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Abstract

Creating effective visualization is an impor-
tant part of data analytics. While there are
many libraries for creating visualizations, writ-
ing such code remains difficult given the myr-
iad of parameters that users need to provide.
In this paper, we propose the new task of syn-
thesizing visualization programs from a com-
bination of natural language utterances and
code context. To tackle the learning prob-
lem, we introduce PLOTCODER, a new hierar-
chical encoder-decoder architecture that mod-
els both the code context and the input ut-
terance. We use PLOTCODER to first deter-
mine the template of the visualization code,
followed by predicting the data to be plotted.
We use Jupyter notebooks containing visual-
ization programs crawled from GitHub to train
PLOTCODER. On a comprehensive set of test
samples from those notebooks, we show that
PLOTCODER correctly predicts the plot type
of about 70% samples, and synthesizes the cor-
rect programs for 35% samples, performing 3-
4.5% better than the baselines.'

1 Introduction

Visualizations play a crucial role in obtaining
insights from data. While a number of li-
braries (Hunter, 2007; Seaborn, 2020; Bostock
et al., 2011) have been developed for creating vi-
sualizations that range from simple scatter plots to
complex 3D bar charts, writing visualization code
remains a difficult task. For instance, drawing a
scatter plot using the Python matplotlib library can
be done using both the scatter and plot methods,
and the scatter method (Matplotlib, 2020) takes
in 2 required parameters (the values to plot) along
with 11 other optional parameters (marker type,
color, etc), with some parameters having numeric
types (e.g., the size of each marker) and some being

'0ur code and data are available at https://github.
com/jungyhuk/plotcoder.

arrays (e.g., the list of colors for each collection of
the plotted data, where each color is specified as a
string or another array of RGB values). Looking up
each parameter’s meaning and its valid values re-
mains tedious and error-prone, and the multitude of
libraries available further compounds the difficulty
for developers to create effective visualizations.

In this paper, we propose to automatically syn-
thesize visualization programs using a combina-
tion of natural language utterances and the pro-
grammatic context that the visualization program
will reside (e.g., code written in the same file as
the visualization program to load the plotted data),
focusing on programs that create static visualiza-
tions (e.g., line charts, scatter plots, etc). While
there has been prior work on synthesizing code
from natural language (Zettlemoyer and Collins,
2012; Oda et al., 2015; Wang et al., 2015; Yin
et al., 2018), and with addition information such as
database schemas (Zhong et al., 2017; Yu et al.,
2018, 2019b,a) or input-output examples (Polo-
sukhin and Skidanov, 2018; Zavershynskyi et al.,
2018), synthesizing general-purpose code from nat-
ural language remains highly difficult due to the
ambiguity in the natural language input and com-
plexity of the target. Our key insight in synthe-
sizing visualization programs is to leverage their
properties: they tend to be short, do not use com-
plex programmatic control structures (typically a
few lines of method calls without any control flow
or loop constructs), with each method call restricted
to a single plotting command (e.g., scatter, pie)
along with its parameters (e.g., the plotted data).
This influences our model architecture design as
we will explain.

To study the visualization code synthesis prob-
lem, we use the Python Jupyter notebooks from
the JuiCe dataset (Agashe et al., 2019), where
each notebook contains the visualization program
and its programmatic context. These notebooks
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are crawled from GitHub and written by vari-
ous programmers, thus a main challenge is un-
derstanding the complexity and the noisiness of
real-world programmatic contexts and the huge
variance in the quality of natural language com-
ments. Unfortunately, using standard LSTM-based
models and Transformer architectures (Vaswani
et al., 2017) fails to solve the task, as noted in prior
work (Agashe et al., 2019).

We observe that while data to be plotted is usu-
ally stored in pandas dataframes (Pandas, 2020),
they are not explicitly annotated in JuiCe. Hence,
unlike prior work, we augment the programmatic
context with dataframe names and their schema
when available in predicting the plotted data.

We next utilize our insight above and design
a hierarchical deep neural network code genera-
tion model called PLOTCODER that decomposes
synthesis into two subtasks: generating the plot
command, then the parameters to pass in given the
command. PLOTCODER uses a pointer network
architecture (Vinyals et al., 2015), which allows
the model to directly select code tokens in the pre-
vious code cells in the same notebook as the plot-
ted data. Meanwhile, inspired by the schema link-
ing techniques proposed for semantic parsing with
structured inputs, such as text to SQL tasks (Iyer
et al., 2017; Wang et al., 2019a; Guo et al., 2019),
PLOTCODER’s encoder connects the embedding
of the natural language descriptions with their cor-
responding code fragments in previous code cells
within each notebook. Although the constructed
links can be noisy because the code context is less
structured than the database tables in text-to-SQL
problems, we observe that our approach results in
substantial performance gain.

We evaluate PLOTCODER’s ability to synthesize
visualization programs using Jupyter notebooks of
homework assignments or exam solutions. On the
gold test set where the notebooks are official so-
lutions, our best model correctly predicts the plot
types for over 80% of samples, and precisely pre-
dicts both the plot types and the plotted data for
over 50% of the samples. On the more noisy test
splits with notebooks written by students, which
may include work-in-progress code, our model still
achieves over 70% plot type prediction accuracy,
and around 35% accuracy for generating the entire
code, showing how PLOTCODER’s design deci-
sions improve our prediction accuracy.

Natural Language

Explore the relationship between rarity and a skill of your
choice. Choose one skill (‘Attack’,‘Defense’ or ‘Speed’)
and do the following. Use the scipy package to assess
whether Catch_Rate predicts the skill. Create a scatterplot
to visualize how the skill depends upon the rarity of the
pokemon. Overlay a best fit line onto the scatterplot.

Local Code Context

slope, intercept, r_value, p_value, std_err =
linregress(df['Catch_Rate'], df['Speed'],)

X = np.arange(256)

y = slope * x + intercept

Distant Dataframe Context
df['Weight_kg'].describe()
df['Color'].value_counts().plot(kind="bar")
df['Body_Style'].value_counts().plot(kind="bar")

grouped = df.groupby(['Body_Style', 'hasGender',]).mean()
df . groupby('Color')['Attack'].mean()

df . groupby('Color')['Pr_Male'].mean()
df.sort_values('Catch_Rate',ascending=False).head()

Dataframe Schema

df: ['Catch_Rate', 'Speed', 'Weight_kg', 'Color',
'Body_Style']

Ground Truth

plt.scatter(df['Catch_Rate'], df['Speed'])
plt.plot(x,y)

Figure 1: An example of plot code synthesis
problem studied in this work. Given the natural
language, code context within a few code cells
from the target code, and other code snippets re-
lated to dataframes, PLOTCODER synthesizes the
data visualization code.

2 Related Work

There has been work on translating natural lan-
guage to code in different languages (Zettlemoyer
and Collins, 2012; Wang et al., 2015; Oda et al.,
2015; Yin et al., 2018; Zhong et al., 2017; Yu
et al., 2018; Lin et al., 2018). While the in-
put specification only includes the natural lan-
guage for most tasks, prior work also uses ad-
ditional information for program prediction, in-
cluding database schemas and contents for SQL
query synthesis (Zhong et al., 2017; Yu et al., 2018,
2019b,a), input-output examples (Polosukhin and
Skidanov, 2018; Zavershynskyi et al., 2018), and
code context (Iyer et al., 2018; Agashe et al., 2019).
There has also been work on synthesizing data
manipulation programs only from input-output ex-
amples (Drosos et al., 2020; Wang et al., 2017).
In this work, we focus on synthesizing visualiza-
tion code from both natural language description
and code context, and we construct our benchmark
based on the Python Jupyter notebooks from the
JuiCe (Agashe et al., 2019). Compared to JuiCe’s
input format, we also annotate dataframe schema
if available, which is especially important for visu-
alization code synthesis.

Prior work has studied generating plots from
other specifications. Falx (Wang et al., 2019b,
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2021) synthesizes plots from input-output exam-
ples, but do not use any learning technique, and
focuses on developing a domain-specific language
for plot generation instead. In (Dibia and Demiralp,
2019), the authors apply a standard LSTM-based
sequence-to-sequence model with attention for plot
generation, but the model takes in only raw data to
be visualized with no natural language input. The
visualization code synthesis problem studied in our
work is much more complex, where both the natu-
ral language and the code context can be long, and
program specifications are implicit and ambiguous.
Our design of hierarchical program decoding
is inspired by prior work on sketch learning for
program synthesis, where various sketch represen-
tations have been proposed for different applica-
tions (Solar-Lezama, 2008; Murali et al., 2018;
Dong and Lapata, 2018; Nye et al., 2019). Com-
pared to other code synthesis tasks, a key differ-
ence is that our sketch representation distinguishes
between dataframes and other variables, which is
important for synthesizing visualization code.
Our code synthesis problem is also related to
code completion, i.e., autocompleting the program
given the code context (Raychev et al., 2014; Li
et al., 2018; Svyatkovskiy et al., 2020). However,
standard code completion only requires the model
to generate a few tokens following the code con-
text, rather than entire statements. In contrast, our
task requires the model to synthesize complete and
executable visualization code. Furthermore, unlike
standard code completion, our model synthesizes
code from both the natural language description
and code context. Nevertheless, when the prefix
of the visualization code is given, our model could
also be used for code completion, by including the
given partial code as part of the code context.

3 Visualization Code Synthesis Problem

We now discuss our problem setup of synthesiz-
ing visualization code in programmatic context,
where the model input includes different types of
specifications. We first describe the model inputs,
then introduce our code canonicalization process
to make it easier to train our models and evaluate
the accuracy, and finally our evaluation metrics.

3.1 Program Specification

We illustrate our program specification in Figure 1,
which represents a Jupyter notebook fragment. Our
task is to synthesize the visualization code given

the natural language description and code from the

preceding cells. To do so, our model takes in the

following inputs:

* The natural language description for the visual-
ization, which we extract from the natural lan-
guage markdown above the target code cell con-
taining the gold program in the notebook.

¢ The local code context, defined as a few code
cells that immediately precede the target code
cell. The number of cells to include is a tunable
hyper-parameter to be described in Section 5.

* The code snippets related to dataframe manipu-
lation that appear before the target code cell in
the notebook, but are not included in the local
code context. We refer to such code as the distant
dataframe context. When such context contains
code that uses dataframes, they are part of the
model input by default.

As mentioned in Section 1, unlike JuiCe, we also
extract the code snippets related to dataframes, and
annotate the dataframe schemas according to their
syntax trees. As shown in Figure 1, knowing the
column names in each dataframe is important for
our task, as dataframes are often used for plotting.

3.2 Code Canonicalization

One way to train our models is to directly utilize the
plotting code in Jupyter notebooks as the ground
truth. However, due to the variety of plotting APIs
and coding styles, such a model rarely predicts
exactly the same code as written in Jupyter note-
books. For example, there are at least four ways in
Matplotlib (and similar in other libraries) to create
a scatter plot for columns ‘y’ against ‘x’ from a
dataframe df: plt.scatter(df[’x’1,df[’y’1),
plt.plot(df[’x’]1,df[’y’],’0’),
df.plot.scatter(x="x",y="y’),
df.plot(kind="scatter’ ,x="x",y="y’).
Moreover, given that the natural language de-
scription is ambiguous, many plot attributes are
hard to precisely predict. For example, from the
context shown in Figure 1, there are many valid
ways to specify the plot title, the marker style,
axis ranges, etc. In our experiments, we find that
when trained on raw target programs, fewer than
5% predictions are exactly the same as the ground
truth, and a similar phenomenon is also observed
earlier (Agashe et al., 2019).

Therefore, we design a canonical representation
for plotting programs, which covers the core of plot
generation. Specifically, we convert the plotting
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code into one of the following templates:

* LIB.PLOT_TYPE(X,{Y}*), where LIB is a plot-
ting library, and PLOT_TYPE is the plot type to be
created. The number of arguments may vary for
different PLOT_TYPE, e.g., 1 for histograms and
pie charts, and 2 for scatter plots.

* Lo \n L1 \n L,,, where each L; is a
plotting command in the above template, and \n
are separators.

For example, when using plt as the
library (a commonly wused abbreviation
of matplotlib.pyplot), we convert

df.plot(kind=’scatter’ ,x="x’,y="y’)

into plt.scatter(df[’x’],df[’y’]), where

LIB = plt and PLOT_TYPE = scatter. Plotting

code in other libraries could be converted similarly.
The tokens that represent the plotted data, i.e., X

and Y, are annotated in the code context as follows:

* VAR, when the token is a variable name, e.g., x
and y in Figure 1.

* DF, when the token is a Pandas dataframe or a
Python dictionary, e.g., df in Figure 1.

* STR, when the token is a column name of a
dataframe, or a key name of a Python dictionary,
such as ‘Catch_Rate’ and ‘Speed’ in Figure 1.
The above annotations are used to cover different

types of data references. For example, a column

in a dataframe is usually referred to as DF[STR],
and sometimes as DF[VAR] where VAR is a string.

In Section 4.2, we will show how to utilize these an-

notations for hierarchical program decoding, where

our decoder first generates a program sketch that
predicts these token types without the plotted data,
then predicts the actual plotted data subsequently.

3.3 Evaluation Metrics

Plot type accuracy. To compute this metric, we
categorize all plots into several types, and a predic-
tion is correct when it belongs to the same type as
the ground truth. In particular, we consider the fol-
lowing categories: (1) scatter plots (e.g., generated
by plt.scatter); (2) histograms (e.g., generated
by plt.hist); (3) pie charts (e.g., generated by
plt.pie); (4) a scatterplot overlaid by a line (e.g.,
such as that shown in Figure 1, or generated by
sns.lmplot); (5) a plot including a kernel density
estimate (e.g., plots generated by sns.distplot
or sns.kdeplot); and (6) others, which are mostly
plots generated by plt.plot.

Plotted data accuracy. This metric measures
whether the predicted program selects the same

data to plot as the ground truth. Unless otherwise
specified, the ordering of variables must match the
ground truth as well, i.e., swapping the data used
to plot x and y axes result in different plots.

Program accuracy. We consider a predicted pro-
gram to be correct if both the plot type and plotted
data are correct. As discussed in Section 3.2, we do
not evaluate the correctness of other plot attributes
because they are mostly unspecified.

4 PLOTCODER Model Architecture

In this section, we present PLOTCODER, a hier-
archical model architecture for synthesizing vi-
sualization code from natural language and code
context. PLOTCODER includes an LSTM-based
encoder (Hochreiter and Schmidhuber, 1997) to
jointly embed the natural language and code con-
text, as well as a hierarchical decoder that generates
API calls and selects data for plotting. We provide
an overview of our model architecture in Figure 2.

4.1 NL-Code Context Encoder

PLOTCODER’s encoder computes a vector repre-
sentation for each token in the natural language
description and the code context, where the code
context is the concatenation of the code snippets
describing dataframe schemas and the local code
cells, as described in Section 3.1.

NL encoder. We build a vocabulary for the natu-
ral language tokens, and train an embedding matrix
for it. Afterwards, we use a bi-directional LSTM
to encode the input natural language sequence (de-
noted as LSTM,,;), and use the LSTM’s output at
each timestep as the contextual embedding vector
for each token.

Code context encoder. We build a vocabulary V,
for the code context, and train an embedding matrix
for it. V. also includes the special tokens {VAR,
DF, STR} used for sketch decoding in Section 4.2.
We train another bi-directional LSTM (LSTM.,.),
which computes a contextual embedding vector for
each token in a similar way to the natural language
encoder. We denote the hidden state of LSTM,. at
the last timestep as H..

NL-code linking. Capturing the correspondence
between the code context and natural language is
crucial in achieving a good prediction performance.
For example, in Figure 2, PLOTCODER infers that
the dataframe column “age” should be plotted, as
this column name is mentioned in the natural lan-
guage description. Inspired by this observation, we
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Plot the histogram of the

NL :
age variable .

df steps = pd . read csv ( 'ageisteps,csv' )

df_income = pd . read json ( 'name income id.json' )
df = pd o merge ( df 1ncome , df_steps ,
Code Context df = df [ 'id' , 'age' ,
Local

'steps' , 'income' ] ]
n_nan = suln(np isnan(df[’'
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Code Context
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Schema STR'id', 'age', 'steps’, 'income'J

Figure 2: Overview of the PLOTCODER architecture. The NL-Code linking component connects the embedding

vectors for underscored tokens in natural language and code context, i.e.,

design the NL-code linking mechanism to explic-
itly connect the embedding vectors of code tokens
and their corresponding natural language words.
Specifically, for each token in the code context
that also occurs in the natural language, let h, and
hy be its embedding vectors computed by LSTM,.
and LSTM,,;, respectively, we compute a new code
token embedding vector as:
he = Wil[he; hin)

where W is a linear layer, and [h; h,;] is the con-
catenation of h. and h,;. When no natural language
word matches the code token, h,,; is the embedding
vector of the [EOS] token at the end of the natu-
ral language description. When we include this
NL-code linking component in the model, h, re-
places the original embedding A, for each token in
the code context, and the new embedding is used
for decoding. We observe that many informative
natural language descriptions explicitly state the
variable names and dataframe columns for plotting,
which makes our NL-code linking effective. More-
over, this component is especially useful when the
variable names for plotting are unseen in the train-
ing set, thus NL-code linking provides the only cue
to indicate that these variables are relevant.

4.2 Hierarchical Program Decoder

We train another LSTM to decode the visualization
code sequence, denoted as LSTM,,. Our decoder
generates the program in a hierarchical way. At
each timestep, the model first predicts a token from
the code token vocabulary that represents the pro-
gram sketch. As shown in Figure 2, the program
sketch does not include the plotted data. After that,
the decoder predicts the plotted data, where it em-
ploys a copy mechanism (Gu et al., 2016; Vinyals
et al., 2015) to select tokens from the code context.

First, we initiate the hidden state of LSTM,, with
H_, the final hidden state of LSTM,., and the start
token is [GO] for both sketch and full program de-
coding. At each step ¢, let s;—1 and o, be the

)

“agea .

sketch token and output program token generated
at the previous step. Note that s;_; and oy are
different only when s;_1 € {VAR, DF, STR}, where
0.1 is the actual data name with the correspond-
ing type. Let es;—1 and eo;—; be the embedding
vectors of s;_1 and oy respectively, which are
computed using the same embedding matrix for the
code context encoder. The input of LSTM,, is the
concatenation of the two embedding vectors, i.e.,
[esi—1; €op—1].

Attention. To compute attention vectors over the
natural language description and the code context,
we employ the two-step attention in (Iyer et al.,
2018). Specifically, we first use hp; to compute
the attention vector over the natural language input
using the standard attention mechanism (Bahdanau
et al., 2015), and we denote the attention vector as
attn;. Then, we use attn; to compute the attention
vector over the code context, denoted as attp,.

Sketch decoding. For sketch decoding, the
model computes the probability distribution among
all sketch tokens in the code token vocabulary V:

Pr(s;) = Softmax(Ws(hp; + attn; + attp,))

Here Wj is a linear layer. For hierarchical decod-
ing, we do not allow the model to directly decode
the names of the plotted data during sketch decod-
ing, so s is selected only from the valid sketch
tokens, such as library names, plotting function
names, and special tokens for plotted data represen-
tation in templates discussed in Section 3.2.

Data selection. For s; € {VAR, DF, STR}, we use
the copy mechanism to select the plotted data from
the code context. Specifically, our decoder includes
3 pointer networks (Vinyals et al., 2015) for select-
ing data with the type VAR, DF, and STR respectively,
and they employ similar architectures but different
model parameters.

We take variable name selection as an instance to
illustrate our data selection approach using the copy

2173



Split Train Dev (gold) Test (gold) Dev (hard) Test (hard)
All 38971 57 48 827 894
Scatter 11895 19 17 254 276
Hist 8856 14 11 182 175
Pie 574 1 1 14 13
Scatter+Plot 1533 3 1 34 57
KDE 2609 3 5 51 64
Others 13504 17 13 292 309

Table 1: Dataset statistics. The description of the dif-
ferent plot categories is in Section 3.3.

mechanism. We first compute v, = Wy (attn,),
where W, is a linear layer. For the ¢-th token ¢; in
the code context, let hc; be its embedding vector,
we compute its prediction probability as:

exp v} he;
The
> expyy he;

After that, the model selects the token with the
highest prediction probability as the next program
token o4, and uses the corresponding embedding
vectors for s; and o; as the input for the next de-
coding step of LSTM,,.

The decoding process terminates when the
model generates the [EOF] token.

Pr(c¢) =

S Experiments

In this section, we first describe our dataset for
visualization code synthesis, then introduce our
experimental setup and discuss the results.

5.1 Dataset Construction

We build our benchmark upon the JuiCe
dataset, and select those that call plotting APIs,
including those from matplotlib.pyplot
(plt), pandas.DataFrame.plot, seaborn
(sns), ggplot, bokeh, plotly, geoplotlib,
pygal. Over 99% of the samples use plt,
pandas.DataFrame.plot, or sns. We first extract
plot samples from the original dev and test splits
of JuiCe to construct Dev (gold) and Test (gold).
However, the gold splits are too small to obtain
quantitative results. Therefore, we extract around
1,700 Jupyter notebooks of homeworks and exams
from JuiCe’s training set, and split them roughly
evenly into Dev (hard) and Test (hard). All
remaining plot samples from the JuiCe training
split are included in our training set. The length of
the visualization programs to be generated varies
between 6 and 80 tokens, but the code context is
typically much longer. We summarize the dataset
statistics in Table 1.

5.2 Evaluation Setup

Implementation details. Unless otherwise spec-
ified, for the input specification we include K = 3
previous code cells as the local context, which usu-
ally provides the best accuracy. We set 512 as the
length limit for both the natural language and the
code context. For all model architectures, we train
them for 50 epochs, and select the best checkpoint
based on the program accuracy on the Dev (hard)
split. More details are deferred to Appendix A.

Baselines. We compare the full PLOTCODER
against the following baselines: (1) - Hierarchy:
the encoder is the same as in the full PLOTCODER,
but the decoder directly generates the full program
without predicting the sketch. (2) - Link: the en-
coder does not use NL-code linking, and the de-
coder is not hierarchical. (3) LSTM: the model
does not use NL-code linking, copy mechanism,
and hierarchical decoding. The encoder still uses
two separate LSTMs to embed the natural lan-
guage and code context, which performs better
than the LSTM baseline in prior work (Agashe
et al., 2019). (4) + BERT: we use the same hier-
archical decoder as the full model, but replace the
encoder with a Transformer architecture (Vaswani
et al., 2017) initialized from a pre-trained model,
and we fine-tune the encoder with other part of
the model. We evaluated two pre-trained models.
One is RoBERTa-base (Liu et al., 2019), an im-
proved version of BERT-Base (Devlin et al., 2018)
pre-trained on a large text corpus. Another is code-
BERT (Feng et al., 2020), which has the same ar-
chitecture as RoBERTa-base, but is pre-trained on
GitHub code in several programming languages
including Python, and has demonstrated good per-
formance on code retrieval tasks. To demonstrate
the effectiveness of target code canonicalization
discussed in Section 3.2, we also compare with
models that are directly trained on the raw ground
truth code from the same set of Jupyter notebooks.

5.3 Results

We present the program prediction accuracies in
Table 2. First, training on the canonicalized code
significantly boosts the performance for all mod-
els, suggesting that canonicalization improves data
quality and hence prediction accuracies. When
trained with target code canonicalization, the
full PLOTCODER significantly outperforms other
model variants on different data splits. On the hard
data splits, the hierarchical PLOTCODER predicts
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35% of the samples correctly, improving over the
non-hierarchical model by 3 — 4.5%. Meanwhile,
NL-code linking enables the model to better cap-
ture the correspondence between the code context
and the natural language, and consistently improves
the performance when trained on canonicalized tar-
get code. Without the copy mechanism, the base-
line LSTM cannot predict any token outside of the
code vocabulary. Therefore, this model performs
worse than other LSTM-based models, especially
on plotted data accuracies, as shown in Table 3.

Interestingly, while our hierarchical decoding,
NL-code linking, and copy mechanism are mainly
designed to improve the prediction accuracy of the
plotted data, as shown in Table 4, we observe that
the plot type accuracies of our full model are also
mostly better, especially on the hard splits. To
better understand this, we break down the results
by plot type, and observe that the most significant
improvement comes from the predictions of scatter
plots (S”) and plots in “Others” category. We posit
that these two categories constitute the majority of
the dataset, and the hierarchical model learns to
better categorize plot types from a large number
of training samples. In addition, we observe that
the full model does not always perform better than
other baselines on data splits of small sizes, and
the difference mainly comes from the ambiguity in
the natural language description. We defer more
discussion to Section 5.4.

Also, using BERT-like encoders does not im-
prove the results. This might be due to the dif-
ference in data distribution for pre-training and
vocabularies. Specifically, RoOBERTa is pre-trained
on English passages, which does not include many
visualization-related descriptions and code com-
ments. Therefore, the subword vocabulary utilized
by RoBERTa breaks down important keywords for
visualization, e.g., “scatterplots” and ‘“histograms”
into multiple words, which limits model perfor-
mance, especially for plot type prediction. Using
codeBERT improves the performance of ROBERTa,
but it still does not improve over the LSTM-based
models, which may again due to vocabulary mis-
match. As a result, in Table 4, the plot type accura-
cies of both models using BERT-like encoders are
considerably lower than the LSTM-based models.

To better understand the plotted data prediction
performance, in addition to the default plotted data
accuracy that requires the data order to be the same
as the ground truth, we also evaluate a relaxed

Model Test (hard) Dev (hard) Test (gold) Dev (gold)
With code canonicalization
Full Model 34.79% 34.70% 56.25% 47.37%
— Hierarchy 30.20% 31.56% 45.83% 47.37%
— Link 29.98% 28.05% 43.75% 45.61%
LSTM 26.17% 24.67% 41.67% 40.35%
+ CodeBERT 33.11% 34.58% 54.17% 35.09%
+ RoBERTa 32.77% 33.37% 50.00% 26.32%
Without code canonicalization
Full Model 20.58% 22.73% 22.92% 28.07%
— Hierarchy 20.25% 22.85% 18.75% 26.32%
— Link 20.02% 21.77% 20.83% 24.56%
LSTM 16.22% 16.93% 16.67% 24.56%
+ CodeBERT 20.92% 22.61% 22.92% 24.56%
+ RoBERTa 20.47% 22.37% 20.83% 24.56%

Table 2: Evaluation on program accuracy.

Model Test (hard) Dev (hard) Test (gold) Dev (gold)
With code canonicalization
Full Model 40.16% 38.69 % 60.42 % 49.12%
— Hierarchy 3591% 37.00% 47.92% 47.37%
— Link 35.46% 35.67% 47.92% 47.37%
LSTM 29.87% 28.05% 43.75% 40.35%
+ codeBERT 38.14% 38.33% 58.33% 40.35%
+ RoBERTa 37.47% 38.33% 58.33% 29.82%
Without code canonicalization
Full Model 24.94% 27.69% 29.17% 33.33%
— Hierarchy 26.73% 27.93% 31.25% 31.58%
— Link 25.39% 27.21% 25.00% 28.07%
LSTM 18.90% 21.04% 18.75% 26.32%
+ CodeBERT 26.85% 27.21% 29.17% 31.58%
+ RoBERTa 25.28% 27.81% 27.08% 28.07%

Table 3: Evaluation on plotted data accuracy.

version without ordering constraints. Note that the
ordering includes two factors: (1) the ordering of
the plotted data for the different axes; and (2) the
ordering of plots when multiple plots are included.
We observe that the ordering issue happens for
around 1.5% of samples, and is more problematic
for scatter plots (“S”) and “Others.” Figure 3 shows
sample predictions where the model selects the
correct set of data to plot, but the ordering is wrong.
Although sometimes the natural language explicitly
specifies which axes to plot (e.g., Figure 3 (a)),
such descriptions are mostly implicit (e.g., Figure 3
(b)), making it hard for the model to learn. Full
results on different plot types are in Section 5.4.

5.3.1 The Effect of Different Model Inputs

To evaluate the effect of including different input
specifications, we present the results in Table 5.
Specifically, - NL means the model input does not
include the natural language, and - Distant DF's
means the code context only includes the local code
cells. Interestingly, even without the natural lan-
guage description, PLOTCODER correctly predicts
a considerable number of samples. Figure 4 shows
sample correct predictions without relying on the
natural language description. To predict the plotted
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Model Test (hard) Dev (hard) Test (gold) Dev (gold)
With code canonicalization
Full Model 70.58% 71.46 % 83.33% 78.95%
— Hierarchy 64.65% 68.92% 87.50% 82.46%
— Link 65.32% 64.09% 81.25% 73.68%
LSTM 66.67% 67.47% 85.42% 85.96 %
+ codeBERT 65.44% 67.96% 75.00% 57.89%
+ RoBERTa 65.21% 66.38% 66.67% 54.39%
Without code canonicalization
Full Model 63.53% 65.66% 72.92% 80.70%
— Hierarchy 61.41% 67.47% 66.67% 73.68%
— Link 61.30% 63.72% 64.58% 77.19%
LSTM 64.65% 65.78% 81.25% 70.18%
+ CodeBERT 56.04% 57.07% 60.42% 56.14%
+ RoBERTa 61.30% 61.91% 68.75% 49.12%

Table 4: Evaluation on plot type accuracy.

(a) Natural Language

Create a scatter plot of the observations in the ‘credit’
dataset for the attributes ‘Duration’ and ‘Age’ (age should
be shown on the xaxis).

Local Code Context

duration = credit['Duration'].values
age = credit['Age'].values

Ground Truth

plt.scatter(age, duration)

Prediction
plt.scatter(duration, age)

(b) Natural Language

This graph provides more evidence that the higher a state’s
participation rates, the lower that state’s averages scores
are likely to be. The higher the participation rate, the lower
the expected average verbal scores.

Local Code Context
plt.plot(sat_data['Math'], sat_datal'Verbal'])

Dataframe Schema
sat: ['Rate', 'Math', 'Verbal']
Ground Truth

plt.plot(sat_data['Rate'], sat_data['Math'l)
plt.plot(sat_data['Rate'], sat_datal'Verbal'])

Prediction

plt.plot(sat_data['Math'], sat_datal'Verbal'])
plt.plot(sat_data['Rate'], sat_datal'Verbal'l)

Figure 3: Examples of predictions where the
model selects the correct set of data to plot, but
the order is wrong.

data, a simple yet effective heuristic is to select
variable names appearing in the most recent code
context. This is also one possible reason that causes
the wrong data ordering prediction in Figure 3(a);
in fact, the prediction is correct if we change the
order of assignment statements for variables age
and duration in the code context.

Input Test (hard) Dev (hard) Test (gold) Dev (gold)
Full input 34.79% 34.70% 56.25% 47.37%
— Distant DFs 34.34% 34.10% 52.08% 45.61%
—NL 27.52% 28.42% 43.75% 21.05%

Table 5: Evaluation on the full hierarchical model
with different inputs.

Meanwhile, we evaluated PLOTCODER by vary-
ing the number of local code cells K. The results
show that the program accuracies converge or start

(a) Natural Language

Plot a Gaussian by looping through a range of x values
and creating a resulting list of Gaussian values, g

Local Code Context
x_axis = np.arange(-20, 20, 0.1)
g =1[]
for x in x_axis:

g.append(f(mu, sigma2, x))
Ground Truth & Prediction

plt.plot(x_axis, g)

(b) Natural Language

Like in Q9, let’s start by thinking about two dice

Local Code Context
results = []
for i in range(1,7):
for j in range(1,7):
print((i,j),max(i,j))
results.append(max(i,j))
Ground Truth & Prediction

plt.hist(results)

Figure 4: Examples of model predictions even
without the natural language input.

Natural Language

Problem 5. Age groups (1 point) Create a histogram of
all people’s ages. Use the default settings. Add the label
”Age” on the x-axis and "Count” on the y-axis.

Local Code Context

income_data.columns = ["age","workclass”,"fnlwgt"”,
"education”,"education_num”, "marital_status”,
"occupation”,"relationship”, "race"”, "sex",
"capital_gain”,"capital_loss","hours_per_week",
"native_country”,"”income_class"]

married_af_peoples = \\
income_datalincome_data["marital_status"].str.contains(
"Married-AF-spouse”)].shape[0]

Dataframe Schema

income_data: ['age', 'workclass', ..., 'income_class']
married_af_peoples: ['age', 'workclass', ..., 'income_class'

Ground Truth
plt.hist(income_data.age)

Prediction
plt.hist(married_af_peoples.age)

Figure 5: A sample prediction that requires a good
understanding of the code context.

to decrease when K > 3 for different models, as
observed in (Agashe et al., 2019). However, the ac-
curacy drop of our hierarchical model is much less
noticeable than the baselines, suggesting that our
model is more resilient to the addition of irrelevant
code context. See Appendix B for more discussion.

5.4 Prediction Results Per Plot Type

We present the breakdown results per plot type in
Tables 6 and 7. To better understand the plotted
data prediction performance, in addition to the de-
fault plotted data accuracy that requires the data
order to be the same as the ground truth, we also
evaluate a relaxed version without ordering con-
straints, described as permutation invariant in Ta-
ble 7. We compute the results on Test (hard), which
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has more samples per plot type than the gold splits.
Compared to the non-hierarchical models, the most
significant improvement comes from the predic-
tions of scatter plots (“S”) and plots in “Others”
category. We posit that these two categories consti-
tute the majority of the dataset, and the hierarchical
model learns to better categorize plot types from a
large number of training samples. The accuracy of
the hierarchical model on some categories is lower
than the baseline’s, but the difference is not statisti-
cally significant since those categories only contain
a few examples. A more detailed discussion is
included in Appendix C.

Model S H Pie S+P KDE Others
With code canonicalization
Full Model 7717% 70.86% 61.54% 12.28% 29.69% 84.14%
— Hierarchy ~ 70.65% 68.00% 76.92% 15.79% 39.06% 71.20%
— Link 73.55% 68.00% 69.23% 21.05% 35.94% 70.55%
LSTM 7391% 71.43% 69.23% 21.05% 28.13% 73.79%
+ codeBERT 67.39% 66.29% 76.92% 21.05% 35.94% 77.02%
+ RoBERTa  61.59% 6229% 61.54% 10.53% 34.38% 80.58%
Without code canonicalization
Full Model 71.01% 74.29% 76.92% 12.28% 37.50% 65.05%
— Hierarchy  75.00% 72.00% 61.54% 14.04% 31.25% 58.25%
— Link 72.10% 60.57% 69.23% 22.81% 37.50% 63.75%
LSTM 74.64% 74.29% 69.23% 19.30% 29.69% 65.70%
+ codeBERT 71.01% 56.00% 46.15% 14.04% 35.94% 55.02%
+ RoBERTa  7391% 47.13% 46.15% 10.53% 29.69% 74.43%

* Sometimes the model generates semantically
same but syntactically different programs from
the ground truth, which can happen when two
variables or data frames contain the same data.(5)

* Besides understanding complex natural lan-
guage description, as shown in Figure 3, an-
other challenge is to understand the code con-
text and reason about the data stored in dif-
ferent variables. For example, in Figure 5,
although both dataframes income_data and
married_af_peoples include the age column,
the model must infer that married_af_peoples
is a subset of income_data, thus it should select
income_data to plot the statistics of people from
all groups. (6-7)

Error Category %

(1) NL only suggests the plot type 28.57
(2) NL only suggests the plotted data 9.52
(3) NL has no plotting information 9.52
(4) Need more code context 9.52
(5) Semantically correct 14.29
(6) Challenging NL understanding 19.05
(7) Challenging code context understanding ~ 9.52

Table 6: Plot type accuracy on Test (hard) per type.

Model All S H Pie S+P KDE  Others

Plotted data accuracy

Full Model 40.16% 42.39% 41.14% 61.54% 10.53% 21.88% 45.95%
— Hierarchy ~ 3591% 3587% 40.00% 69.23% 877% 21.88% 40.13%
— Link 35.46% 36.96% 39.43% 53.85% 8.71% 14.06% 40.45%
LSTM 29.87% 3043% 33.14% 61.54% 8.77%  12.50% 33.66%
+ codeBERT  38.14% 3841% 39.43% 61.54% 8.71% 2031% 44.98%
+ RoBERTa  37.47% 39.13% 36.57% 69.23% 3.51% 17.19% 45.63%
Plotted data accuracy (permutation invariant)
Full Model 41.50% 44.57% 41.14% 61.54% 12.28% 21.88% 47.57%
— Hierarchy  37.47% 38.04% 40.00% 69.23% 10.53% 21.88% 42.39%
— Link 41.05% 40.58% 39.43% 53.85% 8.77% 15.62% 43.04%
LSTM 30.65% 31.88% 33.14% 61.54% 10.53% 12.50% 34.30%

Table 7: Plotted data accuracy on Test (hard) per type.
All models are trained with canonicalized target code.

5.4.1 Error Analysis

To better understand the challenges of our task, we
conduct a qualitative error analysis and categorize
the main reasons of error predictions. We investi-
gate all error cases on Test (gold) split for the full
hierarchical model, and present the results in Ta-
ble 8. We summarize the key observations below,
and defer more discussion to Appendix E.

* Around half of error cases are due to the ambigu-
ity of the natural language description. (1-3)

* About 10% samples require longer code context
for prediction, because the program selects the
plotted data from distant code context that ex-
ceeds the input length limit. (4)

Table 8: Error analysis on Test (gold) with the hierar-
chical model.

6 Conclusion

In this paper, we conduct the first study of visual-
ization code synthesis from natural language and
programmatic context. We describe PLOTCODER,
a model architecture that includes an encoder that
links the natural language description and code
context, and a hierarchical program decoder that
synthesizes plotted data from the code context and
dataframe items. Results on real-world Jupyter
notebooks show that PLOTCODER can synthesize
visualization code for different plot types, and out-
performs various baseline models.
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A Implementation Details

For the model input, we select the suffix of the code
sequence when it exceeds the length limit, and we
select the prefix for the natural language. To con-
struct the vocabularies, we include natural language
words that occur at least 15 times in the training
set, and code tokens that occur at least 1,000 times,
so that each vocabulary includes around 10, 000
tokens. We include an [UNK] token in both vocabu-
laries, which is used to encode all input tokens not
appeared in our vocabularies.

The model parameters are randomly initialized
within [—0.1,0.1]. Each LSTM has 2 layers, and
a hidden size of 512. The embedding size of all
embedding matrices is 512, and the hidden size
of the linear layers is 512. For training, the batch
size is 32, the initial learning rate is 1e-3, with a
decay rate of 0.9 after every 6, 000 batch updates.
The dropout rate is 0.2, and the norm for gradient
clipping is 5.0.

For models using the Transformer architecture as
the encoder, we use the pre-trained RoBERTa-base
and codeBERT from their official repositories.’
The hyper-parameters are largely the same as the
LSTM-based models, except that we added a linear
learning rate warmup for the first 6, 000 training
steps, which is the common practice for fine-tuning
BERT-like models.

B Training with Varying Number of
Contextual Code Cells

As discussed in Section 5.3.1, we provide the re-
sults of including different number of local code
cells as the model input in Figure 6. We also eval-
uated the upper bounds of program accuracies for
different values of K, where we consider an exam-
ple to be predictable if all plotted data in the tar-
get program are covered in the input code context.
We observe that including dataframe manipulation
code in distant code cells improves the coverage,
especially when K is small.

C Detailed Analysis on Results Per Plot
Type

In Section 5.4, we present the breakdown results
per plot type in Tables 6 and 7, where we observed
that “Scatter” and “Others” constitute the majority

’RoBERTa: https://github.com/pytorch/fairseq/
tree/master/examples/roberta
codeBERT: https://github.com/microsoft/CodeBERT
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Figure 6: Program accuracy with different number of
input code cells. (a) Results of different model archi-
tectures. (b) The comparison between the accuracy of
the hierarchical model and the upper bounds.

of the dataset, and the hierarchical model learns to
better categorize plot types from a large number of
training samples.

Note that for categories that the hierarchical
model does not perform better than baselines, even
if the accuracy differences are noticeable, the num-
bers of correct predictions do not differ much. For
example, among the 13 samples in the “Pie” cate-
gory, the hierarchical model correctly classifies 8
samples, while the non-hierarchical version makes
10 correct predictions. When looking at the predic-
tions, we observe that the 2 different predictions are
mainly due to the ambiguity of the natural language
descriptions. Specifically, the text descriptions are
“The average score of group A is better than aver-
age score of group B in 51% of the state” and “I
am analyzing the data of all male passengers”. In
fact, for both examples, the hierarchical model still
generates a program including the plotted data in
the ground truth. However, the hierarchical model
wrongly selects plt.bar as the plotting API for
the former sample, and selects plt.scatter for
the latter sample, where it additionally selects an-
other variable for the x-axis. For these 2 samples,
we observe that the code context includes plotting
programs that use other data to generate pie charts,
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and the non-hierarchical model picks a heuristic to
select the same plot type in the code context when
there is no cue provided in the natural language de-
scription, while the hierarchical model selects plot
types that happen more frequently in the training
distribution. A similar phenomenon holds for other
categories or data splits with a small number of
examples.

D Other Plot Types

In the “Others” category discussed in Section 3.3,
besides the plots generated by plt.plot, there are
also other plot types, with much smaller data sizes
than plt.plot. In Table 9, we present the break-
down accuracies of some plot types, which consti-
tute the largest percentages in the “Others” category
excluding plt.plot samples. Specifically, around
4% samples use boxplot, and each of the other
3 plot types include around 1% samples. Due to
the lack of data for such plot types, the results are
much lower than the overall accuracies of all plot
categories, but still non-trivial.

Plot Type Plot Type Acc Plotted Data Acc  Program Acc

boxplot 51.04% 10.42% 7.29%
pairplot 42.31% 34.62% 23.00%
jointplot 36.36% 9.09% 4.55%
violinplot 47.06% 5.88% 5.88%

Table 9: Breakdown accuracies of plots in “Others” cat-
egory on Test (hard), using the full hierarchical model.

E More Discussion of Error Analysis

As discussed in Section 5.4.1, the lack of informa-
tion in natural language descriptions is the main
reason for a large proportion of wrong predictions
(categories 1-3 in Table ).

* Many natural language descriptions only mention
the plot type, e.g., “Make a scatter plot,” which is
one reason that the plot type accuracy is generally
much higher than the plotted data accuracy. (1)

* Sometimes the text only mentions the plot-
ted data without specifying the plot type,
e.g., “Plot the data x; and x2,” where both
plt.plot(x;,x>) and plt.scatter(x;,x;)
are possible predictions, and the model needs
to infer the plot type from the code context. (2)

* The text description includes no plotting informa-
tion at all, e.g., “Localize your search around the
value you found above,” where the model needs
to infer which variables are search results and
could be plotted. (3)

We consider several directions to address differ-
ent error categories as future work. To mitigate
the ambiguity of natural language descriptions, we
could incorporate additional program specifications
such as input-output examples. Input-output exam-
ples are also helpful for evaluating the execution
accuracy, which considers all semantically correct
programs as correct predictions even if they differ
from the ground truth. Most Jupyter notebooks
from GitHub do not contain sufficient execution
information, e.g., many of them load external data
for plotting, and the data sources are not public.
Therefore, developing techniques to automatically
synthesize input-output examples is a promising
future direction. Designing new models for code
representation learning is another future direction,
which could help address the challenge of embed-
ding long code context.
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