArXiv preprint, abs/1808.02831.

N Bika. Recruiting costs FAQ: Budget and cost per
hire. https://resources.workable.com/
tutorial/fag-recruitment-budget-
metrics.

Matthias Blohm, Glorianna Jagfeld, Ekta Sood, Xiang
Yu, and Ngoc Thang Vu. 2018. Attention-based con-
volutional and recurrent neural networks: Success
and limitations in machine reading comprehension.
Association for Computational Linguistics.

Antoine Bordes, Jason Weston, and Nicolas Usunier.
2014. Open question answering with weakly super-
vised embedding models. In Joint European confer-
ence on machine learning and knowledge discovery
in databases, pages 165—180. Springer.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169-174, Brussels, Belgium. Association for
Computational Linguistics.

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang,
and Cho-Jui Hsieh. 2020. Seq2sick: Evaluating the
robustness of sequence-to-sequence models with ad-
versarial examples. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 3601-3608. AAAI Press.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018a.
On adversarial examples for character-level neural
machine translation. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 653—-663, Santa Fe, New Mexico, USA. Asso-
ciation for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018b. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 31-36,
Melbourne, Australia. Association for Computational
Linguistics.

Massimo Esposito, Emanuele Damiano, Aniello Minu-
tolo, Giuseppe De Pietro, and Hamido Fujita. 2020.
Hybrid query expansion using lexical resources and
word embeddings for sentence retrieval in question
answering. Information Sciences, 514:88-105.

Excellarate. Resume Ranking using Machine Learn-
ing. https://medium.com/@Excellarate/
resume-ranking-using-machine-learning-
implementation—-47959%a4e5d8e.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50-56. IEEE.

Mohammadvaghef Ghazvinian, Yu Zhang, Dong-Jun
Seo, Minxue He, and Nelun Fernando. 2021. A novel
hybrid artificial neural network - parametric scheme
for postprocessing medium-range precipitation fore-
casts. Advances in Water Resources, 151:103907.

Zhitao Gong, Wenlu Wang, Bo Li, Dawn Song, and
Wei-Shinn Ku. 2018. Adversarial texts with gradient
methods. ArXiv preprint, abs/1801.07175.

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. 2017. Adver-
sarial examples for malware detection. In European
Symposium on Research in Computer Security, pages
62-79. Springer.

Jun Han and Claudio Moraga. 1995. The influence of
the sigmoid function parameters on the speed of back-
propagation learning. In International Workshop on
Artificial Neural Networks, pages 195-201. Springer.

David Harris and Sarah Harris. 2012. Digital design and
computer architecture (2nd ed.). Morgan Kaufmann.

Yousef Hassanzadeh, Mohammadvaghef Ghazvinian,
Amin Abdi, Saman Baharvand, and Ali Joza-
ghi. 2020. Prediction of short and long-term
droughts using artificial neural networks and hydro-
meteorological variables.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021-2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

466

https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://arxiv.org/abs/1808.02831
https://arxiv.org/abs/1808.02831
https://resources.workable.com/tutorial/faq-recruitment-budget-metrics
https://resources.workable.com/tutorial/faq-recruitment-budget-metrics
https://resources.workable.com/tutorial/faq-recruitment-budget-metrics
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://aaai.org/ojs/index.php/AAAI/article/view/5767
https://aaai.org/ojs/index.php/AAAI/article/view/5767
https://aaai.org/ojs/index.php/AAAI/article/view/5767
https://aclanthology.org/C18-1055
https://aclanthology.org/C18-1055
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://medium.com/@Excellarate/resume-ranking-using-machine-learning-implementation-47959a4e5d8e
https://medium.com/@Excellarate/resume-ranking-using-machine-learning-implementation-47959a4e5d8e
https://medium.com/@Excellarate/resume-ranking-using-machine-learning-implementation-47959a4e5d8e
https://doi.org/https://doi.org/10.1016/j.advwatres.2021.103907
https://doi.org/https://doi.org/10.1016/j.advwatres.2021.103907
https://doi.org/https://doi.org/10.1016/j.advwatres.2021.103907
https://doi.org/https://doi.org/10.1016/j.advwatres.2021.103907
https://arxiv.org/abs/1801.07175
https://arxiv.org/abs/1801.07175
http://arxiv.org/abs/2006.02581
http://arxiv.org/abs/2006.02581
http://arxiv.org/abs/2006.02581
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural
Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Sys-
tems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States, pages
1106-1114.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. ArXiv preprint,
abs/1812.05271.

Bin Liang, Hongcheng Li, Miaogiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2018. Deep text classi-
fication can be fooled. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, 1IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 4208-4215. ijcai.org.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), June 21-24, 2010,
Haifa, Israel, pages 807-814. Omnipress.

Jun-Ping Ng and Viktoria Abrecht. 2015. Better sum-
marization evaluation with word embeddings for
ROUGE. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1925-1930, Lisbon, Portugal. Association
for Computational Linguistics.

Michael A Nielsen. 2015. Neural networks and deep
learning, volume 25. Determination press San Fran-
cisco, CA.

Nicolas Papernot, Patrick McDaniel, Ananthram Swami,
and Richard Harang. 2016. Crafting adversarial input
sequences for recurrent neural networks. In MIL-
COM 2016-2016 IEEE Military Communications
Conference, pages 49-54. IEEE.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1085—
1097, Florence, Italy. Association for Computational
Linguistics.

Gaetano Rossiello, Pierpaolo Basile, and Giovanni Se-
meraro. 2017. Centroid-based text summarization
through compositionality of word embeddings. In
Proceedings of the MultiLing 2017 Workshop on Sum-
marization and Summary Evaluation Across Source
Types and Genres, pages 12-21, Valencia, Spain. As-
sociation for Computational Linguistics.

Pradeep Kumar Roy, Sarabjeet Singh Chowdhary, and
Rocky Bhatia. 2020. A machine learning approach
for automation of resume recommendation system.
Procedia Computer Science, 167:2318-2327.

Ruslan Salakhutdinov. 2014. Deep learning. In The
20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14,
New York, NY, USA - August 24 - 27, 2014, page 1973.
ACM.

Roei Schuster, Tal Schuster, Yoav Meri, and Vitaly
Shmatikov. 2020. Humpty dumpty: Controlling
word meanings via corpus poisoning. In 2020 IEEE
Symposium on Security and Privacy (SP), pages
1295-1313. IEEE.

D Sumathi and SS Manivannan. 2020. Machine
learning-based algorithm for channel selection uti-
lizing preemptive resume priority in cognitive radio
networks validated by ns-2. Circuits, Systems, and
Signal Processing, 39(2):1038-1058.

Mengying Sun, Fengyi Tang, Jinfeng Yi, Fei Wang,
and Jiayu Zhou. 2018. Identify susceptible locations
in medical records via adversarial attacks on deep
predictive models. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK,
August 19-23, 2018, pages 793-801. ACM.

Glassdoor Team. glassdoor. https:
//www.glassdoor.com/employers/blog/
50-hr-recruiting-stats-make-think.

Indeed Editorial Team. 2021. How To Tailor
Your Resume To a Job Description. https:
//www.indeed.com/career—advice/resumes—
cover—letters/tailoring-resume.

Chenguang Wang, Mu Li, and Alexander J. Smola.
2019a. Language models with transformers.

Xiaosen Wang, Hao Jin, and Kun He. 2019b. Natural
language adversarial attacks and defenses in word
level. ArXiv preprint, abs/1909.06723.

Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu.
2015. Learning continuous word embedding with
metadata for question retrieval in community ques-
tion answering. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 250-259, Beijing, China. Association
for Computational Linguistics.

467

https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://arxiv.org/abs/1812.05271
https://arxiv.org/abs/1812.05271
https://doi.org/10.24963/ijcai.2018/585
https://doi.org/10.24963/ijcai.2018/585
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.18653/v1/D15-1222
https://doi.org/10.18653/v1/D15-1222
https://doi.org/10.18653/v1/D15-1222
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/W17-1003
https://doi.org/10.18653/v1/W17-1003
https://doi.org/10.1145/2623330.2630809
https://doi.org/10.1145/3219819.3219909
https://doi.org/10.1145/3219819.3219909
https://doi.org/10.1145/3219819.3219909
https://www.glassdoor.com/employers/blog/50-hr-recruiting-stats-make-think
https://www.glassdoor.com/employers/blog/50-hr-recruiting-stats-make-think
https://www.glassdoor.com/employers/blog/50-hr-recruiting-stats-make-think
https://www.indeed.com/career-advice/resumes-cover-letters/tailoring-resume
https://www.indeed.com/career-advice/resumes-cover-letters/tailoring-resume
https://www.indeed.com/career-advice/resumes-cover-letters/tailoring-resume
http://arxiv.org/abs/1904.09408
https://arxiv.org/abs/1909.06723
https://arxiv.org/abs/1909.06723
https://arxiv.org/abs/1909.06723
https://doi.org/10.3115/v1/P15-1025
https://doi.org/10.3115/v1/P15-1025
https://doi.org/10.3115/v1/P15-1025

