
Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems (Eval4NLP), pages 131–142,
November 20, 2020. c©2020 Association for Computational Linguistics

131

Are Some Words Worth More than Others?

Shiran Dudy Steven Bedrick
Center for Spoken Language Understanding

Oregon Health & Science University
Portland, Oregon, USA

{dudy,bedricks}@ohsu.edu

Abstract

Current evaluation metrics for language model-
ing and generation rely heavily on the accuracy
of predicted (or generated) words as compared
to a reference ground truth. While important,
token-level accuracy only captures one aspect
of a language model’s behavior, and ignores
linguistic properties of words that may allow
some mis-predicted tokens to be useful in
practice. Furthermore, statistics directly tied to
prediction accuracy (including perplexity) may
be confounded by the Zipfian nature of written
language, as the majority of the prediction
attempts will occur with frequently-occurring
types. A model’s performance may vary greatly
between high- and low-frequency words, which
in practice could lead to failure modes such as
repetitive and dull generated text being produced
by a downstream consumer of a language model.
To address this, we propose two new intrinsic
evaluation measures within the framework of a
simple word prediction task that are designed
to give a more holistic picture of a language
model’s performance. We evaluate several
commonly-used large English language models
using our proposed metrics, and demonstrate
that our approach reveals functional differences
in performance between the models that are
obscured by more traditional metrics.

1 Introduction

Language models are foundational components in
many NLP systems, and as such it is crucial to be able
to empirically evaluate their behavior. Traditionally,
language models are evaluated using performance
metrics that relate to the model’s ability to accurately
predict words given some context (e.g., perplexity).
Following the paradigm described by Galliers and
Spärck Jones (1993), this can be thought of as an
intrinsic evaluation criterion (and perplexity an
intrinsic metric), as it relates to the objective of the
language model itself.

In recent years, it has become common to also
evaluate language models extrinsically, in terms of
the model’s function. This is done by measuring a
model’s performance when used as a component in a
downstream task. 1 For example, Devlin et al. (2019)
evaluated BERT by using it as the language model
component in benchmark tasks such as question
answering and “commonsense inference.”2 This
shift towards extrinsic and task-oriented evaluation
is welcome, and has the potential to make language
model evaluation more ecologically valid. 3 As useful
as task-oriented evaluation metrics are, however,
we believe that this approach brings with it certain
practical limitations, and that there remains a strong
need for robust and meaningful intrinsic evaluation
metrics that can be used to characterize and compare
the performance of language models.

In this work, we outline and propose a variation
on the standard next-word-prediction language mod-
eling task that is designed for use in evaluating and
comparing language models and is robust to imple-
mentation differences (tokenization method, etc.) that
complicate the comparison of modern models in terms
of token-level predictions. Our proposed metrics are
richer and more meaningful measures than traditional
intrinsic metrics such as perplexity, which is insensi-
tive to which tokens are matched, and as such may be

1In part, this trend has been driven by the increasing use of
downstream tasks as ancillary training objective functions; this
somewhat confuses the traditional notion of intrinsic and extrinsic
evaluation as a binary construct.

2SQuAD versions 1.1 (Rajpurkar et al., 2016) and 2.0 (Ra-
jpurkar et al., 2018), and SWAG (Zellers et al., 2018), respectively,
in the case of the original BERT paper.

3“Ecological validity” is a dimension of experimental validity
that is concerned with the question of whether an observed effect
reflects “what happens in everyday life”(Brewer and Crano,
2014), i.e. beyond the artificial setting of the experiment itself.
In an NLP context, a researcher working on question answering
who was concerned with ecological validity would ensure that
the questions on which they trained and evaluated their system
were similar (in form and content) to those on which the system
was designed to be used.

132

confounded by distributional properties of their evalu-
ation corpora. Our approach accounts not only for the
accuracy of a model’s word predictions, but also the
diversity of types that it predicts, across different lex-
ical frequency bins. We further propose a formulation
for the next-word-prediction task that explicitly allows
for language- and task-level details to be captured in
the resulting metrics, thereby blurring the line between
intrinsic and extrinsic language model evaluation. Our
methods provide greater ecological validity than tradi-
tional intrinsic evaluation methods, while still remain-
ing simple to interpret and easy to calculate.

1.1 Formalities:
Language Models and Word Prediction

For our present purposes, we will consider a language
model to be a model that, given a sequence W of
n tokens w1:n from a fixed vocabulary of types V ,
estimates the joint probability of P(W). The goal of
a language models is of learning to approximate the
distribution of tokens and types in some corpus.

Importantly, different models may use different
units of prediction, at the level of individual character,
at the word level, or (as with many modern neural
models) at the level of a sub-word/sub-sentence unit
(via e.g. byte-pair encoding (Sennrich et al., 2016),
wordpieces (Wu et al., 2016), etc.).

Given such a model, we can typically also
estimate the conditional probability distribution
P(wt|w1 ... wt−1), over possible words occurring
after a given history h consisting of t−1 tokens. We
refer to this as the next-word-prediction problem4 of
predicting ŵt =argmaxwP(w|h). Using the termi-
nology of conditional text generation, this is akin to
generating a single token via greedy decoding given a
context. This is of more than theoretical interest from
a language modeling perspective. Language models
trained using the standard cross-entropy loss function
are in effect being optimized to perform this very
task, and furthermore, many NLP applications rely
in practice on effective and robust word prediction.

A standard and widely-used metric for evaluating
language model performance is with perplexity
(PPX), which is closely related to this prediction
task. When computed for a given token prediction
event by a language model, PPX captures how
“predictable” that event was for the model:

PPX(p,q)=−
∑
X

p(x)logq(x) (1)

4Also known as the “Shannon Game” (Shannon, 1951).

Where X corresponds to V (the model’s vocabu-
lary of possible tokens it must choose between), p(x)
represents the “true” or “target” distribution and q(x)
the model’s estimated distribution. The closer the
predicted distribution matches the target distribution,
the lower the perplexity. When averaged over many
prediction events, and computed on a held-out test
dataset, perplexity attempts to capture the degree to
which the model has optimally learned to represent
its target distribution. A more accurate (i.e., “better”)
model should result in lower average perplexity (as
the model will more often predict a high probability
for the correct target).

1.2 Evaluation Considerations

Perplexity is a classic example of an intrinsic
evaluation metric, in that it is measuring the model’s
ability to carry out its immediate objective. As
mentioned previously, modern language models are
often evaluated according to their performance when
used as components in a downstream task of some
kind.5 We find this increasing prevalence of extrinsic
evaluation to be a very positive development, and do
not in any way wish to argue against use of down-
stream tasks for evaluation. However, we see several
limitations to an extrinsic-only evaluation paradigm,
and argue for more robust intrinsic measures.6

Extrinsic evaluation is necessarily dependent on the
selection of specific benchmark tasks to include, and
this process is fraught with difficulty, for several
reasons. First, there are many possible benchmark
tasks from which one could choose, each attempting
to measure something different. Different authors
will naturally choose different combinations of tasks
when evaluating their language models, as they
may be focused on different aspects of their models’
behavior. While scientifically appropriate, this does
make for a heterogeneous evaluation landscape, and
complicates comparisons between published results.
Second, new tasks are constantly being created, and
existing tasks are regularly updated. This results in a
complex and unstable evaluation landscape in which
evaluation tasks change from year to year, and allows
for much confusion around versions of datasets and
benchmarks. Third, downstream NLP tasks and
datasets often have their own issues around validity.

5Galliers and Spärck Jones (1993) refer to this as the model’s
“function” (in contrast to its “objective.”)

6In this, we follow Ito et al. (1999), who, writing about
language models in the context of their use in ASR systems,
warned against relying solely on evaluation metrics that were
specific to that task (specifically, word error rate).

133

For example, the commonly-used SNLI natural
language inference corpus (Bowman et al., 2015) was
later found to have substantial issues resulting from
artifacts in how its annotations were collected (Gu-
rurangan et al., 2018). How should one now assess
a language model evaluated using this downstream
task, knowing that the metrics may be of very limited
validity? Finally, we note that widely-used and
well-studied downstream evaluation tasks are often
not available in “low-resource” languages, and so
may not be an option in many scenarios. For these
reasons, we believe that intrinsic measures should still
play an important role in language model evaluation.

The question then becomes that of what to measure.
Perplexity has the advantage of being well-understood
and easy to calculate, and is closely linked to the
standard cross-entropy training loss frequently used
in language modeling. However, it has long been
observed that perplexity itself often fails to correlate
with downstream task performance (Iyer et al., 1997;
Ito et al., 1999), suggesting that it may have limited
external validity as a metric.

There is an additional, more subtle limitation to
the use of perplexity in cross-model comparison. As
previously mentioned, many modern language models
use sub-word units of prediction. One of the conse-
quences of this heterogeneity is that evaluation metrics
that relate to individual base-level prediction events (as
is the case with perplexity) are not comparable across
models, even if they are trained and evaluated on the
same corpus: different tokenizations and vocabularies
will result in different numbers of prediction events,
as well as a differently-sized space of possible choices
at each event. From the perspective of the perplexity
metric, two models with different approaches to
tokenization are performing fundamentally different
and numerically incomparable tasks.

Beyond this statistical problem, there is a problem
with the underlying semantics of using perplexity as
a measure when working with sub-word units. Any
actual application of a language model that involves
explicit word prediction7 will ultimately demand not
fragments of words, but rather entire words. In other
words, even models whose native unit of prediction is
at the sub-word level must make predictions that can
eventually be able to be decoded into whole words
at some point.

Given that, raw perplexity becomes a somewhat
confusing evaluation metric, as the underlying

7For whatever definition of “word” is appropriate in the
language under consideration.

phenomenon that it is measuring is quite distinct from
the model’s actual objective (i.e., predicting a whole
word). Imagine, for instance, a model that predicts
at the sub-word level, and now must predict a word
given the history “The tyrannosaurus was chased by
the.” The correct continuing word is “velociraptor,”
and under the sub-word tokenization used by this
model, this will necessitate several separate prediction
events (as “velociraptor” is both a long and an
infrequently-occurring word). From the perspective
of the perplexity metric, however, there will be
no difference between the first unit or the third.8

Whatever the perplexity metric is telling us about the
model’s behavior during this process will likely tell
us little about the model’s ability to actually predict
“velociraptor” given this particular word history.

1.3 Recentering on Words

We propose that intrinsic evaluation of language
models be done in terms of the whole-word prediction
task, regardless of the specific tokenization practices
of any particular model. This would have the
advantage of making cross-model comparison
easier, and of the resulting metric bearing a closer
resemblance to what we intuitively expect such a
metric to capture (i.e., the model’s performance at its
primary objective). While computing perplexity at
the level of whole words (see section 2) is a step in
the right direction, we also propose several additional
intrinsic metrics relating to the word prediction task.

Word Prediction Accuracy We propose directly
measuring and reporting the model’s raw accuracy at
word-level predictions (i.e., the proportion of words
that were predicted correctly). This has the advantage
over perplexity of grounding the number more closely
to the concrete performance objective that we are
concerned with. Furthermore, it is easily extended to
account for various attributes of model behavior that
may be of interest in terms of downstream tasks, while
still remaining in the realm of intrinsic evaluation.

In the experiments we describe in section 2, we ex-
periment with variations on this metric that capture dif-
ferent notions of “accuracy.” For example, we explore
“top n” accuracy (i.e., if the target word is in within
top nmost likely predictions, that prediction counts as
a “hit”). This could be of use in a text entry scenario,
in which the model is responsible for generating can-
didate words for further selection or refinement by an
end-user (as in a mobile phone keyboard application).
Many other possible downstream tasks for language

8Or, for that matter, from the previous token, “the.”

134

models involve techniques that would also benefit
from having the target word given better placement in
the ranked prediction space, and thus would benefit
from a metric explicitly measuring this property.

“Soft-Match” Prediction Accuracy We propose
extending simple prediction accuracy to allow for
“near miss” predictions, where the predicted word
is “similar” to the target (for a specified definition of
“similar”). In many applications of language modeling,
there may be multiple possible valid predictions. This
problem has long been understood in the context of
machine translation evaluation; in their description
of the motivation behind the METEOR metric, Lavie
and Denkowski (2009) addressed the “problem of
reference translation variability by utilizing flexible
word matching, allowing for morphological variants
and synonyms to be taken into account as legitimate
correspondences.” In a word prediction task, we
could allow an explicit synonym to count as a
correct prediction; depending on the application
or domain in question, one could use external
language resources to model much more complex
and task-specific notions of similarity (e.g., in a
biomedical NLP context, one might give the model
credit at evaluation time for predicting a medication
that is from the same functional class as the target).
In the experiments described in section 2.4.2, we
use a method based on word neighborhoods in an
embedding space. Depending on the nature of the
task under consideration, other features could be used.

Or, consider a typing task in a morphologically rich
language, in which a user might be willing to accept
predictions that involve the correct lexeme but with
an incorrect inflection. Allowing for this sort of flexi-
bility in the evaluation of a word prediction model has
the potential to greatly increase the ecological validity
of the experiment, in that, that the experimenter is
able to easily encode their own task-specific notions
of relevance while still staying in a fairly constrained
and easy-to-analyze evaluation setting.

Lexical Frequency & Diversity
One important limitation of raw classification ac-

curacy as a metric is its susceptibility to being biased
by imbalanced class distributions. For example, if
some classes occur much more frequently than oth-
ers, a model may achieve a high accuracy score by
learning to focus on these frequent classes to the ex-
clusion of infrequent ones. In written language, the
distribution of classes (i.e., of word types) are notori-
ously skewed (Zipf, 1935), and exhibit a “long tail” of
words that occur relatively infrequently, with a small

set of “head” words that make up a large proportion of
individual tokens observed in the training and test data.

We observe that language models often exhibit very
different performance characteristics when predicting
more common types than less common types; in fact,
our experiments in this paper demonstrate that, for
some commonly-used language models, the actual
number of infrequent types that are ever correctly
predicted is surprisingly small (see section 3.1).
This over-emphasis on frequent types, when carried
forward into downstream generation tasks, may
lead to the failure mode described by Holtzman
et al. (2020) in which generated text is “dull and
repetitive.” This phenomenon is not limited to words
alone; morphologically-rich languages (MRLs)
exhibit a similar Zipfian distributional pattern in
terms of the occurrence of different morphological
phenomena, which in turn affects the performance
of systems designed to process such features of
language (Czarnowska et al., 2019; Tsarfaty et al.,
2020). We believe that this behavior can be explained
through the lens of the bias-variance tradeoff common
to all statistical learning problems. As observed
by Lazaridou et al. (2015), neural models have a ten-
dency towards the “bias” end of that tradeoff, which
in the context of language modeling results in a strong
preference for head words and against tail words.

This is a serious enough problem in machine
translation and text generation systems that there is a
growing body of literature looking at ways to increase
the lexical diversity in model output. Some authors (Li
et al., 2016; Welleck et al., 2020) have examined
training strategies and loss functions that optimize
for diverse output, while others (Vijayakumar et al.,
2016; Ippolito et al., 2019) focus on alternatives to
greedy decoding and identify several ways to generate
more diverse sequences of words. Questions of
evaluation arise, as the construct of “diversity” itself
is surprisingly difficult to characterize, as pointed out
by Tevet and Berant (2020).

In the context of our word prediction task, we
propose two evaluation measures that account for
the Zipfian skew in type distributions, and illuminate
differences in model performance across the type
frequency spectrum. First, we propose stratifying
our evaluation of prediction accuracy by frequency,
such that we separately measure the model’s ability to
predict occurrences of high-, mid-, and low-frequency
types (stratified token coverage). Second, we propose
measuring the overall proportion of possible types that
the model was able to predict at least once during eval-

135

uation (type coverage, also stratified by frequency).

2 Methods

In this section we describe a series of experiments
in which we use our proposed evaluation metrics
to explore the behavior of several widely-used and
large-scale language models (obtained using the
HuggingFace (Wolf et al., 2019) Transformers
library). Specifically, we examine GPT-2 (Alec
et al., 2019) (gpt-2), GPT (Alec et al., 2018)
(openai-gpt), RoBERTa (Liu et al., 2019)
(roberta-base), and BERT (Devlin et al., 2019)
(bert-base-uncased).

2.1 Training & Datasets

Since the pre-trained models were all trained in widely
varying ways on different corpora, we ran each model
through a single pass of fine-tuning on a common cor-
pus to attempt to bring them more closely into align-
ment. For this fine-tuning (and for the ensuing exper-
iments), we used WikiText 103 (Merity et al., 2016),
which consists of a large (n=28,475) training set of
English-language Wikipedia articles and a small (n=
60) test set of 60 articles, with one sentence per line.
The fine-tuning task was on a word prediction task in
a unidirectional fashion, in which the context is based
only past history (i.e., not on future tokens).9 We note
that for BERT and RoBERTa, this usage does differ
somewhat from the prediction paradigm under which
they were trained, which is implicitly bidirectional.

2.2 Whole-word decoding

As previously described, modern language models
typically use sub-word/sub-sentences units as their
native unit of prediction. In order to perform a
meaningful evaluation of cross-model word predic-
tion accuracy, it is necessary to obtain word-level
predictions, which for the mentioned models may
involve more than one model-level prediction event.
The models we worked with in this set of experiments
used two different tokenization strategies (wordpieces
for GPT and BERT, and BPE for GPT-2 and RoBerta),
and as such we developed algorithms for decoding
whole words by sequentially decoding individual
sub-word units. While the algorithms differ slightly
in their implementation between the model families,
the overall method is similar.

Our single-word decoding algorithm extracts
the first word candidate by the model through con-

9Bert and Roberta were given a ‘[MASK]‘ token at the end
on a sequence to ensure unidirectional prediction.

catenating tokens until end-of-word is indicated, 10

and then compared with a target word (see App. B,
Algorithm 1). To extract multiple candidate words,
given a target word we run a Depth-First Search to
find whether a valid path of tokens exist, having each
model prediction spanning its top ten guesses (App. B,
Algorithm 2). This is not a typical beam-search based
on likelihoods, but rather is based on the existence
of valid units (in the first K options) for a given target
word, simulating user choices given a context. 11

In addition to decoding whole words, we would
like to be able to obtain a probability estimate of the
resulting prediction, for use in computing a word-level
perplexity measure. We approximate this by taking
the product of the prediction-level probabilities
(i.e., the model’s estimate of the probability of each
constituent unit in a given decoded word), which we
can then use for a perplexity-like score:

ppx=−
words∑

p(w)log(
units∏

q(u)) (2)

2.3 Experiments

We performed a word-level prediction experiment on
the test dataset described in Section 2.2, using each
of the models in Section 2. For each test example,
we performed incremental unidirectional word
prediction using Algorithm 1 to generate whole-word
predictions. In other words, for each test exampleW
comprised of w1...wn words, we queried the model
n− 1 times, to predict ŵi = argmax

w
P(wi|w1:i−1)

for i ∈ [2,n]. Additionally, we used Algorithm 2
to decode the top k ranked word predictions (for
k=10), ŵk

t . In other words, for the test input “the
dinosaur ate the ...” we would sequentially predict
p(w2|“the”), p(w3|“the dinosaur”), and so on. At
each prediction event, we compared the predicted
ŵt to the ground-truth wt according to the various
metrics described in the next section. We counted
as “hits” word-level prediction events where the
comparison matched (for the different definitions of
“matched”), and “misses” otherwise.

10The code is available for all model types we present in this
paper, and for the different tokenization approaches by which
they are trained.

11Code at https://github.com/shiranD/word_
level_evaluation

https://github.com/shiranD/word_level_evaluation
https://github.com/shiranD/word_level_evaluation

136

2.4 Calculation of Metrics
2.4.1 Prediction Accuracy
We measure token-level prediction accuracy12 using
an exact-match criterion, top1. In other words, if
wt = ŵt, a “hit” is counted; otherwise, a miss. We
also computed a higher-recall metric topk, in which
a “hit” is counted if wt∈ŵk

t — i.e., if the target word
is in the top k predictions, it counts as a “hit.” For our
experiments, we computed top10 (i.e., k=10).

2.4.2 Soft-Match Accuracy
As described in section 1.3, there are a number of cri-
teria by which one might implement a soft-matching
algorithm. From the perspective of evaluation, the key
is to design a criterion in such a way as to capture the
aspect of user behavior that one may wish to support.

We performed our soft-matching experiments
with a text entry scenario in mind, in which a user
is able to choose among the language model’s top n
predictions. Under this scenario, if the model fails to
predict the target word but instead predicts a related
word (a synonym, perhaps), the user may still be able
to convey their message. To simulate this, we may
define the soft-match operation as follows:

SoftMatch(a,b,s)=

{
True if a=b
s(a,b) otherwise

Where the arguments to SoftMatch are two can-
didate words a and b, as well as a similarity function
s : (a,b)→X ∈{True,False}. Softmatch(a,b,s)
is true if a and b are a match, or if s indicates
similarity. For our experiments here, we used a
method based on similarity in word embedding space,
under the theory that words with similar embeddings
may be (relatively) appropriate substitutions in a word
prediction task.

We used the word2vec algorithm (Mikolov et al.,
2013) to train 50-dimensional word embeddings
on the “train” subset of the WikiText-103 corpus.
We then defined our softmatch similarity function
sknn(a,b) = a ∈ knn(b), where knn(b,k) retrieves
the k nearest neighbors of target word b in the em-
bedding space. Using our softmatch function, we
then re-scored the prediction accuracy such that a
positive softmatch counted as a “hit.” We used the An-
noy library (Bernhardsson, 2018) to perform efficient
nearest-neighbor retrieval. We conducted experiments
in which we varied the k parameter; in other words, by

12For tokens— i.e., words— in the test set, as opposed to
tokens from the perspective of the model being evaluated.

allowing a match deeper into the k-nearest neighbors
of the target. Our motivation for this was that, ce-
teris paribus, a model that mis-predicts a target but at
least guesses something that lies in the right semantic
neighborhood is more useful than one that does not.

2.4.3 Lexical Diversity
In order to measure type diversity given all the hits in
top1/top10, we counted how many unique types were
correctly predicted for the first and top-ten guesses
and present it in T1 (T10) respectively. To illustrate
the utility of measuring the rate of unique types that
were correctly predicted, consider a hypothetical
dataset in which 20% of the tokens consist of the
word the, and that the model at hand predicts only this
word for every sample in the test set. In this scenario,
top1 accuracy will be 20%, as the is a correct
prediction for 20% of the times, yet T1 is based on
only one type 13 as there was only a single type that
was correctly predicted— suggesting sub-optimal
learning of the input distribution, or a lack on the
model’s ability to reflect that distribution during test.

3 Results

3.1 Diversity Evaluation

model top1 (top10) T1 (T10) ppx

GPT-2 35.63 (67.76) 26.60 (47.27) 34.8
GPT 29.37 (60.89) 15.96 (30.80) 37.9
RoBerta 28.18 (59.55) 24.73 (42.63) 42.2
Bert 22.11 (50.98) 15.59 (29.61) 50.7

Table 1: Experimental results on Wiki-103 corpus

Table 1 describes the results on the different models.
GPT-2, and GPT, that were pre-trained for word pre-
diction task exhibited the lowest ppx. GPT-2 had
the highest hit rate, and type diversity. However, when
comparing GPT, to RoBerta, while accuracy
seems to present a similar performance, and the ppx is
lower for GPT, RoBerta is found to be much more
diverse than GPT, suggesting that the similar hit rates
(28.18, 29.37) can be attributed to different reasons as
shown by their different performance over Tx metric.
On the other hand, we can also learn that while Bert,
and GPT share similar diversity rate (prediction di-
versity), GPT exhibits a higher prediction accuracy
making for a different accuracy/diversity ratio than
Bert, which may also suggest a different prediction

13T1 is the relative percentage of one over the overall number
of types

137

behavior than of Bert’s. To understand type diver-
sity we must explore which types were predicted well
and which types were harder. To this end, we strat-
ified both T1, and top1 as a function of frequency;
high, mid, and low, for x∈ [103,inf), x∈ [102,103),
x∈ [101,102) where x is each target type’s frequency.

Figure 1: Wiki-103 type coverage by training frequency
bin. n: number of items in each bin; y-axes are
percentages over n (note different scales).

Figure 1 describes the type distribution reflecting
high diversity for both GPT-2, and RoBerta,
while having GPT-2 picking on the low-bin twice
as many than RoBerta. Notice the stark differ-
ence between RoBerta, and GPT, RoBerta
outperformed GPT across every bin, illustrating its
diversity strength (given the similar hit rate shown
earlier). While performing worse, both GPT, and
Bert, seem to share similar rates of diversity, with
GPT, performing almost twice as many on the lowest
bin. Finally, even GPT-2 that attained the highest
diversity, was covering only 50%, 14%, and 7% of
the trained types we evaluated on. This shows there
is room for improvement to reflect more optimally
the input data’s distribution.

Figure 2: Wiki-103 token coverage by training frequency
bin. n: number of items in each bin; y-axes are
percentages over n (note different scales).

Figure 2 presents the hit rate distribution. This
figure explains the gaps of GPT-2, and RoBerta,
showing that while not so different in diversity,
RoBerta is missing the hits mostly from the most
frequent bin 10% gap, and a sub-optimal prediction
in the mid- and low-bins. The similar hit rate of

RoBerta, and GPT, clearly is distributed differently
having RoBerta reaching parts of the long tail of
the distribution more often than GPT. Bert, and
GPT, also exhibit the biggest gap in the most frequent
bin with 8% difference, while the mid and low bins
are similar. Overall evaluating prediction diversity
can inform us about the model’s priorities. Through
measuring type diversity, we learn that models that
share similar hit rates, can be vary immensely in di-
versity, which later on may impact downstream tasks.
Evaluating diversity could not only inform us to what
degree the learned distribution is reflected, but could
directly point at the missing types, and the weaknesses
of the model. Since all these models are shown to
be weaker in the lower bins, or biased by frequency,
our community can benefit if we start addressing this
problem, which indirectly would contribute to higher
accuracies as well. In Section 4 we illustrate in a case
study why learning diverse types, and low-frequency
types in particular can be useful. Next, we present
a way to further understand our models, even if the
target word was not found directly in a prediction.

3.2 Soft-Match Evaluation

Figure 3: Soft-Match for GPT-2, and GPT (Wiki-103)

Figure 3 illustrates GPT-2, and GPT’s T1, and
top1 performance on left (bars) and right (line) axes.
Both models gradually (@3-@100) capture more types
as the beam of k in knn was increased (considering
more target-neighbors), leading to increased hits. This
evaluation shows that GPT-2 exact match (@1) are
higher, but that its misses can enrich the pool of unique
types with 14% (@100) additional unique types (light
blue), whereas, GPT-2 covered only 11% more
types (light pink), while both models increase in accu-
racy is similar. This reinforces that the models’ predic-
tion mechanism is slightly different, as similar gains in
accuracy are translated to either more of learned high

138

types or more diverse patterns shown for the models
in Figures 1, 2. This analysis teaches us that even
if there were mis-matches some of them were actual
near misses, and are related to what it was expected
to predict, which as mentioned can be of practical use
for different users, or for analyzing how wrong were
the mis-matches as part of an error analysis process.

4 A case study of Paraphrasing

In this section we will look at the impact of model
inference performance on the particular downstream
task of paraphrasing. To this end we employed a
SotA algorithm, Bertscore (Zhang et al., 2019), to
compute similarity scores of sentence pairs in part
by comparing embeddings derived from a language
model. Under Bertscore, higher similarity scores
indicate greater semantic similarity of a pair of
sentences, such that one is a closer paraphrase of the
other. We would like to stress that the critique that
may be risen at the end of this section is not about
Bertscore tool as such, but are rather about a certain
type of pattern that the models that are employed by
this tool may have insufficiently learned.

Why Paraphrasing? We choose the downstream
task of paraphrasing to measure semantic similarity
of sentence pairs as it can be easily manipulated to
consider a single word modification. Consider the
following example sentence involving the word triple:
(poodle, dog, cat) 14

(a) which dog has longer hair ?

(b) which cat has longer hair ?

(c) which poodle has longer hair ?

The pair (a, b) ought to score lower (i.e., be
considered by Bertscore to be more dissimilar) than
the pair (a,c), as a is a valid paraphrase of cwhile b is
not. This, of course, assumes that the language model
being used as the underlying source of embeddings
for the Bertscore algorithm has accurately captured
the semantic meaning of the three words under con-
sideration. If not, we may see an inversion of results
such that (a,b) appears (incorrectly) more similar than
(a,c), suggesting that the model in question should
perhaps not be used for paraphrase-related tasks.

To explore the impact of word frequency on model
representations with our fine-tuned models, we have
generated 50 rare, and 50 common triples elicited

14Note that the word poodle occurs much less frequently
in English than either dog or cat.

from wiki-103 trainset. Each of the triples contains
a rare/common word, its hypernym, and a sibling
hypernym extracted from WordNet (Miller, 1995)
(using nltk (Loper and Bird, 2002)) (xr,xh,xa),
(xc,xh,xa) respectively. For each word in a triple,
we identified a sentence in which the rare word
naturally occurs, and generated probe sentences in
which we replace the rare word with xh and xa 15.
We then used bertscore to compare our sentences in
terms of their similarity. In principle, we expect that
bertscore(s(xh),s(xr)) > bertscore(s(xh),s(xa)).
In other words, a similarity score for the pair made of a
sentence with dog and the sentence with poodle
is expected to be higher than than the pair made of
a sentence with dog and a sentence with cat, as
dog and a poodle are closer semantically, than
a dog and a cat, and therefore would be a closer
paraphrase of each other. Alternatively, if the model’s
word representations are being confounded by lexical
frequency, we may instead observe the opposite pat-
tern (i.e., the sentences with the more common words
mistakenly appearing to be more similar to one an-
other, despite their semantic difference). We consider
cases in which the model correctly identifies the para-
phrase (e.g., if bertscore(s(dog), s(poodle)) >
bertscore(s(dog), s(cat))) as hits, and mis-
identifications as misses. Our “null hypothesis” is
that there should not be any difference in hit rate
between high- and low-frequency words (i.e., word
frequency should not affect the model’s ability to
identify paraphrases). Furthermore, we compare
the performance of two fine-tuned models trained
on wiki-103, Bert and RoBerta, and (given the
results of our earlier experiments) we hypothesize
that if there is a difference in hit rate, RoBerta
will prove more robust to the rare words condition,
given its superior performance at predicting (and thus
representing) rare words.

model hits misses total

Bertrare 14 36 50
RoBertarare 11 39 50
Bertcommon 40 10 50
RoBertacommon 39 11 50

Table 2: Paraphrasing sentences with wiki-103 words

We note that this is something of a “toy” ex-
periment, given its small size, which limits the
conclusions that we can draw. However, in Table 2,
we do see a greater difference in performance

15see Appendix C for details on sentence selection and
generation.

139

between the rare set of words to the common, such
that the models do appear to be failing to capture the
semantics of rare words, as reflected in the greater
number ofmisses (χ2; p<0.001 for both models).

We found that RoBerta and Bert did not
differ greatly in their performance, suggesting that
with this method the strong effect of word frequency
outweighed the between-model difference observed
in our earlier experiments. This null result could
easily be an artifact of our very small sample size
of 100 probe sentences, though, and we also did
notice a substantial number of misses with the set
of common words. Overall, despite this being based
only on a small sample, it does seem that the lower
performance of both models on the rare words is
unlikely to be a coincidence. We hope to be able
to experiment with a greater sample size to begin
learning more about the degree to which rare-word
inferences are reliable to produce outcomes aligned
with human semantics on various downstream tasks.

5 Future Work

The paraphrasing task should be conducted at a larger
scale. Furthermore, we hope to continue evaluating
language models’ prediction diversity and its effects
on additional downstream tasks (for example, tasks
where human speech is anticipated), since prediction
diversity evaluation may vary between one task to
another. The unit of evaluation can go beyond words,
and may be defined at various textual granularities,
such as phrases, for instance, depending on prediction
diversity desired. We also leave for future work
questions of to what degree different tokenization
approaches, or model size effect prediction diversity.

In our experiments, we did observe differences in
performance between models with different tokeniza-
tion strategies (e.g. GPT-2 and RoBerta as com-
pared with their architectural counterparts); however,
these models also varied substantially from one an-
other in other respects (size, etc.) and as such it is dif-
ficult to attribute this performance gap to tokenization
alone. It may also be the case that the bigger the model
(in terms of number of parameters), the more diverse it
is likely to be; under this hypothesis, we would expect
today’s ever-larger models (e.g. GPT-3) to outper-
form their predecesors in terms of diversity. However,
we do not believe that it is sustainable (Strubell et al.,
2019; Schwartz et al., 2019) to rely on increasing
model complexity as an approach to addressing the
frequency-related challenges that we observed in our
experiments, and believe that fundamentally different

approaches to language model training are needed.

6 Conclusion

We presented two types of evaluation techniques to
learn about the performance of the model across its in-
put distribution, revealing the easier and the challeng-
ing areas to learn. Through this analysis we showed
that current models are susceptible to frequency bias
during training, and as a result under-performing
when less frequent examples are encountered at test
time, hurting the overall performance. In addition, we
proposed a way to learn about the degree to which a
model’s prediction is semantically close to a target in
cases where an exact match was not predicted, which
may more accurately reflect a model’s usefulness.
Thirdly, we showed how a downstream task of para-
phrasing may be rendered less reliable, as the models
employed struggle to produce semantically-useful
representations when rare words are involved.

We believe that language models should reflect
the trained distribution more optimally than what
we observed in our evaluation, and we should
recognize their bias to frequency - making them unfair
towards some words, and potentially harmful for our
downstream tasks. We also believe it is important to
take part in setting benchmarks for models’ diversity.
Finally, distributional representation goes beyond
words, and we hope to address more complicated
representational tasks as well.

Acknowledgments

We thank the anonymous reviewers for their insightful
comments and suggestions. This work was supported
by the National Institute on Deafness and Other
Communication Disorders of the National Institutes
of Health under award number R01DC015999.

140

References
Radford Alec, Wu Jeffrey, Child Rewon, Luan David,

Amodei Dario, and Sutskever Ilya. 2019. Language
models are unsupervised multitask learners.

Radford Alec, Narasimhan Karthik, Salimans Tim,
and Sutskever Ilya. 2018. Improving language
understanding by generative pre-training.

Erik Bernhardsson. Annoy [online]. 2018.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and
Christopher D. Manning. 2015. A large annotated cor-
pus for learning natural language inference. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 632–642, Lisbon,
Portugal. Association for Computational Linguistics.

Marilynn B. Brewer and William D. Crano. 2014. Re-
search Design and Issues of Validity, 2 edition, pages
11–26. Cambridge University Press.

Paula Czarnowska, Sebastian Ruder, Edouard Grave,
Ryan Cotterell, and Ann Copestake. 2019. Don’t forget
the long tail! a comprehensive analysis of morphologi-
cal generalization in bilingual lexicon induction. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 974–983, Hong Kong,
China. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis,
Minnesota. Association for Computational Linguistics.

J.R. Galliers and Kare Spärck Jones. 1993. Evaluating
natural language processing systems. Technical
Report UCAM-CL-TR-291, University of Cambridge,
Computer Laboratory.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, Louisiana. Association
for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In International Conference on Learning
Representations.

Daphne Ippolito, Reno Kriz, João Sedoc, Maria Kustikova,
and Chris Callison-Burch. 2019. Comparison of di-
verse decoding methods from conditional language
models. In Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics,
pages 3752–3762, Florence, Italy. Association for
Computational Linguistics.

Akinori Ito, Masaki Kohda, and Mari Ostendorf. 1999.
A new metric for stochastic language model eval-
uation. In Sixth European Conference on Speech
Communication and Technology, pages 1591–1594.

R. Iyer, M. Ostendorf, and M. Meteer. 1997. Analyzing
and predicting language model improvements. In 1997
IEEE Workshop on Automatic Speech Recognition and
Understanding Proceedings, pages 254–261.

Alon Lavie and Michael J Denkowski. 2009. The ME-
TEOR Metric for Automatic Evaluation of Machine
Translation. Machine translation, 23(2-3):105–115.

Angeliki Lazaridou, Georgiana Dinu, and Marco Ba-
roni. 2015. Hubness and Pollution: Delving into
Cross-Space Mapping for Zero-Shot Learning. In Pro-
ceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), volume 1, pages 270–280.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and
Bill Dolan. 2016. A diversity-promoting objective func-
tion for neural conversation models. In Proceedings of
the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pages 110–119, San Diego,
California. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Edward Loper and Steven Bird. 2002. Nltk: The Natural
Language Toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies
for Teaching Natural Language Processing and
Computational Linguistics, pages 63–70.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer Sentinel Mixture
Models. arXiv preprint arXiv:1609.07843.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representations
of Words and Phrases and their Compositionality. In
Advances in neural information processing systems,
pages 3111–3119.

George A. Miller. 1995. Wordnet: A lexical database for
english. Commun. ACM, 38(11):39–41.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for SQuAD. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 784–789, Melbourne,
Australia. Association for Computational Linguistics.

https://github.com/spotify/annoy
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1017/CBO9780511996481.005
https://doi.org/10.1017/CBO9780511996481.005
https://doi.org/10.18653/v1/D19-1090
https://doi.org/10.18653/v1/D19-1090
https://doi.org/10.18653/v1/D19-1090
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-291.ps.gz
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-291.ps.gz
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://www.aclweb.org/anthology/P15-1027
https://www.aclweb.org/anthology/P15-1027
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
"https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf"
"https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf"
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124

141

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Roy Schwartz, Jesse Dodge, Noah A Smith, and
Oren Etzioni. 2019. Green AI. arXiv preprint
arXiv:1907.10597.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1715–1725.

Claude Shannon. 1951. Prediction and entropy of printed
English. Bell System Technical Journal, 30:51–64.

Emma Strubell, Ananya Ganesh, and Andrew McCallum.
2019. Energy and Policy Considerations for Deep
Learning in NLP. arXiv preprint arXiv:1906.02243.

Guy Tevet and Jonathan Berant. 2020. Evaluating
the Evaluation of Diversity in Natural Language
Generation. arXiv preprint arXiv:2004.02990.

Reut Tsarfaty, Dan Bareket, Stav Klein, and Amit
Seker. 2020. From SPMRL to NMRL: What
did we learn (and unlearn) in a decade of parsing
morphologically-rich languages (MRLs)? arXiv
preprint arXiv:2005.01330.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R. Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam search:
Decoding diverse solutions from neural sequence
models. arXiv preprint arXiv:1610.02424.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan,
Kyunghyun Cho, and Jason Weston. 2020. Neural text
generation with unlikelihood training. In International
Conference on Learning Representations.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. HuggingFace’s Transformers:
State-of-the-art Natural Language Processing. ArXiv,
abs/1910.03771.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s neural machine translation system: Bridging
the gap between human and machine translation.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. SWAG: A large-scale adversarial dataset
for grounded commonsense inference. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 93–104, Brussels,
Belgium. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating Text Generation with BERT. In International
Conference on Learning Representations.

G. K. Zipf. 1935. The psycho-biology of language.
Houghton, Mifflin, Oxford, England.

A Stratified Bins

The bin’s assignment is based on the words’ frequency
of the trainset, but the bins can only be based on the
intersection of the high-freq words in train, and all
the words in test set. Any high/mid/low-freq train
word that occurs in the test will be assigned to its
appropriate bin. Code is provided.

B Algorithms
for computing first and first ten guesses

Algorithm 1 Top1 Target Word Search

1: procedure TARGETFIND1(w<t, wt,model)
2: cxt←w<t

3: word←empty
4: while str(word) in str(wt) do
5: cxt←Cat(cxt,word)
6: Pwpct←Predict(cxt,model)
7: top1←ArgMax(Pwpct)
8: word←Cat(word,top1)
9: if str(word) = str(wt) then

10: return True
11: end if
12: if str(word) not in str(wt) then
13: return False
14: end if
15: end while
16: end procedure

C Protocol to elicit paraphrase pairs

We provide here the guidelines to elicit rare/common
paraphrase sentences. First, a simple routine
extracts possible triples that constructs the linguistic
relationship desired of hypo/hypernym and a
hypernym-sibling ((xr,xh,xa)). We begin by taking
the intersection of the vocabulary seen in the training

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009

142

Algorithm 2 TopK Depth-First Search

1: procedure TARGETFIND2(w<t, wt,model)
2: cxt←w<t

3: Pwpct←Predict(cxt,model)
4: top10←Top10(Pwpct)
5: for root in top10 do
6: roots.append(root)
7: end for
8: for root in roots do
9: paths←List(root)

10: while paths do
11: path←Pop(paths)
12: basiccxt←w<t

13: cxt←Cat(basiccxt,path)
14: Pwpct←Predict(cxt,model)
15: top10←Top10(Pwpct)
16: for wpct in top10 do
17: word←str(wpcpre,wpct)
18: if word = str(wt) then
19: return True
20: else if word in str(wt) then
21: new←Cat(path,wpct)
22: paths.append(new)
23: end if
24: end for
25: end while
26: end for
27: return False
28: end procedure

partition of the Wiki-103 corpus with that found in
WordNet (using the NLTK package (Loper and Bird,
2002)), and then further filtered for vocabulary items
with WordNet entries exhibiting the desired linguistic
relationship. (A synonym/antonym construction
could also have been chosen alternatively).

The frequency dynamic for the rare/common
triples (xr/xc,xh,xa) was (low, mid/high,mid/high)
and for the common (mid/high, mid/high, mid/high)
respectively. Words occurring fewer than 50 times
in the Wiki-103 training partition were categorized as
“low,” and were categorized as “mid/high” otherwise.
Finally, a human annotator manually identified
an appropriate context sentence for each target
word via online search across the following web-
based dictionaries: merriam-webster.com,
thesaurus.com, sentencedict.com, and
dictionary.cambridge.org. Here is a rare-
word triple example following (xr,xh,xa) order.

(a) The afterdamp occurring in such situations

is a mixture of carbon dioxide and carbon
monoxide.

(b) The gas occurring in such situations is a
mixture of carbon dioxide and carbon monoxide.

(c) The liquid occurring in such situations is a
mixture of carbon dioxide and carbon monoxide.

Here is a common-word triple example following
(xc,xh,xa) order

(a) Because of the poor economy, the factory will
immediately discontinue operations.

(b) Because of the poor economy, the factory will
immediately cease operations.

(c) Because of the poor economy, the factory will
immediately continue operations.

The complete sentence list can be found at https://
github.com/shiranD/word_level_evaluation.

merriam-webster.com
thesaurus.com
sentencedict.com
dictionary.cambridge.org
https://github.com/shiranD/word_level_evaluation
https://github.com/shiranD/word_level_evaluation

